

an

Mean-field limits for Consensus-Based and Ensemble Kalman Sampling

9ECM 2024 – Minisymposium Particles Unleashed

Urbain Vaes urbain.vaes@inria.fr

MATHERIALS – Inria Paris & CERMICS – Ecole des Ponts ParisTech ´

July 2024

Nicolai Gerber

Hausdorff Center for Mathematics

Franca Hoffmann

Caltech

References:

- ▶ N. J. Gerber, F. Hoffmann, and UV. Arxiv preprint, 2023 Mean-field limits for Consensus-Based Optimization and Sampling
- ▶ UV. Arxiv preprint, 2024

Sharp propagation of chaos for the Ensemble Langevin Sampler

[Motivation](#page-3-0)

[The classical synchronous coupling approach](#page-8-0)

[Extending the synchronous coupling approach for CBO/S](#page-13-0)

[\(If there is time\) Extending the synchronous coupling approach for EKS](#page-17-0)

Consensus-based optimization $(CBO)^{1,2}$

Global optimization problem:

Find
$$
x \in \operatorname*{arg\,min}_{x \in \mathbf{R}^d} f
$$
 $(f: \mathbf{R}^d \to \mathbf{R})$

CBO interacting particle system

$$
dX_t^j = -\left(X_t^j - \mathcal{M}_\beta\left(\mu_t^J\right)\right)dt + \sqrt{2}\sigma\left|X_t^j - \mathcal{M}_\beta\left(\mu_t^J\right)\right|dW_t^j, \qquad j = 1,\ldots,J,
$$

 \triangleright β is "inverse temperature" parameter.

$$
\blacktriangleright \mu_t^J \text{ is empirical measure } \mu_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j}.
$$

 $\blacktriangleright \mathcal{M}_{\beta} \colon \mathcal{P}(\mathbf{R}^d) \to \mathbf{R}^d$ is weighted mean operator:

$$
\mathcal{M}_\beta(\mu) = \frac{\int x \, \mathrm{e}^{-\beta f(x)}\, \mu(\mathrm{d} x)}{\int \mathrm{e}^{-\beta f(x)}\, \mu(\mathrm{d} x)}, \qquad \mathcal{M}_\beta\Big(\mu^J_t\Big) = \frac{\sum_{j=1}^J X^j_t \exp\bigl(-\beta f(X^j_t)\bigr)}{\sum_{j=1}^J \exp\bigl(-\beta f(X^j_t)\bigr)}.
$$

. ¹R. Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.

2 J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.

[Motivation](#page-3-0) 4 / 23

Sampling problem:

$$
ext{Generate samples from distribution } \pi \propto e^{-f} \qquad (f: \mathbf{R}^d \to \mathbf{R})
$$

CBS interacting particle system

$$
\mathrm{d}X_t^j = -\left(X_t^j - \mathcal{M}_\beta\left(\mu_t^J\right)\right)\mathrm{d}t + \sqrt{2(1+\beta)\,\mathcal{C}_\beta(\mu_t^J)}\,\mathrm{d}W_t^j, \qquad j = 1,\ldots,J,
$$

 \triangleright β is "inverse temperature" parameter.

$$
\blacktriangleright \mu_t^J \text{ is empirical measure } \mu_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j},
$$

 $\blacktriangleright \mathcal{C}_{\beta} \colon \mathcal{P}(\mathbf{R}^d) \to \mathbf{R}^{d \times d}$ is weighted covariance operator:

$$
\mathcal{C}_{\beta}(\mu)=\frac{\int (x\otimes x)\,\mathrm{e}^{-\beta f(x)}\,\mu(\mathrm{d}x)}{\int \mathrm{e}^{-\beta f(x)}\,\mu(\mathrm{d}x)}-\mathcal{M}_{\beta}(\mu)\otimes\mathcal{M}_{\beta}(\mu),
$$

¹ J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.

[Motivation](#page-3-0) 5 / 23

.

Mean field limits

Taking formally $J \to \infty$ in the interacting particle systems leads to

CBO mean field limit

$$
\begin{cases} d\overline{X}_t = -(\overline{X}_t - \mathcal{M}_\beta(\overline{\rho}_t)) dt + \sqrt{2}\sigma \Big| \overline{X}_t - \mathcal{M}_\beta(\overline{\rho}_t) \Big| d\overline{W}_t, \\ \overline{\rho}_t = \text{Law}(\overline{X}_t). \end{cases}
$$

CBS mean field limit

$$
\begin{cases} d\overline{X}_t = -(\overline{X}_t - \mathcal{M}_\beta(\overline{\rho}_t)) dt + \sqrt{2(1+\beta)\mathcal{C}_\beta(\overline{\rho}_t)} d\overline{W}_t, \\ \overline{\rho}_t = \text{Law}(\overline{X}_t). \end{cases}
$$

- \blacktriangleright Nonlinear Markov processes in \mathbf{R}^d : future depends on \overline{X}_t and its distribution
- ▶ Associated Fokker–Planck equations are nonlinear and nonlocal.

Convergence results in mean field law for CBO and CBS

Let $W_2\colon \mathcal{P}_2(\mathbf{R}^d)\times \mathcal{P}_2(\mathbf{R}^d)\to \mathbf{R}$ denote the Wasserstein-2 metric.

Convergence of mean field $CBO^{1,2}$

Under mild conditions including existence of a unique minimizer, there is λ such that

$$
\forall t \in [0, T_{\beta}], \qquad W_2(\overline{\rho}_t, \delta_{x_*}) \le W_2(\overline{\rho}_0, \delta_{x_*}) e^{-\lambda t}, \qquad x_* = \underset{x \in \mathbf{R}^d}{\arg \min} f.
$$

Furthermore $T_{\beta} \to \infty$ as $\beta \to \infty$.

Convergence of mean field $CBS³$

If $\pi \propto {\rm e}^{-f}$ is Gaussian and $\overline{\rho}_0$ is Gaussian, then

$$
\forall t \geqslant 0, \qquad W_2(\overline{\rho}_t, \pi) \leqslant C \, \mathrm{e}^{-\left(\frac{\beta}{1+\beta}\right)t} \, .
$$

¹J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018. ²M. Fornasier, T. Klock, and K. Riedl. Arxiv preprint, 2021.

3 J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.

Convergence for the interacting particle systems

By the triangle inequality,

$$
\mathbf{E}\Big[W_2(\mu_t^J,\nu)\Big] \leqslant \underbrace{\mathbf{E}\Big[W_2(\mu_t^J,\overline{\rho}_t)\Big]}_{\rightarrow 0 \text{ as } J\rightarrow \infty^{777}} + \underbrace{W_2(\overline{\rho}_t,\nu)}_{\leqslant C \text{ e}^{-\lambda t}}, \qquad \nu = \begin{cases} \delta_{x_*} & \text{for CBO,} \\ \text{e}^{-f} & \text{for CBS.} \end{cases}
$$

Pre-existing mean field results for CBO (i.i.d. initial condition and fixed t)

 $1B$ ased on a compactness argument, it was shown that

$$
\mu_t^J \xrightarrow[J \to \infty]{\text{Law}} \overline{\rho}_t \qquad \text{(no rate)}.
$$

 $▶$ ²For all $\varepsilon > 0$, there is $\Omega_{\varepsilon} \subset \Omega$ and $C_{\varepsilon} > 0$ such that for all J

$$
\mathbf{P}[\Omega \setminus \Omega_{\varepsilon}] \leqslant \varepsilon \quad \text{and} \quad \mathbf{E}\left[W_2(\mu_t^J, \overline{\rho}_t)\, \middle| \, \Omega_{\varepsilon}\right] \leqslant C_{\varepsilon} J^{-\alpha}, \qquad \qquad C_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \infty
$$

 $\mathbf{Our\,\, goal}$: obtain an estimate of the form $\mathbf{E}\left[W_2(\mu_t^J,\overline{\rho}_t)\right] \leqslant C J^{-\alpha}.$

- ¹H. Huang and J. Qiu. Math. Methods Appl. Sci., 2022.
- ²M. Fornasier, T. Klock, and K. Riedl. Arxiv preprint, 2021.

[Motivation](#page-3-0)

[The classical synchronous coupling approach](#page-8-0)

[Extending the synchronous coupling approach for CBO/S](#page-13-0)

[\(If there is time\) Extending the synchronous coupling approach for EKS](#page-17-0)

Toy example (with $\mathcal{M}(\mu)$ the usual mean under μ)

Interacting particle system:

$$
dX_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right)dt + dW_t^j, \qquad X_0^j = x_0^j \stackrel{\text{i.i.d.}}{\sim} \overline{\rho}_0 \qquad j = 1, \dots, J.
$$

Mean field limit:

$$
\begin{cases} d\overline{X}_t = -(\overline{X}_t - \mathcal{M}(\overline{\rho}_t)) dt + d\overline{W}_t, \\ \overline{\rho}_t = \text{Law}(\overline{X}_t). \end{cases}
$$

Synchronous coupling

We couple to the particle system J copies of the mean field dynamics:

$$
dX_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right)dt + dW_t^j, \qquad X_0^j = x_0^j, \qquad j = 1, \dots, J,
$$

$$
d\overline{X}_t^j = -\left(\overline{X}_t^j - \mathcal{M}(\overline{\rho}_t)\right)dt + dW_t^j, \qquad \overline{X}_0^j = x_0^j, \qquad j = 1, \dots, J,
$$

with same initial condition and driving Browian motions.

Using the synchronously coupled system as a pivot

Synchronous coupling $j \in \{1, \ldots, J\}$

$$
dX_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right)dt + dW_t^j, \qquad X_0^j = x_0^j,
$$

$$
d\overline{X}_t^j = -\left(\overline{X}_t^j - \mathcal{M}(\overline{\rho}_t)\right)dt + dW_t^j, \qquad \overline{X}_0^j = x_0^j.
$$

Key triangle inequality

$$
\mathbf{E}\left[W_2(\mu_t^J, \overline{\rho}_t)\right] \leqslant \underbrace{\mathbf{E}\left[W_2(\mu_t^J, \overline{\mu}_t^J)\right]}_{\leqslant C J^{-777}} + \underbrace{\mathbf{E}\left[W_2(\overline{\mu}_t^J, \overline{\rho}_t)\right]}_{\leqslant C J^{-\alpha}}, \qquad \overline{\mu}_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{\overline{X}_t^j}.
$$

 \blacktriangleright Second term controlled¹ independently of particle system.

First term satisfies, by definition of the Wasserstein distance and by exchangeability

$$
\mathbf{E}\left[W_2(\mu_t^J, \overline{\mu}_t^J)^2\right] \leqslant \mathbf{E}\left[\frac{1}{J}\sum_{j=1}^J \left|X_t^j - \overline{X}_t^j\right|^2\right] \leqslant \mathbf{E}\left[\left|X_t^1 - \overline{X}_t^1\right|^2\right]
$$

 \rightsquigarrow It only remains to control $\mathbf{E}\left[\left|X^1_t-\overline{X}^1_t\right|\right]$ $\left.\begin{matrix}2\end{matrix}\right\}$.

¹N. Fournier and A. Guillin. Probab. Theory Related Fields, 2015. [The classical synchronous coupling approach](#page-8-0) the control of the control of the control of the classical synchronous coupling approach the control of the control of

.

Bounding the remaining term (using Sznitman's approach $^1)$

Synchronous coupling $j \in \{1, ..., J\}$

$$
dX_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right)dt + dW_t^j, \qquad X_0^j = x_0^j,
$$

$$
d\overline{X}_t^j = -\left(\overline{X}_t^j - \mathcal{M}(\overline{\rho}_t)\right)dt + dW_t^j, \qquad \overline{X}_0^j = x_0^j.
$$

Key Lemma: Lipschitz continuity of $\mathcal{M}\colon \mathcal{P}_1(\mathbf{R}^d)\to \mathbf{R}^d$

$$
\forall (\mu,\nu) \in \mathcal{P}_1(\mathbf{R}^d) \times \mathcal{P}_1(\mathbf{R}^d), \qquad \left| \mathcal{M}(\mu) - \mathcal{M}(\nu) \right| \leq W_2(\mu,\nu).
$$

$$
\begin{split} \mathbf{E}\left[\left|X_{t}^{1}-\overline{X}_{t}^{1}\right|^{2}\right] &\lesssim \int_{0}^{t} \mathbf{E}\left|X_{s}^{1}-\overline{X}_{s}^{1}\right|^{2}+\mathbf{E}\left|\mathcal{M}\left(\mu_{s}^{J}\right)-\mathcal{M}\left(\overline{\rho}_{s}\right)\right|^{2} \mathrm{d}s \\ &\lesssim \int_{0}^{t} \mathbf{E}\left|X_{s}^{1}-\overline{X}_{s}^{1}\right|^{2}+\mathbf{E}\left|\mathcal{M}\left(\mu_{s}^{J}\right)-\mathcal{M}\left(\overline{\mu}_{s}^{J}\right)\right|^{2}+\mathbf{E}\left|\mathcal{M}\left(\overline{\mu}_{s}^{J}\right)-\mathcal{M}\left(\overline{\rho}_{s}\right)\right|^{2} \mathrm{d}s \\ &\lesssim \int_{0}^{t} \mathbf{E}\left|X_{s}^{1}-\overline{X}_{s}^{1}\right|^{2}+\mathbf{E}\left[W_{2}\left(\mu_{s}^{J},\overline{\mu}_{s}^{J}\right)^{2}\right] \mathrm{d}s+C_{\mathrm{MC}}J^{-1} \\ &\lesssim \int_{0}^{t} \mathbf{E}\left|X_{s}^{1}-\overline{X}_{s}^{1}\right|^{2} \mathrm{d}s+C_{\mathrm{MC}}J^{-1} \end{split}
$$

1A.-S. Sznitman. In École d'Été de Probabilités de Saint-Flour XIX—1989. Springer, Berlin, 1991.

[The classical synchronous coupling approach](#page-8-0) 12 $/ 23$

Synchronous coupling for CBO, $j \in \{1, \ldots, J\}$

$$
dX_t^j = -\left(X_t^j - \mathcal{M}_\beta\left(\mu_t^J\right)\right)dt + \sqrt{2}\sigma \left|X_t^j - \mathcal{M}_\beta\left(\mu_t^J\right)\right|dW_t^j, \qquad X_0^j = x_0^j.
$$

$$
d\overline{X}_t^j = -\left(\overline{X}_t^j - \mathcal{M}_\beta(\overline{\rho}_t)\right)dt + \sqrt{2}\sigma \left|\overline{X}_t^j - \mathcal{M}_\beta(\overline{\rho}_t)\right|dW_t^j, \qquad \overline{X}_0^j = x_0^j.
$$

Technical difficulties:

 $\blacktriangleright \mathcal{M}_{\beta} \colon \mathcal{P}_1(\mathbf{R}^d) \to \mathbf{R}^d$ is not globally Lipschitz continuous in general.

Usual Monte Carlo estimates do not enable to bound

$$
\mathbf{E}\left|\mathcal{M}_{\beta}\!\left(\overline{\mu}_s^J\right)-\mathcal{M}_{\beta}\!\left(\overline{\rho}_s\right)\right|^2,
$$

but estimates are given in the literature 1,2 .

²S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.

¹P. Doukhan and G. Lang. Bernoulli, 2009.

[Motivation](#page-3-0)

[The classical synchronous coupling approach](#page-8-0)

[Extending the synchronous coupling approach for CBO/S](#page-13-0)

[\(If there is time\) Extending the synchronous coupling approach for EKS](#page-17-0)

Main result: quantitative mean field limits

Assumption (focusing on the unbounded f setting for simplicity here)

▶ Local Lischitz continuity. f is bounded from below by $f_x = \inf f$ and satisfies

$$
\forall x, y \in \mathbf{R}^d, \qquad |f(x) - f(y)| \le L_f \big(1 + |x| + |y|\big)^s |x - y|, \qquad s \ge 0.
$$

▶ Growth at infinity. There are constants $c,u>0$ and a compact $K\subset \textbf{R}^d$ such that

$$
\forall x \in \mathbf{R}^d \setminus K, \qquad \frac{1}{c} |x|^u \leqslant f(x) \leqslant c |x|^u.
$$

Main theorem¹, holds for both CBO and CBS

If f satisfies the above assumption and \bar{p}_0 has infinitely many moments, then

$$
\forall J \in \mathbf{N}^+, \qquad \forall j \in \{1, \dots, J\}, \qquad \mathbf{E} \left[\sup_{t \in [0, T]} \left| X_t^j - \overline{X}_t^j \right|^p \right] \leq C J^{-\frac{p}{2}}.
$$

¹N. J. Gerber, F. Hoffmann, and UV. Arxiv preprint, 2023.

[Extending the synchronous coupling approach for CBO/S](#page-13-0) 15 / 23

Definition of $\mathcal{P}_{p,\bm{R}}(\mathbf{R}^d)$

$$
\mathcal{P}_{p, R}(\mathbf{R}^{d}) = \Big\{ \mu \in \mathcal{P}_p(\mathbf{R}^{d}) : W_p(\mu, \delta_0) \leqslant R \Big\}.
$$

▶ Local Lipschitz continuity for M_{β} . For all $R > 0$ and for all $p \geqslant 1$, $\exists L$ s.t. $\forall (\mu, \nu) \in \mathcal{P}_{p,R}(\mathbf{R}^d) \times \mathcal{P}_p(\mathbf{R}^d), \qquad \left| \mathcal{M}_\beta(\mu) - \mathcal{M}_\beta(\nu) \right| \leq L W_p(\mu, \nu).$

▶ Moment bound: Suppose $\overline{\rho}_0 \in \mathcal{P}_q(\mathbf{R}^d)$. Then there is $\kappa >0$ such that

$$
\forall J \in \mathbf{N}^+, \qquad \mathbf{E}\left[\sup_{t \in [0,T]} \left| X_t^j \right|^q \right] \quad \lor \quad \mathbf{E}\left[\sup_{t \in [0,T]} \left| \overline{X}_t^j \right|^q \right] \leq \kappa.
$$

Sketch of the proof: stopping time approach¹

▶ Local Lipschitz continuity of M_β **motivates stopping time**

$$
\theta_J = \inf \Big\{ t \geqslant 0 : W_2(\overline{\mu}_t^J, \delta_0) \geqslant R \Big\}, \qquad \overline{\mu}_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{\overline{X}_t^j}.
$$

Then decompose

$$
\mathbf{E}\left[\left|X_t^1 - \overline{X}_t^1\right|^p\right] = \mathbf{E}\left[\left|X_t^1 - \overline{X}_t^1\right|^p \mathbf{1}_{\{\theta_J > T\}}\right] + \mathbf{E}\left[\left|X_t^1 - \overline{X}_t^1\right|^p \mathbf{1}_{\{\theta_J \leq T\}}\right].
$$

▶ First term can be shown to scale as $CJ^{-\frac{p}{2}}$ using classical approach;

▶ Second term handled as follows $(q > p)$:

$$
\mathbf{E}\left[\left|X_t^j - \overline{X}_t^j\right|^p \mathbf{1}_{\{\theta_J \leq T\}}\right] \leq \mathbf{E}\left[\left|X_t^j - \overline{X}_t^j\right|^q\right]^{\frac{p}{q}} \mathbf{P}\left[\theta_J \leq T\right]^{\frac{q-p}{q}}.
$$

▶ First factor bounded using moment bounds. \triangleright Second factor: for sufficiently large R , by generalized Chebyshev inequality,

$$
\forall a > 0, \quad \exists C(a) : \qquad \mathbf{P} \left[\theta_J \leq T \right] \leq C(a) J^{-a}
$$

¹D. J. Higham, X. Mao, and A. M. Stuart. SIAM J. Numer. Anal., 2002.

[Extending the synchronous coupling approach for CBO/S](#page-13-0) 17 / 23

[Motivation](#page-3-0)

[The classical synchronous coupling approach](#page-8-0)

[Extending the synchronous coupling approach for CBO/S](#page-13-0)

[\(If there is time\) Extending the synchronous coupling approach for EKS](#page-17-0)

Extension to Ensemble Kalman Sampler

Ensemble Kalman Sampler (EKS) to sample from $\pi \propto {\rm e}^{-f}$

$$
dX_t^j = -\mathcal{C}(\mu_t^J)\nabla f(X_t^j) dt + \sqrt{2\mathcal{C}(\mu_t^J)} dW_t^j, \qquad j = 1, \dots, J.
$$

Formal mean field limit:

$$
\mathrm{d}\overline{X}_t = -\mathcal{C}(\overline{\rho}_t)\nabla f(\overline{X}_t) \,\mathrm{d} t + \sqrt{2\mathcal{C}(\overline{\rho}_t)} \,\mathrm{d}\overline{W}_t, \qquad \overline{\rho}_t = \mathrm{Law}(\overline{X}_t).
$$

Additional technical difficulties:

- \triangleright Covariance is a quadratic nonlinearity,
- ▶ "One-sided" local Lipschitz continuity does not hold.

 $\mathsf{Local}\ \mathsf{Lipschitz}\ \mathsf{continuity}\ \mathsf{of}\ \mathcal{C}\colon \mathcal{P}_2(\mathbf{R}^d)\to \mathbf{R}^{d\times d}$

$$
\forall (\mu,\nu) \in \mathcal{P}_2(\mathbf{R}^d) \times \mathcal{P}_2(\mathbf{R}^d), \qquad \left\| \mathcal{C}(\mu) - \mathcal{C}(\nu) \right\|_{\mathbf{F}} \leqslant 2\Big(W_2(\mu,\delta_0) + W_2(\nu,\delta_0)\Big)W_2(\mu,\nu).
$$

Synchronous coupling for EKS

$$
dX_t^j = -\mathcal{C}(\mu_t^J) \nabla f(X_t^j) dt + \sqrt{2\mathcal{C}(\mu_t^J) dW^{(j)}}, \qquad X_0^j = x_0^j, \qquad j = 1, \dots, J,
$$

$$
d\overline{X}_t^j = -\mathcal{C}(\overline{\rho}_t) \nabla f(\overline{X}_t^j dt + \sqrt{2\mathcal{C}(\overline{\rho}_t) dW^{(j)}}, \qquad X_0^j = x_0^j, \qquad j = 1, \dots, J.
$$

First almost optimal propagation of chaos result proved by Ding and $Li^{1,2}$:

$$
\forall \varepsilon > 0, \qquad \exists C_{\varepsilon} > 0, \qquad \mathbf{E}\left[\left|X_T^j - \overline{X}_T^j\right|^2\right] \leqslant C_{\varepsilon} J^{-1+\varepsilon}.
$$

Theorem: sharp propagation of chaos³

If f is strongly convex with quadratic growth and \bar{p}_0 has infinitely many moments, then

$$
\forall J \in \mathbf{N}^+, \qquad \forall j \in \{1, \dots, J\}, \qquad \mathbf{E} \left[\sup_{t \in [0,T]} \left| X_t^j - \overline{X}_t^j \right|^2 \right] \leq C J^{-1}.
$$

¹Z. Ding and Q. Li. Stat. Comput., 2021. ²Z. Ding and Q. Li. SIAM J. Math. Anal., 2021. ³UV. Arxiv preprint, 2024.

[\(If there is time\) Extending the synchronous coupling approach for EKS](#page-17-0) 20 / 23

Mean field limit for ensemble Kalman sampler: idea of the proof

Key idea: covariance function $\mathcal{C}\colon \mathcal{P}(\mathbf{R}^d) \to \mathbf{R}^{d \times d}$ is Lipschitz continuous on

$$
P_R := \left\{ \nu \in \mathcal{P}(\mathbf{R}^d) : W_2(\nu, \delta_0) \leq R \right\}.
$$

▶ Motivates letting $\theta_J(R) = \tau_J(R) \wedge \overline{\tau}_J(R)$ with

$$
\tau_J(R) = \inf \Big\{ t \geq 0 : W_2(\mu_t^J, \delta_0) \geq R \Big\}, \qquad \mu_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{X^j},
$$

$$
\overline{\tau}_J(R) = \inf \Big\{ t \geq 0 : W_2(\overline{\mu}_t^J, \delta_0) \geq R \Big\}, \qquad \overline{\mu}_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{\overline{X}^j}.
$$

▶ Then decompose

$$
\mathbf{E}\left[\left|X_t^j - \overline{X}_t^j\right|^2\right] = \mathbf{E}\left[\left|X_t^j - \overline{X}_t^j\right|^2 \mathbf{1}_{\{\theta_J > T\}}\right] + \mathbf{E}\left[\left|X_t^j - \overline{X}_t^j\right|^2 \mathbf{1}_{\{\theta_J \leq T\}}\right]
$$

▶ First term can be shown to scale as $C_R J^{-1}$ using classical approach;

▶ Second term requires to bound

$$
\mathbf{P}\left[\theta_J \leqslant T\right] \leqslant \underbrace{\mathbf{P}\left[\overline{\tau}_J \leqslant T\right]}_{\leqslant J^{-a}} + \underbrace{\mathbf{P}\left[\tau_J \leqslant T \leqslant \overline{\tau}_J\right]}_{\leqslant J^{-777}}.
$$

$$
\mathbf{P}\left[\tau_J \leq T < \overline{\tau}_J\right] \leq \mathbf{P}\left[\sup_{t \in [0,T]} W_2(\mu_{t \wedge \theta_J}^J, \delta_0) = R\right]
$$
\n
$$
= \mathbf{P}\left[\sup_{t \in [0,T]} W_2(\mu_{t \wedge \theta_J}^J, \overline{\mu}_{t \wedge \theta_J}^J) + \sup_{t \in [0,T]} W_2(\overline{\mu}_{t \wedge \theta_J}^J, \delta_0) \geq R\right]
$$
\n
$$
\leq \mathbf{P}\left[\sup_{t \in [0,T]} W_2(\mu_{t \wedge \theta_J}^J, \overline{\mu}_{t \wedge \theta_J}^J) \geq \frac{R}{2}\right] + \mathbf{P}\left[\sup_{t \in [0,T]} W_2(\overline{\mu}_{t \wedge \theta_J}^J, \delta_0) \geq \frac{R}{2}\right],
$$

▶ First term is bounded by estimate for stopped particle systems

▶ Second term is bounded as before.

- ▶ We presented optimal mean field estimates for CBO/S.
- \blacktriangleright These estimates are valid over a finite time horizon.
- ▶ Desirable improvement: prove uniform-in-time estimates:

$$
\forall J \in \mathbf{N}^+, \qquad \mathbf{E}\left[\sup_{t \in [0,\infty)} \left| X_t^j - \overline{X}_t^j \right|^p \right] \leq C J^{-\frac{p}{2}}.
$$

Thank you for your attention!