
Mean-field limits for Consensus-Based and Ensemble Kalman Sampling

9ECM 2024 – Minisymposium Particles Unleashed

Urbain Vaes
urbain.vaes@inria.fr

MATHERIALS – Inria Paris & CERMICS – École des Ponts ParisTech
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Consensus-based optimization (CBO)1,2

Global optimization problem:

Find x ∈ argmin
x∈Rd

f (f : Rd → R)

CBO interacting particle system

dXj
t = −

(
Xj

t −Mβ

(
µJ
t

))
dt+

√
2σ

∣∣∣Xj
t −Mβ

(
µJ
t

)∣∣∣ dW j
t , j = 1, . . . , J,

▶ β is “inverse temperature” parameter.

▶ µJ
t is empirical measure µJ

t = 1
J

∑J
j=1 δXj

t
.

▶ Mβ : P(Rd) → Rd is weighted mean operator:

Mβ(µ) =

∫
x e−βf(x) µ(dx)∫
e−βf(x) µ(dx)

, Mβ

(
µJ
t

)
=

∑J
j=1 X

j
t exp

(
−βf(Xj

t )
)∑J

j=1 exp
(
−βf(Xj

t )
) .

.
1R. Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.
2J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.
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Consensus-based sampling (CBS)1

Sampling problem:

Generate samples from distribution π ∝ e−f (f : Rd → R)

CBS interacting particle system

dXj
t = −

(
Xj

t −Mβ

(
µJ
t

))
dt+

√
2(1 + β) Cβ(µJ

t ) dW
j
t , j = 1, . . . , J,

▶ β is “inverse temperature” parameter.

▶ µJ
t is empirical measure µJ

t = 1
J

∑J
j=1 δXj

t
,

▶ Cβ : P(Rd) → Rd×d is weighted covariance operator:

Cβ(µ) =

∫
(x⊗ x) e−βf(x) µ(dx)∫

e−βf(x) µ(dx)
−Mβ(µ)⊗Mβ(µ),

.

1J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.
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Mean field limits

Taking formally J → ∞ in the interacting particle systems leads to

CBO mean field limitdXt = −
(
Xt −Mβ(ρt)

)
dt+

√
2σ

∣∣∣Xt −Mβ(ρt)
∣∣∣dW t,

ρt = Law(Xt).

CBS mean field limitdXt = −
(
Xt −Mβ(ρt)

)
dt+

√
2(1 + β)Cβ(ρt) dW t,

ρt = Law(Xt).

▶ Nonlinear Markov processes in Rd: future depends on Xt and its distribution

▶ Associated Fokker–Planck equations are nonlinear and nonlocal.
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Convergence results in mean field law for CBO and CBS

Let W2 : P2(R
d)× P2(R

d) → R denote the Wasserstein-2 metric.

Convergence of mean field CBO1,2

Under mild conditions including existence of a unique minimizer, there is λ such that

∀t ∈ [0, Tβ ], W2(ρt, δx∗) ⩽W2(ρ0, δx∗) e
−λt, x∗ = argmin

x∈Rd

f.

Furthermore Tβ → ∞ as β → ∞.

Convergence of mean field CBS3

If π ∝ e−f is Gaussian and ρ0 is Gaussian, then

∀t ⩾ 0, W2(ρt, π) ⩽ C e
−
(

β
1+β

)
t
.

1J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.
2M. Fornasier, T. Klock, and K. Riedl. Arxiv preprint, 2021.
3J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.
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Convergence for the interacting particle systems

By the triangle inequality,

E
[
W2(µ

J
t , ν)

]
⩽ E

[
W2(µ

J
t , ρt)

]
︸ ︷︷ ︸
→0 as J→∞???

+W2(ρt, ν)︸ ︷︷ ︸
⩽C e−λt

, ν =

{
δx∗ for CBO,

e−f for CBS.

Pre-existing mean field results for CBO (i.i.d. initial condition and fixed t)

▶ 1Based on a compactness argument, it was shown that

µJ
t

Law−−−−→
J→∞

ρt (no rate).

▶ 2For all ε > 0, there is Ωε ⊂ Ω and Cε > 0 such that for all J

P[Ω \ Ωε] ⩽ ε and E
[
W2(µ

J
t , ρt)

∣∣∣Ωε

]
⩽ CεJ

−α, Cε −−−→
ε→0

∞

Our goal: obtain an estimate of the form E
[
W2(µ

J
t , ρt)

]
⩽ CJ−α.

1H. Huang and J. Qiu. Math. Methods Appl. Sci., 2022.
2M. Fornasier, T. Klock, and K. Riedl. Arxiv preprint, 2021.
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Introduction of synchronous coupling

Toy example (with M(µ) the usual mean under µ)

Interacting particle system:

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ dW j

t , Xj
0 = xj

0
i.i.d.∼ ρ0 j = 1, . . . , J.

Mean field limit: dXt = −
(
Xt −M(ρt)

)
dt+ dW t,

ρt = Law(Xt).

Synchronous coupling

We couple to the particle system J copies of the mean field dynamics:

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ dW j

t , Xj
0 = xj

0, j = 1, . . . , J,

dX
j
t = −

(
X

j
t −M(ρt)

)
dt+ dW j

t , X
j
0 = xj

0, j = 1, . . . , J,

with same initial condition and driving Browian motions.
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Using the synchronously coupled system as a pivot

Synchronous coupling j ∈ {1, . . . , J}

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ dW j

t , Xj
0 = xj

0,

dX
j
t = −

(
X

j
t −M(ρt)

)
dt+ dW j

t , X
j
0 = xj

0.

Key triangle inequality

E
[
W2(µ

J
t , ρt)

]
⩽ E

[
W2(µ

J
t , µ

J
t )
]

︸ ︷︷ ︸
⩽CJ−???

+E
[
W2(µ

J
t , ρt)

]
︸ ︷︷ ︸

⩽CJ−α

, µJ
t =

1

J

J∑
j=1

δ
X

j
t
.

▶ Second term controlled1 independently of particle system.
▶ First term satisfies, by definition of the Wasserstein distance and by exchangeability

E
[
W2(µ

J
t , µ

J
t )

2
]
⩽ E

[
1

J

J∑
j=1

∣∣∣Xj
t −X

j
t

∣∣∣2] ⩽ E

[∣∣∣X1
t −X

1
t

∣∣∣2] .
⇝ It only remains to control E

[∣∣∣X1
t −X

1
t

∣∣∣2].
1N. Fournier and A. Guillin. Probab. Theory Related Fields, 2015.
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Bounding the remaining term (using Sznitman’s approach1)

Synchronous coupling j ∈ {1, . . . , J}

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ dW j

t , Xj
0 = xj

0,

dX
j
t = −

(
X

j
t −M(ρt)

)
dt+ dW j

t , X
j
0 = xj

0.

Key Lemma: Lipschitz continuity of M : P1(R
d) → Rd

∀(µ, ν) ∈ P1(R
d)× P1(R

d),
∣∣∣M(µ)−M(ν)

∣∣∣ ⩽W2(µ, ν).

E

[∣∣∣X1
t − X

1
t

∣∣∣2] ≲ ∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 + E
∣∣∣M(

µ
J
s

)
− M (ρs)

∣∣∣2 ds

≲
∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 + E
∣∣∣M(

µ
J
s

)
− M

(
µ
J
s

)∣∣∣2 + E
∣∣∣M(

µ
J
s

)
− M (ρs)

∣∣∣2 ds

≲
∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 + E

[
W2

(
µ
J
s , µ

J
s

)2
]

ds + CMCJ
−1

≲
∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 ds + CMCJ
−1 Grönwall

⇝ E
[
|X1

t − X
1
t |

2
]
⩽ C(t)J

−1
.

1A.-S. Sznitman. In École d’Été de Probabilités de Saint-Flour XIX—1989. Springer, Berlin, 1991.
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Why the classical Sznitman approach fails for CBO/CBS

Synchronous coupling for CBO, j ∈ {1, . . . , J}

dXj
t = −

(
Xj

t −Mβ

(
µJ
t

))
dt+

√
2σ

∣∣∣Xj
t −Mβ

(
µJ
t

)∣∣∣ dW j
t , Xj

0 = xj
0.

dX
j
t = −

(
X

j
t −Mβ(ρt)

)
dt+

√
2σ

∣∣∣Xj
t −Mβ(ρt)

∣∣∣ dW j
t , X

j
0 = xj

0.

Technical difficulties:

▶ Mβ : P1(R
d) → Rd is not globally Lipschitz continuous in general.

▶ Usual Monte Carlo estimates do not enable to bound

E
∣∣∣Mβ

(
µJ
s

)
−Mβ(ρs)

∣∣∣2 ,
but estimates are given in the literature1,2.

1P. Doukhan and G. Lang. Bernoulli, 2009.
2S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.
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Main result: quantitative mean field limits

Assumption (focusing on the unbounded f setting for simplicity here)

▶ Local Lischitz continuity. f is bounded from below by f⋆ = inf f and satisfies

∀x, y ∈ Rd, |f(x)− f(y)| ≤ Lf

(
1 + |x|+ |y|

)s|x− y|, s ⩾ 0.

▶ Growth at infinity. There are constants c, u > 0 and a compact K ⊂ Rd such that

∀x ∈ Rd \K,
1

c
|x|u ⩽ f(x) ⩽ c|x|u.

Main theorem1, holds for both CBO and CBS

If f satisfies the above assumption and ρ0 has infinitely many moments, then

∀J ∈ N+, ∀j ∈ {1, . . . , J}, E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j
t

∣∣∣p] ≤ CJ− p
2 .

1N. J. Gerber, F. Hoffmann, and UV. Arxiv preprint, 2023.

Extending the synchronous coupling approach for CBO/S 15 / 23



Main ingredients of the proof

Definition of Pp,R(R
d)

Pp,R(R
d) =

{
µ ∈ Pp(R

d) : Wp(µ, δ0) ⩽ R
}
.

▶ Local Lipschitz continuity for Mβ . For all R > 0 and for all p ⩾ 1, ∃L s.t.

∀(µ, ν) ∈ Pp,R

(
Rd)× Pp

(
Rd), ∣∣∣Mβ(µ)−Mβ(ν)

∣∣∣ ≤ LWp(µ, ν).

▶ Moment bound: Suppose ρ0 ∈ Pq(R
d). Then there is κ > 0 such that

∀J ∈ N+, E

[
sup

t∈[0,T ]

∣∣∣Xj
t

∣∣∣q] ∨ E

[
sup

t∈[0,T ]

∣∣∣Xj
t

∣∣∣q] ⩽ κ.
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Sketch of the proof: stopping time approach1

▶ Local Lipschitz continuity of Mβ motivates stopping time

θJ = inf
{
t ⩾ 0 : W2(µ

J
t , δ0) ⩾ R

}
, µJ

t :=
1

J

J∑
j=1

δ
X

j
t
.

▶ Then decompose

E
[∣∣∣X1

t −X
1
t

∣∣∣p] = E
[∣∣∣X1

t −X
1
t

∣∣∣p 1{θJ>T}

]
+E

[∣∣∣X1
t −X

1
t

∣∣∣p 1{θJ⩽T}

]
.

▶ First term can be shown to scale as CJ− p
2 using classical approach;

▶ Second term handled as follows (q > p):

E
[∣∣∣Xj

t −X
j
t

∣∣∣p 1{θJ⩽T}

]
⩽ E

[∣∣∣Xj
t −X

j
t

∣∣∣q] p
q
P [θJ ⩽ T ]

q−p
q .

▶ First factor bounded using moment bounds.
▶ Second factor: for sufficiently large R, by generalized Chebyshev inequality,

∀a > 0, ∃C(a) : P [θJ ⩽ T ] ⩽ C(a)J−a

1D. J. Higham, X. Mao, and A. M. Stuart. SIAM J. Numer. Anal., 2002.
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Extension to Ensemble Kalman Sampler

Ensemble Kalman Sampler (EKS) to sample from π ∝ e−f

dXj
t = −C(µJ

t )∇f(Xj
t ) dt+

√
2C(µJ

t ) dW
j
t , j = 1, . . . , J.

Formal mean field limit:

dXt = −C(ρt)∇f(Xt) dt+
√

2C(ρt) dW t, ρt = Law(Xt).

Additional technical difficulties:

▶ Covariance is a quadratic nonlinearity,

▶ “One-sided” local Lipschitz continuity does not hold.

Local Lipschitz continuity of C : P2(R
d) → Rd×d

∀(µ, ν) ∈ P2(R
d)×P2(R

d),
∥∥∥C(µ)− C(ν)

∥∥∥
F
⩽ 2

(
W2(µ, δ0) +W2(ν, δ0)

)
W2(µ, ν).
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Sharp propagation of chaos for EKS

Synchronous coupling for EKS

dXj
t = −C(µJ

t )∇f(Xj
t ) dt+

√
2C(µJ

t ) dW
(j), Xj

0 = xj
0, j = 1, . . . , J,

dX
j
t = −C(ρt)∇f(X

j
t dt+

√
2C(ρt) dW

(j), Xj
0 = xj

0, j = 1, . . . , J.

First almost optimal propagation of chaos result proved by Ding and Li1,2:

∀ε > 0, ∃Cε > 0, E

[∣∣∣Xj
T −X

j
T

∣∣∣2] ⩽ CεJ
−1+ε.

Theorem: sharp propagation of chaos3

If f is strongly convex with quadratic growth and ρ0 has infinitely many moments, then

∀J ∈ N+, ∀j ∈ {1, . . . , J}, E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j
t

∣∣∣2] ≤ CJ−1.

1Z. Ding and Q. Li. Stat. Comput., 2021.
2Z. Ding and Q. Li. SIAM J. Math. Anal., 2021.
3UV. Arxiv preprint, 2024.
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Mean field limit for ensemble Kalman sampler: idea of the proof

Key idea: covariance function C : P(Rd) → Rd×d is Lipschitz continuous on

PR :=
{
ν ∈ P(Rd) : W2(ν, δ0) ⩽ R

}
.

▶ Motivates letting θJ(R) = τJ(R) ∧ τJ(R) with

τJ(R) = inf
{
t ⩾ 0 : W2(µ

J
t , δ0) ⩾ R

}
, µJ

t := 1
J

∑J
j=1 δXj ,

τJ(R) = inf
{
t ⩾ 0 : W2(µ

J
t , δ0) ⩾ R

}
, µJ

t := 1
J

∑J
j=1 δXj .

▶ Then decompose

E

[∣∣∣Xj
t −X

j
t

∣∣∣2] = E

[∣∣∣Xj
t −X

j
t

∣∣∣2 1{θJ>T}

]
+E

[∣∣∣Xj
t −X

j
t

∣∣∣2 1{θJ⩽T}

]
▶ First term can be shown to scale as CRJ

−1 using classical approach;

▶ Second term requires to bound

P [θJ ⩽ T ] ⩽ P [τJ ⩽ T ]︸ ︷︷ ︸
≲J−a ∀a>0

+P [τJ ⩽ T ⩽ τJ ]︸ ︷︷ ︸
≲J−???

.
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Bounding P [τJ ⩽ T ]

P [τJ ⩽ T < τJ ] ⩽ P

[
sup

t∈[0,T ]

W2(µ
J
t∧θJ , δ0) = R

]

= P

[
sup

t∈[0,T ]

W2(µ
J
t∧θJ , µ

J
t∧θJ

) + sup
t∈[0,T ]

W2(µ
J
t∧θJ

, δ0) ⩾ R

]

⩽ P

[
sup

t∈[0,T ]

W2(µ
J
t∧θJ , µ

J
t∧θJ

) ⩾
R

2

]
+P

[
sup

t∈[0,T ]

W2(µ
J
t∧θJ

, δ0) ⩾
R

2

]
,

▶ First term is bounded by estimate for stopped particle systems

▶ Second term is bounded as before.
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Conclusion and perspectives

▶ We presented optimal mean field estimates for CBO/S.

▶ These estimates are valid over a finite time horizon.

▶ Desirable improvement: prove uniform-in-time estimates:

∀J ∈ N+, E

[
sup

t∈[0,∞)

∣∣∣Xj
t −X

j
t

∣∣∣p] ≤ CJ− p
2 .

Thank you for your attention!
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