/ir Ecole des Ponts
MATHerials ParisTech

Loratin A anre

Derivative-free Bayesian Inversion Using Multiscale Dynamics

ENUMATH minisymposium “Inference methodologies for high-dimensional and multiscale
stochastic systems”

Urbain Vaes

urbain.vaes@inria.fr
MATHERIALS - Inria Paris & CERMICS — Ecole des Ponts ParisTech

4 September 2025



Collaborators and references

Grigorios Pavliotis

Imperial College
London

Department of Mathematics

Antonin Della Noce

lreeia —

Inria & Ecole des Ponts

Department of Computing +
Mathematical Sciences

References:

m G. A. PavLioTis, A. M. STUART, and UV. SIAM J. Appl. Dyn. Syst., 2022
m Ongoing work with A. Della Noce



Paradigmatic inverse problem and its difficulties

Paradigmatic inverse problem

Find an unknown parameter u € I from data y € R% where

y=G(u) +n, (IP)
m G is the forward operator;

m 7 is observational noise.

Two difficulties!! associated with this problem are the following:
m Because of the noise, it might be that y ¢ Im(G);

m The problem might be underdetermined.

Additionally, in many PDE applications,
m G is expensive to evaluate;
m The derivatives of G are difficult to calculate;

m u is a function — infinite dimension.

[1] M. DasuTi and A. M. STUART. In Handbook of uncertainty quantification. Vol. 1, 2, 3. Springer,
Cham, 2017.



Example: inference of the thermal conductivity in a plate

Mathematical model:
Solution:
=V (u(@)VT(z)) = f(), z €Q,
T(z) =0, z € 0.
Unknown parameter: coble™
\:or"""“d P
Thermal conductivity u(z)
Temperature field T'(z)
s Data:
(true) ”
MAP estimator:
i |nverse proPIe™ | Noisy temperature measurements:
y=(T(z1),...,T(xm)) + 7.
(reconéifﬂcfed) e




Probabilistic approach for solving “y = Gu + 5" [2:3]

Bayesian approach to inverse problems

Modeling step:
m Probability distribution on parameter: u ~ m, encoding prior knowledge;
m Probability distribution for noise: n ~ v.

An application of Bayes’ theorem gives the posterior distribution p¥(u) = P[uly] as

pY(u) oc m(u) v(y — G(u)) (valid in finite dimension).

In the Gaussian case where m = N(0,X) and v = N (0,T),
() xoxp (= (1o = G + g i3 ) ) = exp((~ 317~ G[E) = exp(-~2(w).

Two approaches for extracting information:

m Find the maximizer of p¥ (maximum a posteriori estimation);

m Sample the posterior distribution p¥ (our focus in this presentation).

[2] Jari Ka1r1io and Erkki SOMERSALO. Springer-Verlag, New York, 2005.
[3] A. M. STUART. Acta Numer., 2010.



The Ensemble Kalman Sampler (EKS)]

From now on, we drop the tildes so that p¥(u) = exp(—®(u)) = exp (%|y - g(u)’i)

Ensemble Langevin Sampler (j =1,...,.J)
Let @ := %ijl v and C(U) = }ijl(u(j) —7) ® (u(j) =)
du? = —C(U)Ve @) dt 4+ /2CU) aw P
Gradient-free approximation: with G := %ijl Gu),
J ;
= (k) ~ @y _ k) _ =
C)vau?) ~ - kg( ~G.9u”) —y) (" -7)

Ensemble Kalman Sampler (j =1,...,.J)

J
1 j = j
u® = -5 k§= < u™) —G,g(u?) - y>r (u™ — @) dt + /2C(U) dw")

[4] A. GarBUNO-INIGO, F. HOFFMANN, W. L1, and A. M. STUART. SIAM J. Appl. Dyn. Syst., 2020.



Properties of the Ensemble Kalman Sampler (EKS)

= Good behavior for G(8) = Go(8) + G1(8/¢) with e < 16!
m Mean field limit in the linear case!®:[’]
duy = —C(pe)VO(u) dt + /2C dW;
e () V(@) dt + v/ 2C(pr) AW, (McKean SDE)
Pt = Law(ﬂt) .

m Exponential convergence of mean field solution to the posterior in the linear casel®!

Wa(pe, p¥) < CWal(po, p¥) e

m The method is affine invariant!®)
Main limitation
Uncontrolled gradient approximation in the nonlinear case — sampling error!

C(U)V(u (J) ~ < Z< (k) _d g(uU)) _ y>r(u(k) _a)

[5] O. DUNBAR, A. B. DUNCAN, A. M. STUART, and M.-T. WOLFRAM. SIAM J. Appl. Dyn. Syst., 2022.
[6] A. GarBUNO-INIGO, N. NUSKEN, and S. REICH. SIAM Journal on Applied Dynamical Systems, 2020.
[7]1 Z. Dinc and Q. L1. SIAM J. Math. Anal., 2021.

[8] J. A. CARRILLO and UV. Nonlinearity, 2021.

[9] A. GarBUNO-INIGO, N. NUSKEN, and S. REicH. SIAM Journal on Applied Dynamical Systems, 2020.



Towards a multiscale derivative-free methodology

Setting: we consider the task of generating samples from

p¥(u) = exp(—®(u)) where ®(u) = |y— g(u)|i

without employing the derivatives of G

Objective: devise and mathematically analyze a gradient-free sampling method which

m exploits the sum-of-squares structure of ®
m can be systematically refined to produce accurate samples from pY

m is robust to scale separation in the multiscale setting G(x) = Go(z) + G1(z/¢).

A multiscale derivative-free methodology 8 /21



Ideas from the optimization literature (1/2)
The Zero-th order Perturbed Stochastic Gradient Descent!™” to minimize ®:

= lteration: Sample ¢ R N(0,0%I4,) and set

Uns1 —Un 1 =) (4) i

m Idea: For fixed z and z ~ N(0,0°14,), it holds that
1
E[VO(z+2)] = ;E [z(@(m +2z)— @(w))]

~ when J > 1, method is a gradient descent for loss ® x A'(0,021,,)

[10] C. Jiv, L. T. Liv, R. GE, and M. I. JORDAN. Adv. Neural Inf. Process., 2018.
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Ideas from the optimization literature (2/2)

InfY, a similar method is proposed exploiting the sum-of-squares structure of ®:

J
I = = 3 {002) - 00,00 - ) ()~ )

uf) =un+0ed, € KN, 1),

Motivation:

m Gradient approximation when G is linear

o2 29 = 6(w).Gw) —y) = (}, >oed @5,@) Vo (u)

m Good gradient approximation when ¢ is small
= Works more generally for ®(u) = £(G(u))

[11] E. HABER, F. Lucka, and L. RUTHOTTO. arXiv e-prints, May 2018.
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A multiscale approach to sample p¥(u) := exp(—|y — G(u)[})

Multiscale sampler with small parameters o and ¢ (j = 1,...,.J)

Continuous-time dynamics

L 3 <g(u(j)) —G(u),G(u) — y> W —w)dt +vV2dW
Jo? o ’ T

u® =yt 0D

- 1 /2 - 3 iid.
dE(J) =-5 g(]) dt + = dw @) 5(])<0) id N(0,14,)

du =

where

Desired output: for large ¢, it holds approximately that u(t) ~ pY. Relatedly

E,v o] & %/0 o(u(t)) dt

A multiscale derivative-free methodology 11 /21



A multiscale approach: motivation

When o is small, it holds with good accuracy that
G(u™) = G(u) ~ VG(u)(u™ —u).

— the equation for u reduces to

£® @ g“”) Vo (u)dt + V2dW

&
||
& e
M=
14—~

®(u) dt + V2 dW.

m C(Z) V®(u) can be viewed as a projection of V®(u) onto Span {5(1), e ,5(‘7)}.
m Many-particle limit: if J > 1, then

(@) J Zg(k) §(k) ~ .

m Averaging limit: if 0 < 1 and § < 1, then u(¢) approximately satisfies

u=—-Vo(u)dt+ V2dw. (Overdamped Langevin dynamics)

A multiscale derivative-free methodology 12 /21



Rigorous averaging result in joint limit 0 — 0, 6 — 0

Let u denote the solution to

du=—V&u)dt+v2dW,  uy = uo.

Using standard tools from multiscale analysisi*?

, it is possible to prove
Theorem (Pathwise convergence to an overdamped Langevin dynamics)
Let p > 1 and assume that G € C*(T% R*). Then for all T > 0 there is C = C(T) s.t.
517
E [ sup |ut—ut|p] gC(J—E—l—ap) .
2

0<t<T

Ideas of the proof:

m convergence w.r.t. to 62 classical averaging approachml
m convergence w.r.t. to o: Taylor expansions

m convergence w.r.t. to J: Law of large numbers in L”

[12] G. A. PavLioTis and A. M. STUART. Springer, New York, 2008.
[13] G. A. PavLiOoTis and A. M. STUART. Springer, New York, 2008.
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Discretization in time

Consider a dsicretization of the multiscale system in time based on

m the Euler—Maruyama method for u;

m the exact solution of the OU process for £);
J
Un+1 = Un — E <g(u" + Uglj)) - g(u")a g(un) - y>r.§f) A+ V2A Tn

j=1

. A . A .
57(121 =e 32 &9 41— ef%mg)

where z,, ~ N(0,1) and 27 "X A/(0, 1)
Theorem (Discrete strong convergence, ongoing work with A. Della Noce)

Assume that G € C*(T% R%). Then for all T there exists C' = C(T) such that

P
sup  |@n — upal? <C<6—p+A% +0'p>.
0<n<|T/A) J2

E

A multiscale derivative-free methodology 14 /21



Existence and convergence of invariant measure (continuous-time)

Proposition (Convergence of stationary measures, ongoing work with A. Della Noce)

Assume that G € C*(T% R%). Then
m There exists a unique invariant measure [is,,,; for the multiscale dynamics

m Let vs,, denote the u-marginal of yis .. ;. Then for all f € W% (T)

52
< Ol fllwz.o0 (Tau) (7 + U>

Tdu

| s s = [

Ideas of proof:
m Existence of u5,,5 by classical " Lyapunov + minorization” techniquel**!

m Weak convergence of vs ,,; by technique from™®): define o € L&(p?) as the solution
to —Lova = f — Epv f and notice that

Eua,a,J [f] = Eus,a,J [(‘Covd - 5570,J)90]

where L5 .7 and Loyq are the generators of the multiscale and limiting dynamics

[14] M. HAIRER and J. C. MATTINGLY. In Seminar on Stochastic Analysis, Random Fields and Applications

VI. Birkhauser/Springer Basel AG, Basel, 2011.
[15] J. C. MATTINGLY, A. M. STUART, and M. V. TRETYAKOV. SIAM J. Numer. Anal., 2010.
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Uniform-in-time weak convergence

Proposition (Convergence of stationary measures, ongoing work with A. Della Noce)
Assume that G € C*(T% R™). Then for all f € W*°(T)

2
vVt >0, ‘E[f(ut)} - E[f(ut)]‘ S Clfllws.ee (pau) <67 + U)

m Let Ls,5,7 denote the generator of the multiscale dynamics

m Let Lova = —V® -V + A denote the generator of the limiting Langevin

Idea of the proof: classical approach in weak error analysis, with first step

t
etls,o,0 f- etfovd f= / di (eS£a,o,J ot=5)Lova f) ds
0 S
t
:/ es£5’”*"(£570,J _ Lovd)e(t_s)‘covd fds
0

+ estimates on the solution of parabolic equation 0:v = Lovav

A multiscale derivative-free methodology 16 / 21



Improving convergence of the multiscale method with preconditioning

The method can be preconditioned with an appropriate matrix K > 0.

J
1 : :
du= === > {(9(u?) = Gu),G(u) ~y) (u —w)dt + V2K aW
Jo = r
u® =y 4 o VEED, j=1,...,J,
_ 1 . 2 , - .
dé(J) =—§§U)dt+ \/;dW(J)? 5(])(0)NN(07]du)a J=1....J

Formal justification: For small o,
du = —Cg(E)Vedt + V2K dW
where Cx (2) := VK C(E)VK. In the limit § — 0, this converges to

du~ —-KV® + v2KdW
In practice, we set K =~ Cov (% e"I’R(’”) approximated by ensemble Kalman sampling

A multiscale derivative-free methodology 17 /21



Example 1: Bimodal target distribution

Inverse problem with bimodal posterior

Find u = (u1,u2) € R? from
y:|u1—u2|2+77, n~N(0,1).

Prior distribution uw ~ N (0, I2). Below y = 2.

f, r r
| 7 " ’

Left: Approximate posterior using EKS.
Middle: Approximate posterior using multiscale method.
Right: True Bayesian posterior.

A multiscale derivative-free methodology




Example 2: two-dimensional elliptic BVP — MAP estimation

Inference of the conductivity in a plate

Find u(z) from 100 noisy measurements of the temperature T'(x) where

-V (e“(x) VT(z)) = cst z €D =1[0,1% + homogeneous Dirichlet BC.
Model: u(z) ~ N (0,C) with C = (—A + 72T)~*:

KL expansion :  u(z) = Zui\/ﬂ%(x), u; ~ N(0,1), Cpi = Nipi-

1.0

0.36

0.30

0.18

0.12

0.06

0.00

—0.06

'00'() 0.2 0.4 0.6 0.8 1.0 0.0 0.2 . X . 1.0
T o

True (left) and reconstructed (right) log-conductivity (§ = o = 107°, J = 8)
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Example 2: two-dimensional elliptic boundary value problem — Sampling

Approximate posterior from 10,000 iterations of the multiscale method:

2 '*'”

v
fos

0 i \ \
j‘ / 3 \ 4
/ N 1‘ \ i
/ VAN e
. B J /
—1 i/ / { i
/
/ J J /
| / ; /
/ / g
/ / )
. / /
-2 / 4 H
i

-3 X Tth

Approximate posterior (EKS)

----- Approximate posterior (multiscale)

®  Approximate MAP estimator (multiscale)

0,00 (0,1) (1,0) (1,1) (0.2) (20) (L2 (21 (22 (0,3) (3,00 (1,3) (3,1) (23 (3.2) (3.3
Karhunen-Loeve coefficients
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Conclusions and perspectives for future work

In this presentation, we presented a novel method for sampling and optimization which

m is derivative-free and based on a system of interacting particles;
m is provably refineable over finite time intervals;

m can be preconditioned using information from EnKF methods for efficiency.

Many interesting questions remain open:

m Adaptive o for computational efficiency;
m Unbounded state space
m Alternative (e.g. semi-implicit) time discretizations.

m Alternative derivative-free methodologies.

Thank you for your attention!
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