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Paradigmatic inverse problem and its difficulties

Paradigmatic inverse problem

Find an unknown parameter u ∈ U from data y ∈ Rdy where

y = G(u) + η, (IP)

G is the forward operator;

η is observational noise.

Two difficulties[1] associated with this problem are the following:

Because of the noise, it might be that y /∈ Im(G);
The problem might be underdetermined.

Additionally, in many PDE applications,

G is expensive to evaluate;

The derivatives of G are difficult to calculate;

u is a function → infinite dimension.

[1] M. Dashti and A. M. Stuart. In Handbook of uncertainty quantification. Vol. 1, 2, 3. Springer,
Cham, 2017.
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Example: inference of the thermal conductivity in a plate

Unknown parameter:

Thermal conductivity u(x)

(true)

MAP estimator:

(reconstructed)

Solution:

Temperature field T (x)

Mathematical model:

−∇ ·
(
u(x)∇T (x)

)
= f(x), x ∈ Ω,

T (x) = 0, x ∈ ∂Ω.

Forwa
rd proble

m

Data:

��
��	

�

Noisy temperature measurements:

y =
(
T (x1), . . . , T (xm)

)
+ η.

Inverse problem
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Probabilistic approach for solving “y = Gu+ η”[2],[3]

Bayesian approach to inverse problems

Modeling step:

Probability distribution on parameter: u ∼ π, encoding prior knowledge;

Probability distribution for noise: η ∼ ν.

An application of Bayes’ theorem gives the posterior distribution ρy(u) = P[u|y] as

ρy(u) ∝ π(u) ν
(
y − G(u)

)
(valid in finite dimension).

In the Gaussian case where π = N (0,Σ) and ν = N (0,Γ),

ρy(u) ∝ exp

(
−
(
1

2
|y − G(u)|2Γ +

1

2
|u|2Σ

))
=: exp

(
−1

2

∣∣ỹ − G̃(u)
∣∣2
Γ̃

)
=: exp

(
−Φ(u)

)
.

Two approaches for extracting information:

Find the maximizer of ρy (maximum a posteriori estimation);

Sample the posterior distribution ρy (our focus in this presentation).

[2] Jari Kaipio and Erkki Somersalo. Springer-Verlag, New York, 2005.
[3] A. M. Stuart. Acta Numer., 2010.
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The Ensemble Kalman Sampler (EKS)[4]

From now on, we drop the tildes so that ρy(u) = exp
(
−Φ(u)

)
= exp

(
1
2

∣∣y − G(u)
∣∣2
Γ

)
Ensemble Langevin Sampler (j = 1, . . . , J)

Let ū := 1
J

∑J
j=1 u

(j) and C(U) = 1
J

∑J
j=1

(
u(j) − ū

)
⊗
(
u(j) − ū

)
du(j) = −C(U)∇Φ(u(j)) dt+

√
2C(U) dW (j)

y
Gradient-free approximation: with Ḡ := 1

J

∑J
j=1 G(u

(j)),

C(U)∇Φ(u(j)) ≈ 1

J

J∑
k=1

〈
G
(
u(k))− Ḡ,G

(
u(j))− y

〉
Γ

(
u(k) − ū

)
Ensemble Kalman Sampler (j = 1, . . . , J)

du(j) = − 1

J

J∑
k=1

〈
G
(
u(k))− Ḡ,G

(
u(j))− y

〉
Γ

(
u(k) − ū

)
dt+

√
2C(U) dW (j)

[4] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. SIAM J. Appl. Dyn. Syst., 2020.
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Properties of the Ensemble Kalman Sampler (EKS)

Good behavior for G(θ) = G0(θ) + G1(θ/ε) with ε ≪ 1[5]

Mean field limit in the linear case[6],[7]{
dut = −C(ρt)∇Φ(ut) dt+

√
2C(ρt) dWt,

ρt = Law(ut) .
(McKean SDE)

Exponential convergence of mean field solution to the posterior in the linear case[8]

W2(ρt, ρ
y) ⩽ CW2(ρ0, ρ

y) e−t

The method is affine invariant[9]

Main limitation

Uncontrolled gradient approximation in the nonlinear case → sampling error!

C(U)∇Φ(u(j)) ≈ 1

J

J∑
k=1

〈
G
(
u(k))− Ḡ,G

(
u(j))− y

〉
Γ

(
u(k) − ū

)
[5] O. Dunbar, A. B. Duncan, A. M. Stuart, and M.-T. Wolfram. SIAM J. Appl. Dyn. Syst., 2022.
[6] A. Garbuno-Inigo, N. Nüsken, and S. Reich. SIAM Journal on Applied Dynamical Systems, 2020.
[7] Z. Ding and Q. Li. SIAM J. Math. Anal., 2021.
[8] J. A. Carrillo and UV. Nonlinearity, 2021.
[9] A. Garbuno-Inigo, N. Nüsken, and S. Reich. SIAM Journal on Applied Dynamical Systems, 2020.
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Towards a multiscale derivative-free methodology

Setting: we consider the task of generating samples from

ρy(u) := exp
(
−Φ(u)

)
where Φ(u) =

∣∣y − G(u)
∣∣2
Γ

without employing the derivatives of G

Objective: devise and mathematically analyze a gradient-free sampling method which

exploits the sum-of-squares structure of Φ

can be systematically refined to produce accurate samples from ρy

is robust to scale separation in the multiscale setting G(x) = G0(x) + G1(x/ε).

A multiscale derivative-free methodology 8 / 21



Ideas from the optimization literature (1/2)

The Zero-th order Perturbed Stochastic Gradient Descent[10] to minimize Φ:

Iteration: Sample ξ
(j)
n

i.i.d.∼ N (0, σ2Idu) and set

un+1 − un

η
= − 1

Jσ2

m∑
i=1

ξ(i)n

(
Φ(un + ξ(i)n )− Φ(un)

)
+ noise

Idea: For fixed x and z ∼ N (0, σ2Idu), it holds that

E
[
∇Φ(x+ z)

]
=

1

σ2
E
[
z
(
Φ(x+ z)− Φ(x)

)]
⇝ when J ≫ 1, method is a gradient descent for loss Φ ⋆N (0, σ2Idu)

[10] C. Jin, L. T. Liu, R. Ge, and M. I. Jordan. Adv. Neural Inf. Process., 2018.
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Ideas from the optimization literature (2/2)

In[11], a similar method is proposed exploiting the sum-of-squares structure of Φ:

un+1 − un

η
= − 1

Jσ2

J∑
j=1

〈
G(u(j)

n )− G(u),G(u)− y
〉
Γ
(u(j)

n − u)

u(j)
n = un + σξ(j)n , ξ(j)n

i.i.d.∼ N (0, Idu).

Motivation:

Gradient approximation when G is linear

1

Jσ2

J∑
j=1

〈
G
(
u(j)
n

)
− G(u),G(u)− y

〉
Γ
=

(
1

J

J∑
j=1

ξ(j)n ⊗ ξ(j)n

)
∇Φ(u)

Good gradient approximation when σ is small

Works more generally for Φ(u) = ℓ
(
G(u)

)

[11] E. Haber, F. Lucka, and L. Ruthotto. arXiv e-prints, May 2018.
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A multiscale approach to sample ρy(u) := exp
(
−|y − G(u)|2Γ

)
Multiscale sampler with small parameters σ and δ (j = 1, . . . , J)

Continuous-time dynamics

du = − 1

Jσ2

J∑
j=1

〈
G(u(j))− G(u),G(u)− y

〉
Γ
(u(j) − u) dt+

√
2 dW

u(j) = u+ σ ξ(j)

dξ(j) = − 1

δ2
ξ(j) dt+

√
2

δ2
dW (j) ξ(j)(0)

i.i.d.∼ N (0, Idu)

where

C(Ξ) =
1

J

J∑
j=1

ξ(j) ⊗ ξ(j)

Desired output: for large t, it holds approximately that u(t) ∼ ρy. Relatedly

Eρy
[
φ
]
≈ 1

T

∫ T

0

φ
(
u(t)

)
dt

A multiscale derivative-free methodology 11 / 21



A multiscale approach: motivation

When σ is small, it holds with good accuracy that

G(u(k))− G(u) ≈ ∇G(u)(u(k) − u).

→ the equation for u reduces to

du = − 1

J

J∑
k=1

(
ξ(k) ⊗ ξ(k)

)
∇Φ(u) dt+

√
2 dW

= −C (Ξ)∇Φ(u) dt+
√
2 dW.

C(Ξ)∇Φ(u) can be viewed as a projection of ∇Φ(u) onto Span
{
ξ(1), . . . , ξ(J)

}
.

Many-particle limit: if J ≫ 1, then

C(Ξ) =
1

J

J∑
k=1

ξ(k) ⊗ ξ(k) ≈ I.

Averaging limit: if σ ≪ 1 and δ ≪ 1, then u(t) approximately satisfies

du = −∇Φ(u) dt+
√
2 dW. (Overdamped Langevin dynamics)

A multiscale derivative-free methodology 12 / 21



Rigorous averaging result in joint limit σ → 0, δ → 0

Let u denote the solution to

du = −∇Φ(u) dt+
√
2 dW, u0 = u0.

Using standard tools from multiscale analysis[12], it is possible to prove

Theorem (Pathwise convergence to an overdamped Langevin dynamics)

Let p ⩾ 1 and assume that G ∈ C2(Tdu ,RK). Then for all T > 0 there is C = C(T ) s.t.

E

[
sup

0⩽t⩽T
|ut − ut|p

]
⩽ C

(
δp

J
p
2

+ σp

)
.

Ideas of the proof:

convergence w.r.t. to δ2 classical averaging approach[13]

convergence w.r.t. to σ: Taylor expansions

convergence w.r.t. to J : Law of large numbers in Lp

[12] G. A. Pavliotis and A. M. Stuart. Springer, New York, 2008.
[13] G. A. Pavliotis and A. M. Stuart. Springer, New York, 2008.
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Discretization in time

Consider a dsicretization of the multiscale system in time based on

the Euler–Maruyama method for u;

the exact solution of the OU process for ξ(j);

ûn+1 = ûn − 1

Jσ

J∑
j=1

〈
G(ûn + σξ̂(j)n )− G(ûn),G(ûn)− y

〉
Γ
ξ̂(j)n ∆+

√
2∆xn

ξ̂
(j)
n+1 = e

− ∆
δ2 ξ̂(j)n +

√
1− e

− 2∆
δ2 x(j)

n

where xn ∼ N (0, 1) and x
(j)
n

i.i.d.∼ N (0, 1)

Theorem (Discrete strong convergence, ongoing work with A. Della Noce)

Assume that G ∈ C2(Tdu ,Rdy ). Then for all T there exists C = C(T ) such that

E

[
sup

0⩽n⩽⌊T/∆⌋
|ûn − un∆|p

]
⩽ C

(
δp

J
p
2

+∆
p
2 + σp

)
.

A multiscale derivative-free methodology 14 / 21



Existence and convergence of invariant measure (continuous-time)

Proposition (Convergence of stationary measures, ongoing work with A. Della Noce)

Assume that G ∈ C3(Tdu ,Rdy ). Then

There exists a unique invariant measure µδ,σ,J for the multiscale dynamics

Let νδ,σ denote the u-marginal of µδ,σ,J . Then for all f ∈ W 2,∞(Tdu)∣∣∣∣∫
Tdu

f(u) νδ,σ,J(du)−
∫
Tdu

f(u) ρy(du)

∣∣∣∣ ⩽ C∥f∥W2,∞(Tdu )

(
δ2

J
+ σ

)

Ideas of proof:

Existence of µδ,σ,J by classical ”Lyapunov + minorization” technique[14]

Weak convergence of νδ,σ,J by technique from[15]: define φ ∈ L2
0(ρ

y) as the solution
to −Lovdφ = f −Eρyf and notice that

Eµδ,σ,J

[
f
]
= Eµδ,σ,J

[
(Lovd − Lδ,σ,J)φ

]
where Lδ,σ,J and Lovd are the generators of the multiscale and limiting dynamics

[14] M. Hairer and J. C. Mattingly. In Seminar on Stochastic Analysis, Random Fields and Applications
VI. Birkhäuser/Springer Basel AG, Basel, 2011.

[15] J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov. SIAM J. Numer. Anal., 2010.
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Uniform-in-time weak convergence

Proposition (Convergence of stationary measures, ongoing work with A. Della Noce)

Assume that G ∈ C4(Tdu ,Rdy ). Then for all f ∈ W 3,∞(Tdu)

∀t ⩾ 0,
∣∣∣E[f(ut)

]
−E

[
f(ut)

]∣∣∣ ⩽ C∥f∥W3,∞(Tdu )

(
δ2

J
+ σ

)

Let Lδ,σ,J denote the generator of the multiscale dynamics

Let Lovd = −∇Φ · ∇+∆ denote the generator of the limiting Langevin

Idea of the proof: classical approach in weak error analysis, with first step

etLδ,σ,J f − etLovd f =

∫ t

0

d

ds

(
esLδ,σ,J e(t−s)Lovd f

)
ds

=

∫ t

0

esLδ,σ,J (Lδ,σ,J − Lovd) e
(t−s)Lovd f ds

+ estimates on the solution of parabolic equation ∂tv = Lovdv

A multiscale derivative-free methodology 16 / 21



Improving convergence of the multiscale method with preconditioning

The method can be preconditioned with an appropriate matrix K ≻ 0.

du = − 1

Jσ2

J∑
j=1

〈
G(u(j))− G(u),G(u)− y

〉
Γ
(u(j) − u) dt+

√
2K dW

u(j) = u+ σ
√
Kξ(j), j = 1, . . . , J,

dξ(j) = − 1

δ2
ξ(j) dt+

√
2

δ2
dW (j), ξ(j)(0) ∼ N (0, Idu), j = 1, . . . , J,

Formal justification: For small σ,

du ≈ −CK(Ξ)∇Φdt+
√
2K dW

where CK(Ξ) :=
√
K C(Ξ)

√
K. In the limit δ → 0, this converges to

du ≈ −K∇Φ+
√
2K dW

In practice, we set K ≈ Cov
(

1
Z
e−ΦR(u)

)
approximated by ensemble Kalman sampling

A multiscale derivative-free methodology 17 / 21



Example 1: Bimodal target distribution

Inverse problem with bimodal posterior

Find u = (u1, u2) ∈ R2 from

y = |u1 − u2|2 + η, η ∼ N (0, 1).

Prior distribution u ∼ N (0, I2). Below y = 2.

−4 −2 0 2 4
−4

−2

0

2

4

Left: Approximate posterior using EKS.
Middle: Approximate posterior using multiscale method.
Right: True Bayesian posterior.
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Example 2: two-dimensional elliptic BVP – MAP estimation

Inference of the conductivity in a plate

Find u(x) from 100 noisy measurements of the temperature T (x) where

−∇ ·
(
eu(x) ∇T (x)

)
= cst x ∈ D = [0, 1]2, + homogeneous Dirichlet BC.

Model: u(x) ∼ N (0, C) with C = (−∆+ τ2I)−α:

KL expansion : u(x) =
∑

ui

√
λiφi(x), ui ∼ N (0, 1), Cφi = λiφi.

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.0

0.2

0.4

0.6

0.8

1.0

x
1

0.0 0.2 0.4 0.6 0.8 1.0
x0

−0.12

−0.06

0.00

0.06

0.12

0.18

0.24

0.30

0.36

True (left) and reconstructed (right) log-conductivity (δ = σ = 10−5, J = 8)
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Example 2: two-dimensional elliptic boundary value problem – Sampling

Approximate posterior from 10,000 iterations of the multiscale method:

(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 0) (1, 2) (2, 1) (2, 2) (0, 3) (3, 0) (1, 3) (3, 1) (2, 3) (3, 2) (3, 3)
Karhunen–Loève coefficients

−4

−3

−2

−1

0

1

2

3

Truth

Approximate posterior (EKS)

Approximate posterior (multiscale)

Approximate MAP estimator (multiscale)
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Conclusions and perspectives for future work

In this presentation, we presented a novel method for sampling and optimization which

is derivative-free and based on a system of interacting particles;

is provably refineable over finite time intervals;

can be preconditioned using information from EnKF methods for efficiency.

Many interesting questions remain open:

Adaptive σ for computational efficiency;

Unbounded state space

Alternative (e.g. semi-implicit) time discretizations.

Alternative derivative-free methodologies.

Thank you for your attention!
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