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Motivating example: Bayesian inverse problems

Paradigmatic inverse problem

Find an unknown parameter 6 € U from data y € R™ where

y=6(0) +n,
» G is the forward operator;

» 1 is observational noise.

Two difficulties’ associated with this problem are the following:
> Because of the noise, it might be that y ¢ Ran(G);
» The problem might be underdetermined.

Additionally, in many PDE applications,
> G is expensive to evaluate;
» The derivatives of G are difficult to calculate;

» @ is a function — infinite dimension.

IM. Dashti and A. M. Stuart. In Handbook of uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.
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Example: inference of the thermal conductivity in a plate

Mathematical model:
Solution:
-V (0(x)VT(z)) = f(z), T €Q,
T(z) =0, z € 00.
Unknown parameter: coble™
\:or"""“d P
Thermal conductivity 0(x)
Temperature field T'(z)
3 Data:
(true) ”
MAP estimator:
i |nverse proPIe™ | Noisy temperature measurements:
y=(T(z1),...,T(xm)) + 7.
(reconéifﬂcfed) e

Motivation

o



Probabilistic approach for solving “y = G(8) + n"*

Bayesian approach to inverse problems

Modeling step:
» Probability distribution on parameter: 6 ~ 7, encoding our prior knowledge;
» Probability distribution for noise: 1 ~ v.

An application of Bayes' theorem gives the posterior distribution:

p(0) o< w(60) v(y — G(6)) = prior X likelihood.

(In infinite dimension, use Radon—Nikodym derivative.)

In the Gaussian case where m = N'(m,X) and v = N(0,T),
1 1
p0) xexp (= (G 1y =GO + 3 10— ml2 ) ) = exp(~7(0).
where |z] , := VaT A 1.

Two approaches for extracting information:

» Find the maximizer of p¥(f) (maximum a posteriori estimation);
» Sample the posterior distribution p¥(6).

LA. M. Stuart. Acta Numer., 2010.
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Brief review of the recent literature on interacting particle methods

1994: Ensemble Kalman filter' (6,611 citations);

1995: Particle swarm optimization® (90,668 citations);

2006: Sequential Monte Carlo samplers® (2,255 citations);
2010: Affine-invariant many-particle MCMC* (3,505 citations);
2013: Ensemble Kalman inversion® (473 citations);

2016: Stein variational gradient descent® (1,285 citations);
2017: Consensus-based optimization’ (185 citations);

2020: Ensemble Kalman sampling® (233 citations);

vVvyVvvVvyVvyVvYyy

Often parallelizable, and some can be studied through mean-field equations.

1G. Evensen. Journal of Geophysical Research: Oceans, 1994.

2. Kennedy and R. Eberhart. In Proceedings of ICNN'95-international conference on neural networks. iece, 1995.
3P. Del Moral, A. Doucet, and A. Jasra. J. R. Stat. Soc. Ser. B Stat. Methodol., 2006.

4J. Goodman and J. Weare. Commun. Appl. Math. Comput. Sci., 2010.

5M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Inverse Problems, 2013.

Q. Liu and D. Wang. In Advances In Neural Information Processing Systems, 2016.

R. Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.

8A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. SIAM J. Appl. Dyn. Syst., 2020.
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Consensus-based optimization (CBO)!2

Global optimization problem:
Find x € argmin F (F: R 5 R)

zeRd

CBO interacting particle system

dX{:—(X{—M;(u;}))dt+ﬁa‘X§—M;(uf)‘thj, j=1,...,J

» Jis “inverse temperature” parameter.

» ] is empirical measure pf = %Z}Ll Oyi
- t

> M,: P(RY) — R? is weighted mean operator:

Jae 7@ pu(dz) Sy X exp(—0F(XY))
Teroua M) =55 Fx
Je p(dx) S7 exp(—IF (X))

1R, Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.
2) A Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.

Mi(p) =
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Typical evolution of CBO dynamics
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Figure: Ensemble evolution for the Ackley function
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Numerical implementation®

C{cexry CY{cBX|j

Software library in Python (lead T. Roith) and Julia (lead R. Bailo):

» Offers high-performance implementation of the method;
> Implements a number of extensions (different noises, mini-batching, sampling, ...)
» Provides general interface that can accommodate extensions.

J@&SS

The Journal of Open Source Software

CBX: Python and Julia Packages for Consensus-Based
Interacting Particle Methods

Rafael Bailo©!, Alethea Barbaro ©2, Susana N. Gomes ©?, Konstantin
Ried! ©**, Tim Roith ©°, Claudia Totzeck ©7, and Urbain Vaes ® **

1 Mathematical Institute, University of Oxford, United Kingdom 2 Delft University of Technology, The
Netherlands 3 Mathematics Institute, University of Warwick, United Kingdom 4 Technical University of
Munich, Germany 5 Munich Center for Machine Learning, Germany 6 Helmholtz Imaging, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany 7 University of Wuppertal,
Germany 8 MATHERIALS team, Inria Paris, France 9 Ecole des Ponts ParisTech, Marne-la-Vallée,
France

1R. Bailo, A. Barbaro, S. N. Gomes, K. Riedl|, T. Roith, C. Totzeck, and U. Vaes. Journal of Open Source Software,
2024.
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Consensus-based sampling (CBS)!

Sampling problem:

Generate samples from distribution 7 oc e~ 7 (F: R* - R)

CBS interacting particle system

dx? = — (X7 = Mo () dt + 4200+ D) Co(ud) AWF,  j=1,...,7

» Jis “inverse temperature” parameter.
J - J _ 15 )

> ui is empirical measure py = 5 >0, 5XZ'

> C:: P(RY) — R¥? is weighted covariance operator:

[@@x)e 7@ pu(dx)

Co(p) = e 7@ p(de) — M () @ M ().

1) A Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.
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Illustration

- —7—3.9
Iteration 0

110 {}8 = 0.500 Z 51
ESS = 1.30/1000 s

7

90
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Mean field limits

Taking formally J — oo in the interacting particle systems leads to

CBO mean field limit

dX: = = (%o = M. (p)) dt + V20| X = M. (5,)| 4T,
ﬁt = LaW(Yt)

CBS mean field limit

dX, = (X = M:(3) dt + V2T )C: (7)) AW,

pt = LaW(Yt)

> Nonlinear Markov processes in R%: future depends on X, and its distribution;

» Associated Fokker—Planck equations are nonlinear and nonlocal.

Motivation 14 / 35



Notation: Wasserstein distances!

Wasserstein distance in R? (here | -| is always the Euclidean norm)

1
For ,v € Pp(RY),  W,(u,v)= inf (E(X,Y)M,|X - Y|”) g
YEI(p,v)

Here TI(u,v) = {y € P(R? x R?) : projj v = u, projyy =v}.

Motivation 15 /35



Convergence results in mean field law for CBO and CBS

Recall Wa: P2(R?) x P2(R%) — R denotes the Wasserstein-2 metric.

Convergence of mean field CBO!:2

Under mild conditions including existence of a unique minimizer, there is A such that

vt e [OaTL W2(ﬁt76z*) < WQ(EOa(sI*)e_At7 Ty« = argmin F.
zeR4

Furthermore T); — oo as  — oo.

Convergence of mean field CBS®

If 7 oc e~ is Gaussian and 7, is Gaussian, then

vt >0, Wa(p,,7) < ce ()t

1J. A Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.
2\, Fornasier, T. Klock, and K. Riedl. SIAM J. Optim., 2024.
35 A Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.
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Key characteristics of consensus based optimization

» Derivative-free, making them versatile and widely applicable:

from cbx.dynamics import CBO
f = lambda x: x[0]**2 + x[1]**2
x = CBO(f, d=2).optimize ()

» Can be easily implemented in parallel;
» (For the sampling variant) Affine invariant: convergence rate independent of target;

» Theoretical guarantees for the mean field equations.

Question: how to obtain convergence guarantees in the finite-size setting?

Motivation 17 / 35



Additional notation: Wasserstein distances!

Wasserstein distance in R4/

J P
For f7,9” € P(R"), Wp(fJ’gJ) = i (E(X,Y)N’YJ Z|X] - Y]|p>

~ver (7,97 j=1

> With this normalization, W, (1®”,v®7) < Wy (i, v).
> For associated empirical measures, E [W, (1}, )" < Wi (f7,97)".

Below fJ,?J € P(R*Y) are joint laws, while p/, 77 € P(P(R?)) are empirical measures:

R P

k\*—‘
k.\*—‘

LL-P. Chaintron and A. Diez. Kinet. Relat. Models, 2022.
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Convergence for the interacting particle systems

Let f = Law(X/,...,X/). By the triangle inequality,
Oz, for CBO,

W(J,V®J)<W(J77®J)+W e
2\ fi 2 fi 5 Py Q(pt ) o or CBS.
—0 as J—o00?7?? <Ce— At

Pre-existing mean field results for CBO (i.i.d. initial condition and fixed t)

!Based on a compactness argument, it was shown that

-3

k\r—‘

/Lg ﬁvi_) Pt (no rate)7

2For all € > 0, there is C. > 0 such that for all J there is Q. C Q satisfying

P\ Q] <e and E[Wa(f/,587)|0] <cou?, G — oo.

Our goal: obtain an estimate of the form sup,., W, (ff,ﬁiw) < cJ 3.

H. Huang and J. Qiu. Math. Methods Appl. Sci., 2022.
2Mm Fornasier, T. Klock, and K. Riedl. SIAM J. Optim., 2024.
19 / 35
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The classical synchronous coupling approach



Introduction of synchronous coupling

Toy example (with M (u) the usual mean under p)

Interacting particle system:
i () =R =1

Mean field limit:
dX, = = (X0 = M(p,)) dt + ¢~ dIV,

7, = Law (X4).

Synchronous coupling

We couple to the particle system J copies of the mean field dynamics:
axi=—(xi —M(ud))dt et AWl Xj=ab, =1,
dY{:—(Y{—M(ﬁt)) dt +e~t dWj, Xi=xl, j=1,...,J,

with same initial condition and driving Browian motions.

The classical synchronous coupling approach 21/35



Using the synchronously coupled to prove propagation of chaos

Synchronous coupling j € {1,...,J}
axi = —(Xg' —M(p{)) dt+e P AW/, X3 =i,

ax’ = —(Y{ - M(ﬁt)) dt +e~t dWj, X} =al.

Key fact: mean field processes are i.i.d. with law Yﬁ ~ P, SO

wa(f,087) =wa(F. 7)), T =Law (X0, X7).

1

By definition of Wasserstein distance and exchangeability,

1< 2
jZ‘XtJ - X
j=1

Wa (ftJa?;])Q <E

—E UX,} -X

The classical synchronous coupling approach 22/ 35



Bounding the remaining term (using Sznitman's approach?)

Synchronous coupling j € {1,...,J}
axi = —(Xg' - M(u;’)) dt+et dW),  Xi=al,

dx) = —(Y{ - M(pt)) dt+e~t awi,  X)=ad.

Key Lemma: Lipschitz continuity of M: P;(R%) — R4

V(s v) € PL(RY) x PL(RY), ‘M(,u) - M(y)‘ < Wh(p,v).

2
B ds

t
g/ E‘Xj—?i
0

< /tE‘X; —Y1‘2+E [Wz (M;]aﬁ;])j ds + Cymed ™!
0

—1]2 t —
E[|X§—Xi| ] 5/ E‘X;—Xl
0

FHEM () - M@

2
ds

rEM () - m@ED] +EM(E) - MG

< /1’1«:‘)(1 7§1‘2 ds 4 CucJ ™t o2
SA .

s

— _
E [\X} - Xtﬂ <owJ .
LA.-S. Sznitman. In Ecole d'Eté de Probabilités de Saint-Flour XIX—1989. Springer, Berlin, 1991.
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From infinite-dimensional chaos to empirical chaos

Sznitman's approach shows that

W ( t",ﬁ;@") =0 (%) as J — oo.

Question: Can we say anything about the convergence of the empirical measure p;?
1 1 1
(B (i 2)") " < (B i? )") " + (B, (7 5)")”
1
( 5 Z X/ - X}
o

J§

=

=

> + (B (7. 7,)")
for o > 0 depending on dimension®.

IN. Fournier and A. Guillin. Probab. Theory Related Fields, 2015.
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Why the classical Sznitman approach fails for CBO/CBS

Synchronous coupling for CBO, j € {1,...,.J}

axi = —(Xg' M :(M,{)) dt+\/§a]Xg M ;(u{)‘thj, X} = al.
dX; = — (X1 = M. (p,)) dt + V20 [X] - M.(5,) | aWf, X5 = ai.

Technical difficulties:

> M, : Pi(R%) — R% is not globally Lipschitz continuous in general.
> Presence of multiplicative noise that depends on uy .

» Usual Monte Carlo estimates do not enable to bound

2

’

E|M. (7)) - M. (5.)

but estimates are given in the literature!>2.

1p. Doukhan and G. Lang. Bernoulli, 2009.
2g, Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.
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Extending the synchronous coupling approach for CBO/S



Main result: quantitative mean field limits

Assumption (focusing on the unbounded F setting for simplicity here)
» Local Lischitz continuity. F is bounded from below by F, = inf F and satisfies
vo,y €RY, |F(2) = Fy)l < Ly(1+ 2| +1y)°lz —yl,  s>0.

> Growth at infinity. There are constants ¢,u > 0 and a compact K C R? such that

1
Ve e R\ K, E|x|“ < F(z) < clz].

Main theorem?®, holds for both CBO and CBS

If F satisfies the above assumption and p, has infinitely many moments, then

VJeNT, Vje{l,...,J}, E| sup ]Xg—fi
]

te[0,T

p _p
}gc,] 3

IN. J. Gerber, F. Hoffmann, and UV. Arxiv preprint, 2023.
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Main ingredients of the proof

Definition of P, r(R%)

Pp,r( {N € Ppr(R ) s Wh(p, 0o) < R}-

» Local Lipschitz continuity for M. For all R > 0 and for all p > 1, 3L s.t.
Y(1,v) € Py (RY) x P, (RY), ‘M (1) — M ,(V)] < LW, ().

> Moment bound: Suppose 5, € P;(R?). Then there is x > 0 such that

VJeENT, E| sup ’ng] vV E ]\m.

te[0,T]

sup ‘Xt
t€[0,T]

Extending the synchronous coupling approach for CBO/S 28 /35



Sketch of the proof: stopping time approach’ (GHSEEEEED

» Local Lipschitz continuity of M ; motivates stopping time
1
. _J —J
0, = 1nf{t >0 W), 60) = R}, A =5 Y 0

» Then decompose

E ng X

=5 -

p j =7
1{9.I>T} +E Xt_Xt

P
1{9‘,@}] :

. P . .
» First term can be shown to scale as C'J~ 2 using classical approach;

» Second term handled as follows (g > p):

E[Xj X! q]gpe <7
t At [J\ }‘1 .

P j ]
1i0,<ry| <E||X] - X]

> First factor bounded using moment bounds.
» Second factor: for sufficiently large R, by generalized Chebyshev inequality,

VYa >0, 3C(a): PO, <T|<C(a)J "
1p. J. Higham, X. Mao, and A. M. Stuart. SIAM J. Numer. Anal., 2002.

Extending the synchronous coupling approach for CBO/S 29 /35



Towards uniform-in-time propagation of chaos



Revisiting the toy example

Toy example (with M(u) the usual mean under 1)
Interacting particle system:

dxi = —(Xf —M(u;’)) dt+etdW/, Xi=azl"k'p, j=1,...,J
Mean field limit:
dX, = _(x _ M(ﬁt)) dt + et dW,,

ﬁt = La.W(Yt)

Moment decay estimate: by Itd's formula,

d . 2
—B|X{ — M(ui)

2
d —2t
d tae

< —2B|x] — M(ui)

Gronwall

. 2
< (E'Xé—/\/l(ua’)‘ +5l>e*2f.
Similarly

d_— _
—E‘X _EX
dt t t

2 . 12
< (E.Xo - EXO‘ + g) e 2t

Towards uniform-in-time propagation of chaos 31/35



Exploiting convexity with synchronous coupling: Malrieu's approach

Synchronous coupling for toy example
dxi = —(Xg' - M(,u;])) dt+e ' AW},
dXi = —(X! - M@)) dt+e™* aWf,  Xp =i,

Xi=uad, j=1,...,J,

J
> (x] = X1, X7 = M) = X1+ M@ED))
Jj=1

. %z"xxg - XL M@ - M(@,)-

j=1

The first term is nonpositive. By the Cauchy—Schwarz inequality, we obtain

— 112
"< y/E|xt =X EME) - M)
d —112 _ _
~FVEX =T < VBIMGE) - ME)P 5 5

Towards uniform-in-time propagation of chaos

2

E‘X _x!
2dt ¢ ¢
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Extending Malrieu's approach to CBO

Synchronous coupling for CBO, j € {1,...,.J}

axi = —(Xg' M <(u;’)) dt+\/§a]Xg M ;(u{)‘dwf, X} =,
aws?, X} =ad.

axi = —(Y{ - M j(p,‘)) dt + \/ia‘fi — M:(B,)

(X7 X1, X7~ Mud) X7+ M)

<l
‘Mk

“M“ M= -

dt 2J Z’XJ Xt

~
Il

<xf — XU, M) = M) = MG@E!) + M)

Small 777

<=

S =R M) M) e

Small when J > 1

~ \

Assumption: for simplicity here, from now on we assume

> no noise (o = 0);
> f bounded and globally Lipschitz;

> initialization in a compact set: z ~ p, with p, compactly supported.
33 /35
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Auxiliary results

Notation: For a probability measure 1 € P1(RY), let

/|m — P u(de).

Key ingredient: Stability of weighted mean
Then there exists Caq > 0 such that for all p, v € Pa2(R?),

M () = M() = Mo (v) + M)| < O (V1) + /D20 ) Wa (1, ).

Key ingredient: Moment estimate for particle system

For all p > 0, there exists A\, > 0 such that

—Apt

E [2,(u))] <E[M@d)] e ™, E[X, -EX[ e

< E‘YU —EX,

’ P

M) = M) - MED + M)

_ 22 _
Se 2 tW2(#%]7HtJ)
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Uniform-in-time propagation of chaos

Main theorem

Suppose that
» function f is bounded and globally Lipschitz;
» probability distribution p, has finite moments of all orders;
» noise coefficient o is sufficiently small.

Then there exists Cyrr (a,i, 1, Ly, o0, d) such that

CwmrL

E[Xl—Yl 2] <
St;lg | 7 t| 7

Future directions:

» Uniform-in-time estimate for Consensus-Based Sampling;

» Discrete-time estimates;

Towards uniform-in-time propagation of chaos 35 /35



Uniform-in-time propagation of chaos

Main theorem

Suppose that
» function f is bounded and globally Lipschitz;
» probability distribution p, has finite moments of all orders;
» noise coefficient o is sufficiently small.

Then there exists Cyrr (a,i, 1, Ly, o0, d) such that

CwmrL

E[Xl—Yl 2] <
St;lg | 7 t| 7

Future directions:

» Uniform-in-time estimate for Consensus-Based Sampling;

» Discrete-time estimates;

Thank you for your attention!

Towards uniform-in-time propagation of chaos 35 /35



Details of the proof: first term (1/2)

. — P
» Starting point: the following is an upper bound for ’th — Xi 10,571
; — p tA6 g . . P
’Xg/\ef 7Xi/\9J < / b(nglLsJ) 7b(Xi7ﬁs) ds
’ 0

P

tAO g . .
+ / U(Xgnusj) _U(Xi7ﬁs) dWS
0

» By Doob's optional stopping and Burkholder—Davis—Gundy,

p
E ds

j ~ P 1 o
sup yxgwj - Xono, 7] < (217 E/
s€[0,t] : 0

b(x2,ul) -0 (X07.)

tAO g
+ CBDG2”‘1T5‘1E/
0

o (¥ht) -0 (X2

» Both terms handled similarly. For the drift, by the triangle inequality,

’p ds =: At —+ Bt.
F

t
A [ B[ (X, idna, ) =t (Kinay i, )| a
0

+/OtE\b(Yi,ﬁi) ~b(X5.)

" ds =: Agl) + A§2).




Details of the proof: first term (2/2)

» In order to bound AED, recall that b(x, ) = —x + Mgz(u), so
E ’b (Xg/\anuﬁ;I/\BJ) -b (YiAeJaﬁ;IAeJ)‘ ‘XsAg - YﬁAeJ
+E ‘M v’(ﬂsJAeJ) -M f(ﬁsJAeJ)

By local W, Lipschitz continuity of Mz and definition of 6,

P

P

E Mf(H;]AeJ)*MI(ﬁiAeJ) SOR ‘W (#3A917N9A9J) !
<C(R)E ‘XWJ ~ X0,
» In order to bound A,EQ), we use known results'+?
Bfp (¥112) - (¥2.0.) [ B[t (1) ~a ) 5778

Putting everything together and using Gronwall,

E

~7J
sup ‘Xme — Xine,
te[0,T7]

p] <Jk

1p. Doukhan and G. Lang. Bernoulli, 2009.
2g, Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.



Details of the proof: second term

The more difficult part is to bound

1 s
P[0, (R) <T] =P | sup ~ > ’Xi "SR
tefo,7) J 5
1< P
<P 7ZZ]2R R Zj = sup ‘Yi
J = t€[0,7]

Let X = 5 Z] 1 Zj. By the Marcinkiewicz—Zygmund inequality, it holds for r > 2 that

e

where we used Jensen's inequality and exchangeability. If R > E[X], then

E|X -E[X]|"<J'E ( E[Z;]

j=1

CcJ 2

|X - E[X]|"
(R—E[X])"

P[X >R < [|X E[X]]" > (R—E[X])T] <E

where we used Markov's inequality.
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