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Motivating example: Bayesian inverse problems

Paradigmatic inverse problem

Find an unknown parameter θ ∈ U from data y ∈ Rm where

y = G(θ) + η,

G is the forward operator;

η is observational noise.

Two difficulties[1] associated with this problem are the following:

Because of the noise, it might be that y /∈ Im(G);

The problem might be underdetermined.

Additionally, in many PDE applications,

G is expensive to evaluate;

The derivatives of G are difficult to calculate;

θ is a function → infinite dimension.

[1] M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. In Handbook of
uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.
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Example: inference of the thermal conductivity in a plate

Unknown parameter:

Thermal conductivity θ(x)

(true)

MAP estimator:

(reconstructed)

Solution:

Temperature field T (x)

Mathematical model:

−∇ ·
(
θ(x)∇T (x)

)
= f(x), x ∈ Ω,

T (x) = 0, x ∈ ∂Ω.

Forward problem

Data:

��
��	

�

Noisy temperature measurements:

y =
(
T (x1), . . . , T (xm)

)
+ η.

Inverse problem
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Probabilistic approach for solving “y = Gu+ η”[2]

Bayesian approach to inverse problems

Modeling step:

Probability distribution on parameter: θ ∼ π, encoding our prior knowledge;

Probability distribution for noise: η ∼ ν.

An application of Bayes’ theorem gives the posterior distribution:

ρy(θ) ∝ π(θ) ν
(
y − G(θ)

)
= prior× likelihood.

(In infinite dimension, use Radon–Nikodym derivative.)

In the Gaussian case where π = N (m,Σ) and ν = N (0,Γ),

ρy(θ) ∝ exp

(
−
(

1

2
|y − G(θ)|2Γ +

1

2
|θ −m|2Σ

))
=: exp

(
−f(θ)

)
.

Two approaches for extracting information:

Find the maximizer of ρy(θ) (maximum a posteriori estimation);

Sample the posterior distribution ρy(θ).

[2] A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 2010.
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Brief review of the recent literature on interacting particle methods

2006: Sequential Monte Carlo[3];

2010: Affine-invariant many-particle MCMC[4];

2013: Ensemble Kalman inversion[5];

2016: Stein variational gradient descent[6];

2017: Consensus-based optimization[7];

2020: Ensemble Kalman sampling[8];

Often parallelizable, and some can be studied through mean-field equations.

[3] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser.
B Stat. Methodol., 2006.

[4] J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commun. Appl. Math.
Comput. Sci., 2010.

[5] M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems.
Inverse Problems, 2013.

[6] Q. Liu and D. Wang. Stein variational gradient descent: a general purpose Bayesian inference
algorithm. In Advances In Neural Information Processing Systems, 2016.

[7] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

[8] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions:
gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.
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Our starting point: consensus-based optimization (CBO)[9]

CBO is an Optimization method based on the interacting particle system

dθ
(j)
t = −

(
θ

(j)
t −Mβ(µJt )

)
dt+

√
2σ
∣∣∣θ(j)
t −Mβ(µJt )

∣∣∣dW (j)
t . j = 1, . . . , J,

where Mβ(µJt ) is given by

Mβ(µJt ) =

∫
θ e−βf(θ) µJt (dθ)∫
e−βf(θ) µJt (dθ)

=

∑J
j=1 θ

(j)
t exp

(
−βf(θ

(j)
t )
)∑J

j=1 exp
(
−βf(θ

(j)
t )
) , µJt =

1

J

J∑
j=1

δ
θ
(j)
t
.

Properties:

Mean-field limit:

∂tµ = ∇ ·
((
θ −Mβ(µ)

)
µ
)

+ σ24
(∣∣θ −Mβ(µ)

∣∣2µ).
Convergence of the mean field solution: if f has a unique global minimizer,

M0(µt) −−−→
t→∞

θ̂(β), θ̂(β) −−−−→
β→∞

arg min
θ∈Rd

f(θ).

[9] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.
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Key tool for the analysis of CBO: Laplace’s method

Laplace’s method can be employed for studying the limit as β →∞ of the integral

Iβ(ϕ) =

∫
Rd

ϕ(θ) e−βf(θ) µ(dθ)∫
Rd

e−βf(θ) µ(dθ)

=:

∫
Rd

ϕ d(Rβµ), Rβ : µ 7→ µ e−βf∫
µ e−βf

.

Let θ∗ = arg min f . Under appropriate assumptions, it holds[10],[11]

Iβ(ϕ) =

∫
Rd

ϕdgβ +O
(

1

β2

)
as β →∞.

where gβ = N
(
θ∗, β

−1
(
Hess f(θ∗)

)−1
)

. In other words Rβµ ≈ gβ for large β.

Motivation:

e−βf(θ) ≈ e
−β
(
f(θ∗)+ 1

2
Hess f(θ∗):

(
(θ−θ∗)⊗(θ−θ∗)

))
[10] P. D. Miller. Applied asymptotic analysis. Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, 2006.
[11] J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. An analytical framework for consensus-based

global optimization method. Mathematical Models and Methods in Applied Sciences, 2018.

The big picture 8 / 27



Outline

The big picture

Consensus-based sampling

Numerical experiments

Perspectives and conclusions



Can we construct a sampling method using ideas from CBO?

Notation: Mβ weighted mean, Cβ weighted covariance, Rβ reweighting:

Mβ(µ) =M(Rβµ) , Cβ(µ) = C(Rβµ) , Rβ : µ 7→ µ e−βf∫
µ e−βf

,

M(µ) =

∫
θµ(dθ) , C(µ) =

∫ (
θ −M(µ)

)
⊗
(
θ −M(µ)

)
µ(dθ) .

Discrete-time consensus-based sampling (β ≥ 0)

{
θn+1 =Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√
γCβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

We first assume e−f = N (a,A).

Question: Are there choices of (α, β, γ) such that µn = e−f is a steady state?
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Determining the parameters

Discrete-time consensus-based sampling (β ≥ 0)

{
θn+1 =Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√
γCβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

A simple explicit calculation shows that

Mβ(e−f ) = a,

Cβ(e−f ) = (1 + β)−1A.

If θn ∼ N (a,A), then
θn+1 ∼ N (a, α2A+ γ(1 + β)−1A).

Therefore e−f = N (a,A) is a steady state if

α ∈ [−1, 1], γ = (1− α2)(1 + β).
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For what parameters is the target N (a,A) an attractor?

If θn ∼ N (mn, Cn), then a calculation shows θn+1 ∼ N (mn+1, Cn+1) with

mn+1 = αmn + (1− α)
(
C−1
n + βA−1)−1 (

βA−1a+ C−1
n mn

)
,

Cn+1 = α2Cn + γ
(
C−1
n + βA−1)−1

,

For e−f to be an attractor for Gaussian initial conditions, we need in fact α ∈ (−1, 1).

Convergence result for target N (a,A) and Gaussian initial condition

If α ∈ (−1, 1) and γ = (1− α2)(1 + β), then

|mn − a|+ ‖Cn −A‖ ≤ C
(

1− |α|
1 + β

+ |α|
)n

Questions:

Is N (a,A) an attractor for non-Gaussian initial conditions?

What if the target e−f is not Gaussian?

We will (partially) answer the second question.
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Particle approximation of the mean-field dynamics

In practice, we approximate the mean-field equation by a particle system:

θ
(j)
n+1 =Mβ(µJn) + α

(
θ(j)
n −Mβ(µJn)

)
+
√
γCβ(µJn) ξ(j)

n , j = 1, . . . , J.

Here Θn = {θ(j)
n }Jj=1 is a set of particles and

µJn :=
1

J

J∑
j=1

δ
θ
(j)
n

is the associated empirical measure.

Motivation: if Θ0 ∼ µ⊗J0 and J � 1, then it holds approximately Θn ∼ µ⊗Jn , so

Mβ(µJn) ≈Mβ(µn), Cβ(µJn) ≈ Cβ(µn),

by the law of large numbers.

Invariant subspace property[12]: Span{θ(j)
n }Jj=1 ⊂ Span{θ(j)

0 }Jj=1.

[12] M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems.
Inverse Problems, 2013.
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Affine invariance[13],[14],[15]

The CBS dynamics is affine invariant. We denote by

CBSn(µ0; ρ)

the law of θn when CBS is used to sample from ρ with initial condition θ0 ∼ µ0.

It holds for any invertible affine transformations T : Rd → Rd that

CBSn
(
T](µ0);T](ρ)

)
= T]

(
CBSn(µ0; ρ)

)
.

Good performance for ill-conditioned targets;

If e−f = N (a,A), then the convergence rate is independent of a and A.

[13] J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commun. Appl. Math.
Comput. Sci., 2010.

[14] B. Leimkuhler, C. Matthews, and J. Weare. Ensemble preconditioning for Markov chain Monte
Carlo simulation. Stat. Comput., 2018.

[15] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.
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Interpretation as discretization of McKean SDE

When α = e−∆t with ∆t� 1, the CBS dynamics{
θn+1 =Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√
γCβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

may be viewed as a discretization with time step ∆t of the McKean SDE{
dθt = −

(
θt −Mβ(µt)

)
dt+

√
2(1 + β)Cβ(µt) dWt,

µt = Law(θt)

→ Continuous-time sampling method with similar properties:

Steady state is e−f in the Gaussian setting;

Exponential convergence in the Gaussian target/Gaussian initial condition setting:

|mt − a|+ ‖Ct −A‖ ≤ C exp

(
− β

1 + β
t

)
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Analysis beyond the Gaussian setting

We consider for simplicity the continuous-time dynamics:{
dθt = −

(
θt −Mβ(µt)

)
dt+

√
2(1 + β)Cβ(µt) dWt,

µt = Law(θt).

The law µ of θt evolves according to

∂tµ = ∇ ·
((
θ −Mβ(µ)

)
µ+ (1 + β)Cβ(µ)∇µ

)
.

This dynamics propagates Gaussians even when e−f is non-Gaussian;

Any steady state must satisfy

µ∞ = N
(
Mβ(µ∞), (1 + β)Cβ(µ∞)

)
.

→ No convergence to e−f in the case of a non-Gaussian target.

Consensus-based sampling 15 / 27



Convergence of the solution to the nonlocal Fokker–Planck equation

Let us introduce

f̂(θ) = f(θ∗) +
1

2
Hess f(θ∗) :

(
(θ − θ∗)⊗ (θ − θ∗)

)
.

The distribution e−f̂ ∝ N (θ∗, C∗) is the Laplace approximation of e−f .

Convergence result

Under appropriate assumptions (one-dimensional, convex),

There exists a unique steady-state N
(
m∞(β), C∞(β)

)
satisfying∣∣m∞(β)− θ∗

∣∣+
∥∥C∞(β)− C∗

∥∥ = O(β−1).

If the initial condition is Gaussian, then∣∣m(t)−m∞
∣∣+
∥∥C(t)− C∞

∥∥ ≤ C exp

(
−
(

1− k

β

)
t

)
.

Idea of the proof: Laplace’s method, then contraction argument.
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Application to optimization

With the parameter choice γ = (1− α2), we obtain an optimization method.

Discrete-time optimization variant:{
θn+1 =Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√

(1− α2)Cβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

Continuous-time optimization variant:{
dθt = −

(
θt −Mβ(µt)

)
dt+

√
2Cβ(µt) dWt,

µt = Law(θt)

Convergence result for the optimization method

If θ0 ∼ N (m0, C0) and under appropriate assumptions (one-dimenisonal, convex),

W2(µn, δθ∗) ≤ Cn−p, W2(µt, δθ∗) ≤ Ct−p, p ∈ (0, 1).

The convergence is slow but exact, which is an advantage compared to CBO as in[16].

[16] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.
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Accelerating the optimization method by adapting β dynamically

Consider the case α = 0 for simplicity:{
θn+1 =Mβ(µn) +

√
Cβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

We define the effective sample size for an ensemble Θ = {θ(j)}Jj=1 as

Jeff(Θ) :=

(∑J
j=1 ωj

)2

∑J
j=1 |ωj |

2
, ωj := e−βf(θ(j)) .

If β is too large, the ensemble collapses to a point in 1 iteration;

If β is small, the convergence is slow;

If β is constant, Jeff(Θn) −−−−→
n→∞

J and the weights become very close.

Idea: Take β = β(n) such that Jeff/J = η ∈ (0, 1) for all n.
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Example 1: one-dimensional elliptic BVP – Sampling

Find (θ1, θ2) ∈ R2 from noisy observations of
(
p(.25), p(.75)

)
∈ R2, where p(x) solves

d

dx

(
eθ1

dp

dx

)
= 1, x ∈ [0, 1],

with boundary conditions p(0) = 0 and p(1) = θ2.

−3 −2 −1

103

104

105

106

Left: Particles at iteration n = 100 for fixed α = β = 1
2

. Middle: Corresponding Gaussian density. Right: Bayesian posterior.
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Example 2: Two-dimensional elliptic BVP – MAP estimation

Find u(x) from 100 noisy measurements of the temperature T (x) where

−∇ ·
(

eθ(x)∇T (x)
)

= cst x ∈ D = [0, 1]2, + homogeneous Dirichlet BC.

Model: θ(x) ∼ N (0, C) in L2(D) where C−1 = (−∆ + τ2I)υ [17]

KL expansion : θ(x) =
∑

θi
√
λiϕi(x), θi ∼ N (0, 1), Cϕi = λiϕi.

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.0

0.2

0.4

0.6

0.8

1.0

x
1

0.0 0.2 0.4 0.6 0.8 1.0
x0

−0.12

−0.06

0.00

0.06

0.12

0.18

0.24

0.30

0.36

True (left) and reconstructed (right) log-conductivity (α = 0, Jeff/J = .5, J = 512)

[17] equipped with homogeneous Neumann boundary condition on the space of mean-zero functions.
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Example 2: Two-dimensional elliptic boundary value problem – Sampling

Approximate posterior after 100 iterations of CBS with α = 0, adaptive β, and J = 512.

(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 0) (1, 2) (2, 1) (2, 2) (0, 3) (3, 0) (1, 3) (3, 1) (2, 3) (3, 2) (3, 3)

−4

−3

−2

−1

0

1

2

3

Iteration 100

CBS

EKS

Truth

MAP CBS

MAP EKI
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Optimization: objective functions

the Ackley function, defined for x ∈ Rd by

fA(x) = −20 exp

−1

5

√√√√1

d

d∑
i=1

|xi − b|2

−exp

(
1

d

d∑
i=1

cos
(
2π(xi − b)

))
+e + 20,

the Rastrigin function, defined by

fR(x) =
d∑
i=1

(
(xi − b)2 − 10 cos

(
2π(xi − b)

)
+ 10

)
.

Minimizer: x∗ = (b, . . . , b), where b ∈ R. Below b = 2.

Figure: Ackley (left) and Rastrigin (right) functions for d = 2 and b = 2.Numerical experiments 22 / 27



Optimization: illustration of the convergence

Convergence for α = .1, adaptive β with Jeff/J = .5, and J = 100.

Ackley function
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Optimization: illustration of the convergence

Convergence for α = .1, adaptive β with Jeff/J = .5, and J = 100.

Rastrigin function
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Towards exact sampling

Like ensemble Kalman-based methods, CBS is exact only for Gaussian targets.

How can we generate exact samples from e−f?

Idea 1. Metropolize CBS, i.e. construct a Markov chain such that:{
θ(j)
n

}J
j=1

Law−−−−→
n→∞

ρ⊗J .

Example proposal: select j∗ ∼ U{1, J} and propose

θ
∗,(j)
n+1 =

{
Mβ + α

(
θ

(j)
n −Mβ

)
+
√
γCβ ξ(j)

n if j = j∗,

θ
(j)
n if j 6= j∗,

with ξ
(j)
n ∼ N (0, Id) and

Mβ =Mβ(µJn), Cβ = Cβ(µJn), µJn =
1

J

J∑
j=1

δ
θ
(j)
n
.

Then accept or reject using Metropolis–Hastings’ method.

Idea 2. Use information from CBS to precondition a standard MCMC method:

θ∗n+1 = m∞ + λ (θn −m∞) +
√

1− λ2ξn, ξn ∼ N (0, xC∞).

where x ≥ 1 and N (m∞, C∞) is the approximate posterior from CBS.
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Metropolization: proof of concept

We consider the bimodal example from[18], arising from the Bayesian inverse problem with

G : R2 3 θ 7→ |θ1 − θ2|2 ∈ R,

noise η ∼ N (0, I2), prior distribution N (0, I2), and data y = 2.

Empirical distribution of metropolized CBS with J = 104 particles and α = 1
2

:

(a) n = 103 (b) n = 104 (c) n = 105 (d) Exact

In practice, expectations could be estimated using time and ensemble averages:

Eθ∼ρh(θ) = EΘ∼ρ⊗J

(
1

J

J∑
j=1

h(θ(j))

)
≈ 1

JN

N∑
n=1

J∑
j=1

h(θ(j)
n )

[18] S. Reich and S. Weissmann. Fokker-Planck particle systems for Bayesian inference: computational
approaches. SIAM/ASA J. Uncertain. Quantif., 2021.
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Preconditioning: proof of concept

Assumption: target distribution has density with respect to π = N (m,C).

The MCMC method from[19] is based on the proposal

θ∗n+1 = m+ λ(θn −m) +
√

1− λ2 ξn, ξn ∼ N (0, C),

The method is robust with respect to refinement (e.g. more KL modes);

The acceptance probability is close to 1 if the target is close to N (m,C) but

it can be � 1 for very anisotropic targets.

A variation on this method using information from CBS:

Calculate a Gaussian approximation N (m∞, C∞) of the posterior using CBS;

Use a modification of the above method based on the proposal

θ∗n+1 = m∞ + λ (θn −m∞) +
√

1− λ2ξn, ξn ∼ N (0, xC∞), x ≥ 1.

Leads to better acceptance probability (≈ 1 if target is Gaussian and α = 1).

[19] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions:
modifying old algorithms to make them faster. Statist. Sci., 2013.
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Conclusions

The proposed method

can be used for sampling or optimization;

is based on ideas from consensus-based optimization;

is based on a stochastic interacting particle system:

can be parallelized easily;
can be studied from a mean field viewpoint.

is derivative-free, so well suited for PDE inverse problems;

converges exponentially fast at the mean-field level (for sampling);

is affine-invariant, so convergence rate is independent of target in Gaussian setting.

Perspectives:

Can we study the method with adaptive β?

Can we prove convergence at the particle level[20]?

Can we correct the sampling error in the non-Gaussian setting[21]?

[20] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.

[21] E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart. Calibrate, emulate,
sample. J. Comp. Phys., 2021.
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Thank you for your attention!
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