

ParisTech

Consensus-based sampling

Rencontres Inria-LJLL

Urbain Vaes urbain.vaes@inria.fr

MATHERIALS – Inria Paris & CERMICS – École des Ponts ParisTech

18 October 2021

José Carrillo

Mathematical Institute

Franca Hoffmann

Hausdorff Center for Mathematics

Andrew Stuart

Department of Computing + Mathematical Sciences

Reference: J. A. CARRILLO, F. HOFFMANN, A. M. STUART, and UV. Consensus Based Sampling. arXiv e-prints, 2021

The big picture

Consensus-based sampling

Numerical experiments

Paradigmatic inverse problem

Find an unknown parameter $\pmb{ heta}\in\mathcal{U}$ from data $y\in\mathbf{R}^m$ where

 $y = \mathcal{G}(\theta) + \eta,$

- G is the forward operator;
- η is observational noise.

Two difficulties^[1] associated with this problem are the following:

- Because of the noise, it might be that $y \notin \text{Im}(\mathcal{G})$;
- The problem might be underdetermined.

Additionally, in many PDE applications,

- \mathcal{G} is expensive to evaluate;
- \blacksquare The derivatives of ${\mathcal G}$ are difficult to calculate;
- θ is a function \rightarrow infinite dimension.

M. DASHTI and A. M. STUART. The Bayesian approach to inverse problems. In Handbook of uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.

Example: inference of the thermal conductivity in a plate

Bayesian approach to inverse problems

Modeling step:

- Probability distribution on parameter: $\theta \sim \pi$, encoding our prior knowledge;
- Probability distribution for noise: $\eta \sim \nu$.

An application of Bayes' theorem gives the posterior distribution:

 $\rho^{y}(\theta) \propto \pi(\theta) \nu (y - \mathcal{G}(\theta)) = \text{prior} \times \text{likelihood.}$

(In infinite dimension, use Radon-Nikodym derivative.)

In the Gaussian case where $\pi=\mathcal{N}(m,\Sigma)$ and $\nu=\mathcal{N}(0,\Gamma),$

$$\rho^{y}(\boldsymbol{\theta}) \propto \exp\left(-\left(\frac{1}{2}\left|y - \mathcal{G}(\boldsymbol{\theta})\right|_{\Gamma}^{2} + \frac{1}{2}\left|\boldsymbol{\theta} - m\right|_{\Sigma}^{2}\right)\right) =: \exp\left(-\boldsymbol{f}(\boldsymbol{\theta})\right).$$

Two approaches for extracting information:

- Find the maximizer of $\rho^{y}(\theta)$ (maximum a posteriori estimation);
- **Sample the posterior distribution** $\rho^{y}(\theta)$.

^[2] A. M. STUART. Inverse problems: a Bayesian perspective. Acta Numer., 2010.

- 2006: Sequential Monte Carlo^[3];
- 2010: Affine-invariant many-particle MCMC^[4];
- 2013: Ensemble Kalman inversion^[5];
- 2016: Stein variational gradient descent^[6];
- 2017: Consensus-based optimization^[7];
- 2020: Ensemble Kalman sampling^[8];

Often parallelizable, and some can be studied through mean-field equations.

- [3] P. DEL MORAL, A. DOUCET, and A. JASRA. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol., 2006.
- [4] J. GOODMAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci., 2010.
- [5] M. A. IGLESIAS, K. J. H. LAW, and A. M. STUART. Ensemble Kalman methods for inverse problems. Inverse Problems, 2013.
- [6] Q. LIU and D. WANG. Stein variational gradient descent: a general purpose Bayesian inference algorithm. In Advances In Neural Information Processing Systems, 2016.
- [7] R. PINNAU, C. TOTZECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization and its mean-field limit. Math. Models Methods Appl. Sci., 2017.
- [8] A. GARBUNO-INIGO, F. HOFFMANN, W. LI, and A. M. STUART. Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.

Our starting point: consensus-based optimization (CBO)^[9]

CBO is an Optimization method based on the interacting particle system

$$\mathrm{d}\theta_t^{(j)} = -\left(\theta_t^{(j)} - \mathcal{M}_{\boldsymbol{\beta}}(\mu_t^J)\right)\mathrm{d}t + \sqrt{2}\sigma \left|\theta_t^{(j)} - \mathcal{M}_{\boldsymbol{\beta}}(\mu_t^J)\right|\mathrm{d}W_t^{(j)}, \qquad j = 1, \dots, J,$$

where $\mathcal{M}_{\boldsymbol{\beta}}(\mu_t^J)$ is given by

$$\mathcal{M}_{\boldsymbol{\beta}}(\boldsymbol{\mu}_{t}^{J}) = \frac{\int \boldsymbol{\theta} \,\mathrm{e}^{-\boldsymbol{\beta}f(\boldsymbol{\theta})} \,\boldsymbol{\mu}_{t}^{J}(\mathrm{d}\boldsymbol{\theta})}{\int \mathrm{e}^{-\boldsymbol{\beta}f(\boldsymbol{\theta})} \,\boldsymbol{\mu}_{t}^{J}(\mathrm{d}\boldsymbol{\theta})} = \frac{\sum_{j=1}^{J} \boldsymbol{\theta}_{t}^{(j)} \exp\left(-\boldsymbol{\beta}f(\boldsymbol{\theta}_{t}^{(j)})\right)}{\sum_{j=1}^{J} \exp\left(-\boldsymbol{\beta}f(\boldsymbol{\theta}_{t}^{(j)})\right)}, \qquad \boldsymbol{\mu}_{t}^{J} = \frac{1}{J} \sum_{j=1}^{J} \delta_{\boldsymbol{\theta}_{t}^{(j)}}.$$

Properties:

Mean-field limit:

$$\partial_t \mu = \nabla \cdot \left(\left(\theta - \mathcal{M}_\beta(\mu) \right) \mu \right) + \sigma^2 \triangle \left(\left| \theta - \mathcal{M}_\beta(\mu) \right|^2 \mu \right).$$

• Convergence of the mean field solution: if f has a unique global minimizer,

$$\mathcal{M}_{0}(\mu_{t}) \xrightarrow[t \to \infty]{} \widehat{\theta}(\beta), \qquad \widehat{\theta}(\beta) \xrightarrow[\beta \to \infty]{} \operatorname*{arg\,min}_{\theta \in \mathbf{R}^{d}} f(\theta).$$

^[9] R. PINNAU, C. TOTZECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

Key tool for the analysis of CBO: Laplace's method

Laplace's method can be employed for studying the limit as $\beta \to \infty$ of the integral

$$I_{\beta}(\varphi) = \frac{\int_{\mathbf{R}^{d}} \varphi(\theta) e^{-\beta f(\theta)} \mu(\mathrm{d}\theta)}{\int_{\mathbf{R}^{d}} e^{-\beta f(\theta)} \mu(\mathrm{d}\theta)} =: \int_{\mathbf{R}^{d}} \varphi \,\mathrm{d}(\mathcal{R}_{\beta}\mu), \qquad \mathcal{R}_{\beta} : \mu \mapsto \frac{\mu e^{-\beta f}}{\int \mu e^{-\beta f}}.$$

Let $\theta_* = \arg \min f$. Under appropriate assumptions, it holds^{[10],[11]}

$$I_{\beta}(\varphi) = \int_{\mathbf{R}^d} \varphi \, \mathrm{d}g_{\beta} + \mathcal{O}\left(\frac{1}{\beta^2}\right) \quad \text{as } \beta \to \infty.$$

where $g_{\beta} = \mathcal{N}\Big(\theta_*, \beta^{-1}\big(\mathrm{Hess}\,f(\theta_*)\big)^{-1}\Big)$. In other words $\mathcal{R}_{\beta}\mu \approx g_{\beta}$ for large β .

Motivation:

$$\mathrm{e}^{-\beta f(\theta)} \approx \mathrm{e}^{-\beta \left(f(\theta_*) + \frac{1}{2} \operatorname{Hess} f(\theta_*) : \left((\theta - \theta_*) \otimes (\theta - \theta_*) \right) \right)}$$

- [10] P. D. MILLER. Applied asymptotic analysis. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2006.
- [11] J. A. CARRILLO, Y.-P. CHOI, C. TOTZECK, and O. TSE. An analytical framework for consensus-based global optimization method. Mathematical Models and Methods in Applied Sciences, 2018.

The big picture

Consensus-based sampling

Numerical experiments

Can we construct a sampling method using ideas from CBO?

Notation: \mathcal{M}_{β} weighted mean, \mathcal{C}_{β} weighted covariance, \mathcal{R}_{β} reweighting:

$$\mathcal{M}_{\beta}(\mu) = \mathcal{M}(\mathcal{R}_{\beta}\mu), \quad \mathcal{C}_{\beta}(\mu) = \mathcal{C}(\mathcal{R}_{\beta}\mu), \quad \mathcal{R}_{\beta} \colon \mu \mapsto \frac{\mu e^{-\beta f}}{\int \mu e^{-\beta f}},$$
$$\mathcal{M}(\mu) = \int \theta \mu(\mathrm{d}\theta), \quad \mathcal{C}(\mu) = \int (\theta - \mathcal{M}(\mu)) \otimes (\theta - \mathcal{M}(\mu)) \mu(\mathrm{d}\theta).$$

Discrete-time consensus-based sampling $(\beta \ge 0)$

$$\begin{aligned} \theta_{n+1} &= \mathcal{M}_{\beta}(\mu_n) + \alpha \big(\theta_n - \mathcal{M}_{\beta}(\mu_n) \big) + \sqrt{\gamma \mathcal{C}_{\beta}(\mu_n)} \, \xi_n, \qquad \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n &= \operatorname{Law}(\theta_n). \end{aligned}$$

We first assume $e^{-f} = \mathcal{N}(a, A)$.

Question: Are there choices of (α, β, γ) such that $\mu_n = e^{-f}$ is a steady state?

0.0

Determining the parameters

Discrete-time consensus-based sampling $(\beta \ge 0)$

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \alpha \big(\theta_n - \mathcal{M}_{\beta}(\mu_n) \big) + \sqrt{\gamma \mathcal{C}_{\beta}(\mu_n)} \, \xi_n, \qquad \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). \end{cases}$$

A simple explicit calculation shows that

$$\mathcal{M}_{\beta}(\mathrm{e}^{-f}) = a,$$

$$\mathcal{C}_{\beta}(\mathrm{e}^{-f}) = (1+\beta)^{-1}A.$$

If $\theta_n \sim \mathcal{N}(a, A)$, then

$$\theta_{n+1} \sim \mathcal{N}(a, \alpha^2 A + \gamma (1+\beta)^{-1} A).$$

Therefore $e^{-f} = \mathcal{N}(a, A)$ is a steady state if

$$\alpha \in [-1, 1], \qquad \gamma = (1 - \alpha^2)(1 + \beta).$$

For what parameters is the target $\mathcal{N}(a, A)$ an attractor?

If $\theta_n \sim \mathcal{N}(m_n, C_n)$, then a calculation shows $\theta_{n+1} \sim \mathcal{N}(m_{n+1}, C_{n+1})$ with

$$m_{n+1} = \alpha m_n + (1-\alpha) \left(C_n^{-1} + \beta A^{-1} \right)^{-1} \left(\beta A^{-1} a + C_n^{-1} m_n \right),$$

$$C_{n+1} = \alpha^2 C_n + \gamma \left(C_n^{-1} + \beta A^{-1} \right)^{-1},$$

For e^{-f} to be an attractor for Gaussian initial conditions, we need in fact $\alpha \in (-1, 1)$. Convergence result for target $\mathcal{N}(a, A)$ and Gaussian initial condition If $\alpha \in (-1, 1)$ and $\gamma = (1 - \alpha^2)(1 + \beta)$, then $|m_n - a| + ||C_n - A|| \le C \left(\frac{1 - |\alpha|}{1 + \beta} + |\alpha|\right)^n$

Questions:

- Is $\mathcal{N}(a, A)$ an attractor for non-Gaussian initial conditions?
- What if the target e^{-f} is not Gaussian?

We will (partially) answer the second question.

Consensus-based sampling

Particle approximation of the mean-field dynamics

In practice, we approximate the mean-field equation by a particle system:

$$\theta_{n+1}^{(j)} = \mathcal{M}_{\beta}(\mu_n^J) + \alpha \left(\theta_n^{(j)} - \mathcal{M}_{\beta}(\mu_n^J) \right) + \sqrt{\gamma \mathcal{C}_{\beta}(\mu_n^J)} \, \xi_n^{(j)}, \qquad j = 1, \dots, J.$$

Here $\Theta_n = \{\theta_n^{(j)}\}_{j=1}^J$ is a set of particles and

$$\boldsymbol{\mu}_n^J := \frac{1}{J} \sum_{j=1}^J \boldsymbol{\delta}_{\boldsymbol{\theta}_n^{(j)}}$$

is the associated empirical measure.

Motivation: if $\Theta_0 \sim \mu_0^{\otimes J}$ and $J \gg 1$, then it holds approximately $\Theta_n \sim \mu_n^{\otimes J}$, so

$$\mathcal{M}_{\beta}(\mu_n^J) \approx \mathcal{M}_{\beta}(\mu_n), \qquad \mathcal{C}_{\beta}(\mu_n^J) \approx \mathcal{C}_{\beta}(\mu_n),$$

by the law of large numbers.

Invariant subspace property^[12]: $\operatorname{Span}\{\theta_{\mathbf{n}}^{(j)}\}_{j=1}^{J} \subset \operatorname{Span}\{\theta_{\mathbf{0}}^{(j)}\}_{j=1}^{J}$.

^[12] M. A. IGLESIAS, K. J. H. LAW, and A. M. STUART. Ensemble Kalman methods for inverse problems. Inverse Problems, 2013.

The CBS dynamics is affine invariant. We denote by

 $\operatorname{CBS}_n(\mu_0; \rho)$

the law of θ_n when CBS is used to sample from ρ with initial condition $\theta_0 \sim \mu_0$.

It holds for any invertible affine transformations $T: \mathbf{R}^d \to \mathbf{R}^d$ that

$$\operatorname{CBS}_n(T_{\sharp}(\mu_0); T_{\sharp}(\rho)) = T_{\sharp}(\operatorname{CBS}_n(\mu_0; \rho)).$$

Good performance for ill-conditioned targets;

If $e^{-f} = \mathcal{N}(a, A)$, then the convergence rate is independent of a and A.

- [13] J. GOODMAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci., 2010.
- [14] B. LEIMKUHLER, C. MATTHEWS, and J. WEARE. Ensemble preconditioning for Markov chain Monte Carlo simulation. Stat. Comput., 2018.
- [15] A. GARBUNO-INIGO, N. NÜSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.

When $\alpha = e^{-\Delta t}$ with $\Delta t \ll 1$, the CBS dynamics

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \alpha \big(\theta_n - \mathcal{M}_{\beta}(\mu_n) \big) + \sqrt{\gamma \mathcal{C}_{\beta}(\mu_n)} \, \xi_n, \qquad \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). \end{cases}$$

may be viewed as a discretization with time step Δt of the McKean SDE

$$\begin{cases} \mathrm{d}\theta_t = -\left(\theta_t - \mathcal{M}_\beta(\mu_t)\right) \mathrm{d}t + \sqrt{2(1+\beta)\mathcal{C}_\beta(\mu_t)} \,\mathrm{d}W_t, \\ \mu_t = \mathrm{Law}(\theta_t) \end{cases}$$

 \rightarrow Continuous-time sampling method with similar properties:

- Steady state is e^{-f} in the Gaussian setting;
- Exponential convergence in the Gaussian target/Gaussian initial condition setting:

$$|m_t - a| + ||C_t - A|| \le C \exp\left(-\frac{\beta}{1+\beta}t\right)$$

We consider for simplicity the continuous-time dynamics:

$$\begin{cases} \mathrm{d}\theta_t = -\left(\theta_t - \mathcal{M}_\beta(\mu_t)\right) \mathrm{d}t + \sqrt{2(1+\beta)\mathcal{C}_\beta(\mu_t)} \,\mathrm{d}W_t,\\ \mu_t = \mathrm{Law}(\theta_t). \end{cases}$$

The law μ of θ_t evolves according to

$$\partial_t \mu = \nabla \cdot \left(\left(\theta - \mathcal{M}_\beta(\mu) \right) \mu + (1+\beta) \mathcal{C}_\beta(\mu) \, \nabla \mu \right).$$

- This dynamics propagates Gaussians even when e^{-f} is non-Gaussian;
- Any steady state must satisfy

$$\boldsymbol{\mu}_{\infty} = \mathcal{N}\big(\mathcal{M}_{\beta}(\boldsymbol{\mu}_{\infty}), (1+\beta)\mathcal{C}_{\beta}(\boldsymbol{\mu}_{\infty})\big).$$

 \rightarrow No convergence to e^{-f} in the case of a non-Gaussian target.

Let us introduce

$$\widehat{f}(\theta) = f(\theta_*) + \frac{1}{2} \operatorname{Hess} f(\theta_*) : \left((\theta - \theta_*) \otimes (\theta - \theta_*) \right).$$

The distribution $e^{-\hat{f}} \propto \mathcal{N}(\theta_*, C_*)$ is the Laplace approximation of e^{-f} .

Convergence result

Under appropriate assumptions (one-dimensional, convex),

• There exists a unique steady-state $\mathcal{N}(m_{\infty}(\beta), C_{\infty}(\beta))$ satisfying

$$\left|m_{\infty}(\beta) - \theta_*\right| + \left\|C_{\infty}(\beta) - C_*\right\| = \mathcal{O}(\beta^{-1}).$$

If the initial condition is Gaussian, then

$$|m(t) - m_{\infty}| + ||C(t) - C_{\infty}|| \le C \exp\left(-\left(1 - \frac{k}{\beta}\right)t\right).$$

Idea of the proof: Laplace's method, then contraction argument.

Consensus-based sampling

Application to optimization

With the parameter choice $\gamma = (1 - \alpha^2)$, we obtain an optimization method. Discrete-time optimization variant:

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \alpha \big(\theta_n - \mathcal{M}_{\beta}(\mu_n) \big) + \sqrt{(1 - \alpha^2) \mathcal{C}_{\beta}(\mu_n)} \, \xi_n, \qquad \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). \end{cases}$$

Continuous-time optimization variant:

$$\begin{cases} \mathrm{d}\theta_t = -(\theta_t - \mathcal{M}_\beta(\mu_t)) \,\mathrm{d}t + \sqrt{2\mathcal{C}_\beta(\mu_t)} \,\mathrm{d}W_t, \\ \mu_t = \mathrm{Law}(\theta_t) \end{cases}$$

Convergence result for the optimization method

If $\theta_0 \sim \mathcal{N}(m_0, C_0)$ and under appropriate assumptions (one-dimensional, convex),

$$W_2(\mu_n, \delta_{\theta_*}) \le Cn^{-p}, \qquad W_2(\mu_t, \delta_{\theta_*}) \le Ct^{-p}, \qquad p \in (0, 1).$$

The convergence is slow but exact, which is an advantage compared to CBO as in^[16].

^[16] R. PINNAU, C. TOTZECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

Accelerating the optimization method by adapting β dynamically

Consider the case $\alpha = 0$ for simplicity:

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \sqrt{\mathcal{C}_{\beta}(\mu_n)} \,\xi_n, \qquad \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). \end{cases}$$

We define the effective sample size for an ensemble $\Theta = \{\theta^{(j)}\}_{j=1}^J$ as

$$J_{\text{eff}}(\Theta) := \frac{\left(\sum_{j=1}^{J} \omega_j\right)^2}{\sum_{j=1}^{J} |\omega_j|^2}, \qquad \omega_j := e^{-\beta f(\theta^{(j)})}$$

- If β is too large, the ensemble collapses to a point in 1 iteration;
- If β is small, the convergence is slow;
- If β is constant, $J_{\text{eff}}(\Theta_n) \xrightarrow[n \to \infty]{} J$ and the weights become very close.

Idea: Take $\beta = \beta(n)$ such that $J_{\text{eff}}/J = \eta \in (0, 1)$ for all n.

The big picture

Consensus-based sampling

Numerical experiments

Example 1: one-dimensional elliptic BVP - Sampling

Find $(\theta_1, \theta_2) \in \mathbf{R}^2$ from noisy observations of $(p(.25), p(.75)) \in \mathbf{R}^2$, where p(x) solves

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{\theta_1}\,\frac{\mathrm{d}p}{\mathrm{d}x}\right) = 1, \qquad x \in [0,1],$$

with boundary conditions p(0) = 0 and $p(1) = \theta_2$.

Left: Particles at iteration n = 100 for fixed $\alpha = \beta = \frac{1}{2}$. Middle: Corresponding Gaussian density. Right: Bayesian posterior.

Example 2: Two-dimensional elliptic BVP - MAP estimation

Find u(x) from 100 noisy measurements of the temperature T(x) where

$$- \nabla \cdot (e^{\theta(x)} \nabla T(x)) = \operatorname{cst} \quad x \in D = [0, 1]^2, + \text{homogeneous Dirichlet BC.}$$

Model: $\theta(x) \sim \mathcal{N}(0, \mathcal{C})$ in $L^2(D)$ where $\mathcal{C}^{-1} = (-\Delta + \tau^2 \mathcal{I})^{\upsilon}$ ^[17]

$$\mathsf{KL} \text{ expansion}: \quad \theta(x) = \sum \theta_i \sqrt{\lambda_i} \varphi_i(x), \qquad \theta_i \sim \mathcal{N}(0,1), \qquad \mathcal{C} \varphi_i = \lambda_i \varphi_i.$$

[17] equipped with homogeneous Neumann boundary condition on the space of mean-zero functions.

Example 2: Two-dimensional elliptic boundary value problem - Sampling

Approximate posterior after 100 iterations of CBS with $\alpha = 0$, adaptive β , and J = 512.

Optimization: objective functions

• the Ackley function, defined for $x \in \mathbf{R}^d$ by

$$f_A(x) = -20 \exp\left(-\frac{1}{5}\sqrt{\frac{1}{d}\sum_{i=1}^d |x_i - b|^2}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^d \cos(2\pi(x_i - b))\right) + e + 20,$$

■ the Rastrigin function, defined by

$$f_R(x) = \sum_{i=1}^d \left((x_i - b)^2 - 10 \cos(2\pi(x_i - b)) + 10 \right).$$

Minimizer: $x_* = (b, \ldots, b)$, where $b \in \mathbf{R}$. Below b = 2.

Optimization: illustration of the convergence

Convergence for $\alpha = .1$, adaptive β with $J_{\rm eff}/J = .5$, and J = 100.

Optimization: illustration of the convergence

Convergence for $\alpha = .1$, adaptive β with $J_{\rm eff}/J = .5$, and J = 100.

The big picture

Consensus-based sampling

Numerical experiments

Towards exact sampling

Like ensemble Kalman-based methods, CBS is exact only for Gaussian targets.

How can we generate exact samples from e^{-f} ?

■ Idea 1. Metropolize CBS, i.e. construct a Markov chain such that:

$$\left\{\theta_n^{(j)}\right\}_{j=1}^J \xrightarrow[n \to \infty]{\text{Law}} \rho^{\otimes J}.$$

Example proposal: select $j_* \sim \mathcal{U}\{1, J\}$ and propose

$$\theta_{n+1}^{*,(j)} = \begin{cases} \mathcal{M}_{\beta} + \alpha \big(\theta_n^{(j)} - \mathcal{M}_{\beta} \big) + \sqrt{\gamma \mathcal{C}_{\beta}} \, \xi_n^{(j)} & \text{if } j = j_*, \\ \theta_n^{(j)} & \text{if } j \neq j_*, \end{cases}$$

with $\xi_n^{(j)} \sim \mathcal{N}(0, I_d)$ and

$$\mathcal{M}_{\beta} = \mathcal{M}_{\beta}(\mu_n^J), \qquad \mathcal{C}_{\beta} = \mathcal{C}_{\beta}(\mu_n^J), \qquad \mu_n^J = \frac{1}{J} \sum_{j=1}^J \delta_{\theta_n^{(j)}}.$$

Then accept or reject using Metropolis-Hastings' method.

Idea 2. Use information from CBS to precondition a standard MCMC method:

$$\theta_{n+1}^* = m_{\infty} + \lambda \left(\theta_n - m_{\infty}\right) + \sqrt{1 - \lambda^2} \xi_n, \qquad \xi_n \sim \mathcal{N}(0, xC_{\infty}).$$

where $x \ge 1$ and $\mathcal{N}(m_{\infty}, C_{\infty})$ is the approximate posterior from CBS.

Metropolization: proof of concept

We consider the bimodal example from^[18], arising from the Bayesian inverse problem with $G: \mathbf{R}^2 \ni \theta \mapsto |\theta_1 - \theta_2|^2 \in \mathbf{R},$

noise $\eta \sim \mathcal{N}(0, I_2)$, prior distribution $\mathcal{N}(0, I_2)$, and data y = 2.

Empirical distribution of metropolized CBS with $J = 10^4$ particles and $\alpha = \frac{1}{2}$:

(a) $n = 10^3$ (b) $n = 10^4$ (c) $n = 10^5$ (d) Exact

In practice, expectations could be estimated using time and ensemble averages:

$$\mathbf{E}_{\theta \sim \rho} h(\theta) = \mathbf{E}_{\Theta \sim \rho^{\otimes J}} \left(\frac{1}{J} \sum_{j=1}^{J} h(\theta^{(j)}) \right) \approx \frac{1}{JN} \sum_{n=1}^{N} \sum_{j=1}^{J} h(\theta_{n}^{(j)})$$

[18] S. REICH and S. WEISSMANN. Fokker-Planck particle systems for Bayesian inference: computational approaches. SIAM/ASA J. Uncertain. Quantif., 2021.

Preconditioning: proof of concept

Assumption: target distribution has density with respect to $\pi = \mathcal{N}(m, C)$.

The MCMC method from^[19] is based on the proposal

$$heta_{n+1}^* = m + \lambda(heta_n - m) + \sqrt{1 - \lambda^2} \, \xi_n, \qquad \xi_n \sim \mathcal{N}(0, C),$$

- The method is robust with respect to refinement (e.g. more KL modes);
- The acceptance probability is close to 1 if the target is close to $\mathcal{N}(m,C)$ but
- it can be $\ll 1$ for very anisotropic targets.

A variation on this method using information from CBS:

- Calculate a Gaussian approximation $\mathcal{N}(m_{\infty}, C_{\infty})$ of the posterior using CBS;
- Use a modification of the above method based on the proposal

$$heta_{n+1}^* = m_\infty + \lambda \left(heta_n - m_\infty
ight) + \sqrt{1 - \lambda^2} \xi_n, \qquad \xi_n \sim \mathcal{N}(0, \mathbf{x} C_\infty), \qquad \mathbf{x} \geq 1.$$

• Leads to better acceptance probability (≈ 1 if target is Gaussian and $\alpha = 1$).

^[19] S. L. COTTER, G. O. ROBERTS, A. M. STUART, and D. WHITE. MCMC methods for functions: modifying old algorithms to make them faster. Statist. Sci., 2013.

Conclusions

The proposed method

- can be used for sampling or optimization;
- is based on ideas from consensus-based optimization;
- is based on a stochastic interacting particle system:
 - can be parallelized easily;
 - can be studied from a mean field viewpoint.
- is derivative-free, so well suited for PDE inverse problems;
- converges exponentially fast at the mean-field level (for sampling);
- is affine-invariant, so convergence rate is independent of target in Gaussian setting.

Perspectives:

- Can we study the method with adaptive β ?
- Can we prove convergence at the particle level^[20]?
- Can we correct the sampling error in the non-Gaussian setting^[21]?

^[20] A. GARBUNO-INIGO, N. NÜSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.

^[21] E. CLEARY, A. GARBUNO-INIGO, S. LAN, T. SCHNEIDER, and A. M. STUART. Calibrate, emulate, sample. J. Comp. Phys., 2021.

Thank you for your attention!