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Motivating example: Bayesian inverse problems

Paradigmatic inverse problem

Find an unknown parameter 6 € U from data y € R™ where

y=6(0) +mn,
m G is the forward operator;

m 7 is observational noise.

Two difficulties!! associated with this problem are the following:
m Because of the noise, it might be that y ¢ Im(G);
m The problem might be underdetermined.

Additionally, in many PDE applications,
m G is expensive to evaluate;
m The derivatives of G are difficult to calculate;

m O is a function — infinite dimension.

[1] M. DasuTi and A. M. STUART. The Bayesian approach to inverse problems. In Handbook of
uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.
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Example: inference of the thermal conductivity in a plate

Mathematical model:
Solution:
-V (0(x)VT(z)) = f(z), T €Q,
T(z) =0, z € 00.
Unknown parameter: coble™
\:or"""“d P
Thermal conductivity 0(x)
Temperature field T'(z)
3 Data:
(true) ”
MAP estimator:
i |nverse proPIe™ | Noisy temperature measurements:
y=(T(z1),...,T(xm)) + 7.
(reconéifﬂcfed) e
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Probabilistic approach for solving “y = Gu + n" 2l

Bayesian approach to inverse problems

Modeling step:
m Probability distribution on parameter: 0 ~ 7, encoding our prior knowledge;
m Probability distribution for noise: 7 ~ v.

An application of Bayes' theorem gives the posterior distribution:
p(6) o w(0) v(y — G(6)) = prior X likelihood.

(In infinite dimension, use Radon—Nikodym derivative.)
In the Gaussian case where 1 = N'(m,X) and v = N (0,T),
v 1 2 1 2 .
0 cexp (— (5 ly=GOR + 310 mlz ) ) = exp(~1(0)).

Two approaches for extracting information:

m Find the maximizer of p¥(0) (maximum a posteriori estimation);

m Sample the posterior distribution p¥(6).

[2] A. M. STUART. Inverse problems: a Bayesian perspective. Acta Numer., 2010.
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Brief review of the recent literature on interacting particle methods

2006: Sequential Monte Carlo®!

2010: Affine-invariant many-particle MCMCH;
2013: Ensemble Kalman inversion®®);

2016: Stein variational gradient descent®:

2017: Consensus-based optimization!”;

m 2020: Ensemble Kalman sampling!®;

Often parallelizable, and some can be studied through mean-field equations.

[3] P. DEL MORAL, A. DOUCET, and A. JASRA. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser.

B Stat. Methodol., 2006.

[4] J. GoobmAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math.

Comput. Sci., 2010.

[5] M. A. IcLesias, K. J. H. Law, and A. M. STUART. Ensemble Kalman methods for inverse problems.

Inverse Problems, 2013.

[6] Q. Liu and D. WANG. Stein variational gradient descent: a general purpose Bayesian inference
algorithm. In Advances In Neural Information Processing Systems, 2016.

[7] R. Pinnav, C. TorzECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

[8] A. GarBUNO-INIGO, F. HOFFMANN, W. L1, and A. M. STUART. Interacting Langevin diffusions:

gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.
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Our starting point: consensus-based optimization (CBO)[l

CBO is an Optimization method based on the interacting particle system

499 = —(9§“ - Mﬂ(ﬂ{)) At + V20|09 — Mp(u))|aw®.  j=1,...,J,

where Mg (i) is given by

[0e= 77O u7dg) S, 0 exp(—BF(65)) il 1 i 5
— — = - 5 t = 7 (3) -
[P i@l () ~ 57 exp(—5£(69)) T

M (i)

Properties:

m Mean-field limit:
o=V (0= Ma(u)n) +0°A(]0 = Ma()[*1).

m Convergence of the mean field solution: if f has a unique global minimizer,
Mo() = 0(8),  8(8) = argmin f(6).

T geRd

[9] R. Pinnau, C. ToTzECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

The big picture 7/27



Key tool for the analysis of CBO: Laplace's method

Laplace’s method can be employed for studying the limit as 8 — oo of the integral

o0& o) "
Is(p) = =R = / ed(Rsp), Rp:pr m~
/ e BI©O) 11(d) Rd I
R4

Let 0. = argmin f. Under appropriate assumptions, it holds

[10], [11]

IB(@):/P{dgadgg—&—O(%) as 8 — oo.

where gg :N(G*,B_I(Hessf(t?*))fl). In other words Rgu = gg for large S.

Motivation:
B0 o P (f(e*)+% Hess f(0.): (<e—o*>®<e—e*>))

[10] P. D. MILLER. Applied asymptotic analysis. Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 2006.

[11] J. A. CARRILLO, Y.-P. Cnol1, C. ToTzECK, and O. TSE. An analytical framework for consensus-based
global optimization method. Mathematical Models and Methods in Applied Sciences, 2018.
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Consensus-based sampling



Can we construct a sampling method using ideas from CBO?

Notation: Mg weighted mean, Cg weighted covariance, Rz reweighting:
pebf
Mp(p) = M(Rpp),  Cp(p) =C(Rpp), Rp:pr— Tpe7

M) = [ 0u(a0), €= [ (0~ M(w) @ (6~ M) u(ao).
Discrete-time consensus-based sampling (8 > 0)

n+1 Mﬁ(/"bn) +Of(0 - Mﬂ Hn ) + V ’Ycﬂ Hn, f”y Sn NN(Oyjd)y
tn = Law(0y,).

We first assume e~/ = N(a, A).

Question: Are there choices of (a, 3,7) such that u, = e~/ is a steady state?
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Determining the parameters

Discrete-time consensus-based sampling (5 > 0)

Ont1 = Mg(pn) + CM(9 — Mg (pn ) + v/ Cs(pn) &n, én NN(OaId)a
tn = Law(0y).

A simple explicit calculation shows that
Mg(e™) =,
Coe™)=(1+87"
If 0, ~ N(a, A), then
Oni1 ~ N(a,a® A+ 4(1+5) 7 A).
Therefore e/ = N(a, A) is a steady state if

€[-1,1], 7:(1_‘12)(14'5)-
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For what parameters is the target AV(a, A) an attractor?

If 0, ~ N (mn,Cy), then a calculation shows 0,41 ~ N (mpi1,Cni1) with
Mpt1 = amp + (1 — @) (C’n_1 + ﬁA_l)il (BA_la + Cn_lmn) ,
Cop1 = a®Cr+v (Ct +8AH T,

For e~/ to be an attractor for Gaussian initial conditions, we need in fact a € (—1,1).

Convergence result for target A (a, A) and Gaussian initial condition

If « € (—1,1) and v = (1 — &®)(1 + B), then

o]

ma = al + 10 = 4 £ € (515 + o))

Questions:

m Is M(a, A) an attractor for non-Gaussian initial conditions?

m What if the target e~/ is not Gaussian?

We will (partially) answer the second question.
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Particle approximation of the mean-field dynamics

In practice, we approximate the mean-field equation by a particle system:
0701 = Ma(u) + a (05 = Ma(u)) +V1Ca(ul) €7, j=1,....J.

Here ©, = {Gflj)}j:l is a set of particles and

is the associated empirical measure.

Motivation: if ©g ~ pgw and J > 1, then it holds approximately ©,, ~ %7, so

M () ~ Mg (jn), Ca(pn) ~ Cp(in),

by the law of large numbers.

Invariant subspace property!?: Span{@ﬁlj)};’:l C Span{@éj)}jzl.

[12] M. A. Iaresias, K. J. H. Law, and A. M. STUART. Ensemble Kalman methods for inverse problems.
Inverse Problems, 2013.
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Affine invariancelt3:[14],[15]

The CBS dynamics is affine invariant. We denote by

CBSn (ko3 p)

the law of 6,, when CBS is used to sample from p with initial condition 6y ~ L.
It holds for any invertible affine transformations 7' : RY — R that

CBS, (T (10); Te(p)) = Ty (CBSw (103 p)).-

m Good performance for ill-conditioned targets;

m If e=/ = A(a, A), then the convergence rate is independent of a and A.

[13] J. GoopMmAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math.
Comput. Sci., 2010.

[14] B. LEIMKUHLER, C. MATTHEWS, and J. WEARE. Ensemble preconditioning for Markov chain Monte
Carlo simulation. Stat. Comput., 2018.

[15] A. GarBUNO-INIGO, N. NUSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.
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Interpretation as discretization of McKean SDE

When o = e~2* with At < 1, the CBS dynamics
Ont1 = Mp(pn) + a(On — Ma(pn)) +VACs(n) €ny,  &n ~ N (0, 1a),
un = Law(0y).
may be viewed as a discretization with time step At of the McKean SDE

{det = — (6, — M (pe)) dt + /2(1 + B)Ca(jze) AW,
Mt = Law(@t)

— Continuous-time sampling method with similar properties:

m Steady state is e~/ in the Gaussian setting;

m Exponential convergence in the Gaussian target/Gaussian initial condition setting:

|m: —a| + ||Ct — A|| < Cexp (—%t)
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Analysis beyond the Gaussian setting

We consider for simplicity the continuous-time dynamics:

dfr = — (0 — Mp(pe)) dt + /2(1 + B)Ca(pe) dWe,
Mt = Law(@t)

The law p of 0; evolves according to

O =+ (0= Ma(p) s+ (1 + B)Caln) Vir).

m This dynamics propagates Gaussians even when e~ is non-Gaussian;

m Any steady state must satisfy
froo = N (Mg (hoo), (1 + B)Cp(1ix))-

— No convergence to e~f in the case of a non-Gaussian target.
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Convergence of the solution to the nonlocal Fokker—Planck equation

Let us introduce
£(0) = f(6.) + %Hess f(0.): ((6—06.)®@ (0 —06.)).

The distribution e~/ oc V(6., C.) is the Laplace approximation of e~ /.

Convergence result

Under appropriate assumptions (one-dimensional, convex),
m There exists a unique steady-state NV (moo (), Coo(3)) satisfying

|Moo(B) — 64| + ||Coo(B) — Cu|| = o).

m If the initial condition is Gaussian, then

|m(t) — Moo| + ||C(t) — Cool| < Ceexp (— (1 — E) t) .

Idea of the proof: Laplace’s method, then contraction argument.

Consensus-based sampling 16 / 27



Application to optimization

With the parameter choice v = (1 — %), we obtain an optimization method.

Discrete-time optimization variant:

{9n+1 = Mg (pn) + a(On — Mp(pin)) + V(1 = 0)Cs(ptn) &n,  &n ~ N(0, La),
wn = Law(6,).

Continuous-time optimization variant:

{det = —(6: — Mg () dt + /2C5 (pe) dWr,
ue = Law(0y)

Convergence result for the optimization method

If 6o ~ N(mo,Co) and under appropriate assumptions (one-dimenisonal, convex),

Wa(pn,do.) <Cn™", Wa(ue,d0,) <Ct™P,  pe(0,1).

The convergence is slow but exact, which is an advantage compared to CBO as inl*¢l.

[16] R. Pinnau, C. ToTzECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.
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Accelerating the optimization method by adapting 5 dynamically

Consider the case a = 0 for simplicity:

{0n+1 = MB(NH) + v CB(Nn)‘En: én NN(O»Id)7

n = Law(0,,).
We define the effective sample size for an ensemble © = {G(j)};’:l as

(=)
Jet(©) := o = e B0

= ——— U.)]

b 2
Zj:l Jews |

m If 3 is too large, the ensemble collapses to a point in 1 iteration;
m If 3 is small, the convergence is slow;

m If 3 is constant, Jes(©,) — J and the weights become very close.
n—oo

Idea: Take 8 = (n) such that Jeg/J =n € (0,1) for all n.
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Numerical experiments



Example 1: one-dimensional elliptic BVP — Sampling

Find (61,602) € R* from noisy observations of (p(.25), p(.75)) € R”, where p(z) solves

i 91@ _
I (e dx) =1, z € [0,1],

with boundary conditions p(0) = 0 and p(1) = 6-.

106 '

Left: Particles at iteration n = 100 for fixed « = 8 = % Middle: Corresponding Gaussian density. Right: Bayesian posterior.
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Example 2: Two-dimensional elliptic BVP — MAP estimation

Find u(z) from 100 noisy measurements of the temperature T'(x) where
— V- (" VT(z)) =cst € D=][0,1]?, + homogeneous Dirichlet BC.
Model: 6(z) ~ N(0,C) in L?*(D) where C~* = (=A 4 727)v 7]

KL expansion: 6(z) = Zﬁi\/riwi(x)7 6; ~ N(0,1), Coi = Xipi.

1.0

0.36

0.30

0.24

0.18

0.12

0.06

0.00

—0.06

R 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 o 012

True (left) and reconstructed (right) log-conductivity (o = 0, Jegr/J = .5, J = 512)

[17] equipped with homogeneous Neumann boundary condition on the space of mean-zero functions.
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Example 2: Two-dimensional elliptic boundary value problem — Sampling

Approximate posterior after 100 iterations of CBS with o = 0, adaptive 3, and J = 512.

[teration 100

o

*- NN |

0 B EARVARE L% x
! // / ( | - j
-1 .~ a | *}' | /"
1 - | 4
-2 & — CBS | 7
w"= EKS ‘ %
-3 x Truth ] :
4+ MAPCBS
—4 e MAP EKI

0,00 (0,1) (1L0) (L1) (0.2) (2200 (1,2) (21) (22 (0,3) (3.0) (1,3) (3,1) (23) (3.2) (3.3)
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Optimization: objective functions

m the Ackley function, defined for z € R® by

d d
%Zkvz — b2 | —exp (22005(2#(@ —b))) +e +20,
i=1 =1

m the Rastrigin function, defined by
d

Fr(z) = Z((wi — b)> — 10 cos (2 (z: — b)) + 10).

i=1

Minimizer: z, = (b,...,b), where b € R. Below b = 2.

- 1 i

55
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Optimization: illustration of the convergence

Convergence for a = .1, adaptive 8 with Jeg/J = .5, and J = 100.

3
135
2 12.0
105

1
9.0
0 75
6.0
-1 45
3.0

2
15
-3 0.0
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Optimization: illustration of the convergence

Convergence for a = .1, adaptive 8 with Jeg/J = .5, and J = 100.

79.2

Rastrigin function
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Perspectives and conclusions



Towards exact sampling

Like ensemble Kalman-based methods, CBS is exact only for Gaussian targets.

How can we generate exact samples from ¢~ /?

m ldea 1. Metropolize CBS, i.e. construct a Markov chain such that:
G J Law ®J
el
Example proposal: select j. ~ U{1, J} and propose
g — [ Mo+l = Mg) + G0 i i=
e 5% 3,
with € ~ N(0, 1) and

J
1
Mp = Mg(un),  Cs=Cslpn),  pn = 7 PBLATE
=1

Then accept or reject using Metropolis—Hastings' method.
m ldea 2. Use information from CBS to precondition a standard MCMC method:
Oni1 =Moo + A (0 —moo) + V1 — A2, &n ~ N(0,20).

where £ > 1 and N (moo, Coo) is the approximate posterior from CBS.
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Metropolization: proof of concept

We consider the bimodal example from[*®l arising from the Bayesian inverse problem with
G:R’30 1|6 —6:)° €R
noise 1 ~ N(0, I2), prior distribution N'(0, I2), and data y = 2.

Empirical distribution of metropolized CBS with J = 10* particles and o = l:

(a) n = 103 (b) n = 10% n = 10° (d) Exact

In practice, expectations could be estimated using time and ensemble averages:
N J

J
1 : 1 .
Eo~,h(0) = Be. 00 (J > h(G(J))> T >SS T
j=1

n=1j=1

[18] S. REicH and S. WEISSMANN. Fokker-Planck particle systems for Bayesian inference: computational
approaches. SIAM/ASA J. Uncertain. Quantif., 2021.
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Preconditioning: proof of concept

Assumption: target distribution has density with respect to m = A (m, C).

The MCMC method from*¥ is based on the proposal

Onir=m+ A0, —m)+V1—A2¢,, &n ~ N(0,0),

m The method is robust with respect to refinement (e.g. more KL modes);
m The acceptance probability is close to 1 if the target is close to N'(m, C) but

m it can be < 1 for very anisotropic targets.
A variation on this method using information from CBS:

m Calculate a Gaussian approximation A (meo, Coo) of the posterior using CBS;

m Use a modification of the above method based on the proposal

0n+1—moo+A( moo +\/177n, gnNN(O,fLCOO), ‘Lzl

m Leads to better acceptance probability (= 1 if target is Gaussian and oo = 1).

[19] S. L. CoTTER, G. O. ROBERTS, A. M. STUART, and D. WHITE. MCMC methods for functions:
modifying old algorithms to make them faster. Statist. Sci., 2013.
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Conclusions

The proposed method

m can be used for sampling or optimization;
m is based on ideas from consensus-based optimization;
m is based on a stochastic interacting particle system:

m can be parallelized easily;
m can be studied from a mean field viewpoint.

m is derivative-free, so well suited for PDE inverse problems;
m converges exponentially fast at the mean-field level (for sampling);

m is affine-invariant, so convergence rate is independent of target in Gaussian setting.

Perspectives:

m Can we study the method with adaptive 87
m Can we prove convergence at the particle levell?%?

m Can we correct the sampling error in the non-Gaussian settinglzl]?

[20] A. GarBUNO-INIGO, N. NUSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.

[21] E. CLEARY, A. GARBUNO-INIGO, S. LAN, T. SCHNEIDER, and A. M. STUART. Calibrate, emulate,
sample. J. Comp. Phys., 2021.

Perspectives and conclusions 27 / 27



Thank you for your attention!
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