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Consensus-based optimization (CBO)!2

Global optimization problem:

Find € argmin f (f: R* > R)

zeR4

CBO interacting particle system

de:—(Xf—M«(,u;]))dt+\/§a‘Xf—M;(utj)‘thj, j=1,...,J,

> Jis “inverse temperature” parameter.

> 1 is empirical measure pf = %ijl i~
t

> M. : P(RY) — R is weighted mean operator:

Jze 7 p(dx) N D X exp(—0f(X]))

e M) = =5 VR

Je p(dz) Sexp(=0f(X7))

M (p) =

IR, Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.
2) A Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.
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Consensus-based sampling (CBS)!

Sampling problem:

Generate samples from distribution 7 o< e/ (f: R* > R)

CBS interacting particle system

ax? = (X7 - Mo () dt+ /20 + D C () aWd,  j=1,...

> 3 is “inverse temperature” parameter.
J - .. J 1 J
> i is empirical measure piy = 5 >5_ 5Xg'v
> C.: P(RY) — R%*? is weighted covariance operator:

[ ®)e @ uda)
J e 1@ p(dx)

Cp(u) = — M(p) @ Ms(p),

1) A Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.
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Mean field limits

Taking formally J — oo in the interacting particle systems leads to

CBO mean field limit

dX: = = (%o = M. (p)) dt + V20| X = M. ()| 4T,
ﬁt = LaW(Yt)

CBS mean field limit

dX, = (X = M:(3) dt + /2T + )C: (7)) AW,

pt = LaW(Yt)

» Nonlinear Markov processes in R%: future depends on X, and its distribution

» Associated Fokker—Planck equations are nonlinear and nonlocal.
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Convergence results in mean field law for CBO and CBS

Let Wa: P2(RY) x P2(R?) — R denote the Wasserstein-2 metric.

Convergence of mean field CBO!:2

Under mild conditions including existence of a unique minimizer, there is A such that

vt e [O,T], WQ(ﬁta(sz*) < W2(50761*)e_>\t7 T, = argmin f.
zeR4

Furthermore T); — oo as f — oo.

Convergence of mean field CBS®

If 7 oc e~/ is Gaussian and 7, is Gaussian, then

Vvt >0, W (p,, T) < ce(TH9)t,

1J. A Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.
2\, Fornasier, T. Klock, and K. Riedl. Arxiv preprint, 2021.
35 A Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.
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Convergence for the interacting particle systems

By the triangle inequality,

e L I T L e
t X t oMt H/tv_/a eff for CBS

—0 as J—00?77? SCe™ A

Pre-existing mean field results for CBO (i.i.d. initial condition and fixed t)

> Based on a compactness argument, it was shown that

L _
/,LtJ = Dy (no rate).
J—o00

> 2For all ¢ > 0, there is Q. € Q and C. > 0 such that for all .J

P2\ Q]<c and E[Walui,7,)

Q] <C.J*, C. — 0

e—0

Our goal: obtain an estimate of the form E [Wa(u/,p,)] < CJ°.

IH. Huang and J. Qiu. Math. Methods Appl. Sci., 2022.
2M. Fornasier, T. Klock, and K. Riedl. Arxiv preprint, 2021.
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The classical synchronous coupling approach



Introduction of synchronous coupling

Toy example (with M (u) the usual mean under p)

Interacting particle system:
dxj = —(Xg' —M(p;])) dt+dwi,  Xi=a)"K'p,  j=1,...,J

Mean field limit:
dX, = —(Yt _ M(ﬁt)) dt + dW,

p; = Law(X4).

Synchronous coupling

We couple to the particle system J copies of the mean field dynamics:
de:—(Xf—M(p;’))dt+thj, Xi=al, j=1,...,J
aX] = —(X] - M@)) dt+awf,  Kp=af, j=1...J,

with same initial condition and driving Browian motions.
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Using the synchronously coupled system as a pivot

Synchronous coupling j € {1,...,J}

dx;

—(Xf —M(uf))dtjtdwg', Xi =,

axi = —(Y{ —M(ﬁt)) dt + dw7, X = o

Key triangle inequality

%\H

E [Wa(ui,5,)] <E [Wa(ul 5] + B [Wa(!,5,)].

gCJ—??Y <CJ—«

-33

> Second term controlled! independently of particle system.
P First term satisfies, by definition of the Wasserstein distance and by exchangeability

yobe ]

o]

~+ It only remains to control E UXt1 - X,

E [W (i, ;) } <

E UX} -x

IN Fournier and A Guillin Prahah  Thenrv Ralated Fialds 2015
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Bounding the remaining term (using Sznitman's approach?)

Synchronous coupling j € {1,...,J}

dxi

_(Xg _M(u;’))dt+dwg, X3 =i,

dx) = —(Y{ - M(ﬁt)) dt+dWi,  X)=al.

Key Lemma: Lipschitz continuity of M: P;(R%) — R4

V(u,v) € Pr(RY) x Pr(RY), ‘M(u) - M(y)‘ < Walp, v).

2
B ds
t —
g/ E‘Xj—xi
0
¢ 1 =1
< E‘XS—XS
0

t —1|2
5/ E|x! - X[ ds+ Cucs !
0

—1]2 t —
E[|X§—Xi| ] 5/ E‘X;—Xl
0

FHEM () - M@

2
ds

rEM () - m@ED] +EM(E) - MG

2 J —J\? —1
+E (W (py, 1, ds + CmcJ
el E[Ix! =X <oma

LA.-S. Sznitman. In Ecole d'Eté de Probabilités de Saint-Flour XIX—1989. Springer, Berlin, 1991.
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Why the classical Sznitman approach fails for CBO/CBS

Synchronous coupling for CBO, j € {1,...,.J}

dx;

(X7 - Mo () ) dt +VBo|XT — M ()| W7, x§ =i

ax’ —(Y{ —Mf(ﬁt)) dt+\/§a\Y{ — M.(p,)|dWi, X} =ad.

Technical difficulties:

> M;: Pi(R?%) — R is not globally Lipschitz continuous in general.

» Usual Monte Carlo estimates do not enable to bound

BM (7)) - M)

2

I

but estimates are given in the literature®:2.

1p. Doukhan and G. Lang. Bernoulli, 2009.
2g, Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.
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Extending the synchronous coupling approach for CBO/S



Main result: quantitative mean field limits

Assumption (focusing on the unbounded f setting for simplicity here)
» Local Lischitz continuity. f is bounded from below by f, = inf f and satisfies
Vo,y eRY, [f(@) = f@) < Ly(L+ 2|+ [y])’le —yl,  s>0.

> Growth at infinity. There are constants ¢,u > 0 and a compact K C R? such that

vz € R4\ K, %m“gﬂmgqﬂ%

Main theorem?®, holds for both CBO and CBS

If f satisfies the above assumption and p, has infinitely many moments, then

VJeNT, Vje{l,...,J}, E mﬁm—ﬂ
]

te[0,T

p _p
}gc,] 3

IN. J. Gerber, F. Hoffmann, and UV. Arxiv preprint, 2023.
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Main ingredients of the proof

Definition of P, r(R%)

Pr.r(BY) = {1 € Po(R?) : Wi(1s,d0) < R}.

> Local Lipschitz continuity for M. For all R > 0 and for all p > 1, 3L s.t.
Y(p,v) € Pp.r(RY) x Pp(RY), ‘M (1) — M ,(u)] < LW, (u,v).

> Moment bound: Suppose 5, € P;(R?). Then there is x > 0 such that

VJeNT, E| sup ’ng] vV E ]\m.

te[0,T]

sup ‘Xt
t€[0,T]
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Sketch of the proof: stopping time approach?

» Local Lipschitz continuity of M ; motivates stopping time
1
. —_J —J Z
9J = mf{t 2 0: Wz(,u,t ,(50) 2 R}, My = j 5?3-.

» Then decompose

E Hth -X)

SRR

P 1 —1
Lgo,omy | +B[|x} - X

P
1{9]@‘}} :

. P . .
» First term can be shown to scale as C'J~ 2 using classical approach;

» Second term handled as follows (g > p):

E[Xj X! q]gpe i
t At [J\ }‘1 .

P j ]
1i0,<ry| <E||X] - X]

> First factor bounded using moment bounds.
» Second factor: for sufficiently large R, by generalized Chebyshev inequality,

VYa >0, 3C(a): PO, <T|<C(a)J "
1p. J. Higham, X. Mao, and A. M. Stuart. SIAM J. Numer. Anal., 2002.
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(If there is time) Extending the synchronous coupling approach for EKS



Extension to Ensemble Kalman Sampler

Ensemble Kalman Sampler (EKS) to sample from 7 oc e~/

X7 = —C(ui)\VF(XE) dt + /20y dWE,  j=1,...,J.

Formal mean field limit:

dX: = —C(p,)Vf(X+) dt + /2C(p,) AW, P = Law(X).

Additional technical difficulties:

» Covariance is a quadratic nonlinearity,

» “One-sided” local Lipschitz continuity does not hold.

Local Lipschitz continuity of C: Py(R%) — R4*4

V(,v) € Po(RY) x PaRY), || =€) | < 2(Waln, o) + Wa(v.60) ) Wa (i, ).

(If there is time) Extending the synchronous coupling approach for EKS 19 /23



Sharp propagation of chaos for EKS

Synchronous coupling for EKS

dX] = —C(u)VF(X])dt +/2c(u))aW?,  Xi =4},  j=1,...,J
dY§ = —C(ﬁ,)Vf(Y; dt+\/mdw<j)7 XE]) :xg7 ]: 17"'7']'

First almost optimal propagation of chaos result proved by Ding and Lil*%:

j i |2 —1+e
Ve>0, 3C.>0, E ’XT—XT <CLJE

Theorem: sharp propagation of chaos®

If f is strongly convex with quadratic growth and p, has infinitely many moments, then

2

vJeNt,  Vvie{1,...,J}, E <CcJ .

sup ‘th — Yi
t€[0,T]

1z Ding and Q. Li. Stat. Comput., 2021,
27. Ding and Q. Li. SIAM J. Math. Anal., 2021.
3UV. Arxiv preprint, 2024.
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Mean field limit for ensemble Kalman sampler: idea of the proof

Key idea: covariance function C: P(R?%) — R**? is Lipschitz continuous on
PR::{VEP(R) Wa(v, 80) }
> Motivates letting 6;(R) = 7;(R) AT (R) with
(R =nt{t > 0: Walui,60) > R}, pl = 3 ) 0,
7(R) = inf{t >0 Walm),d0) > R}, ml =L S

» Then decompose

. 2
E [‘Xﬁ - X 1{6,7>T}:| +E |:‘Xt] - X 1{9_;@*}]

2 . 7]-2
}:Eﬂxg—xt

» First term can be shown to scale as CrJ ™! using classical approach;

» Second term requires to bound

P[@JéT]éP[TJ T]+P[TJ\T<7J].
<J—a  Va>0 <J-
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Bounding P [7; < T

Plr;<T<7;]<P| sup W2(M%’A9J750) =R
_tE[O;T]

=P | sup Wa(pino, Biing,) + sup Wa(fijrg,,00) > R
_te[o,T] te[0,T]

- R
<P | sup W2(M£’A9Ja/1£]/\o])> +P

_tE[O,T] 5

R
2

sup Wa(Tiirg,, 00) =
t€[0,T]

)

» First term is bounded by estimate for stopped particle systems

» Second term is bounded as before.
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Conclusion and perspectives

» We presented optimal mean field estimates for CBO/S.
» These estimates are valid over a finite time horizon.
» Desirable improvement: prove uniform-in-time estimates:

vJeNt, E| sup ‘X -X!

te[0,00)

] <ot

Thank you for your attention!
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