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The discrete-time filtering problem

We consider the following stochastic dynamics and data model:

Dynamics and observations

Stochastic dynamics: un+1 = Ψ(un) + ξn, ξn ∼ N(0,Σ),

Data model: yn+1 = h(un+1) + ηn+1, ηn+1 ∼ N(0,Γ ).

Independence assumption:
u0 ⊥⊥ ξn ⊥⊥ ηn

Initial state: u0 ∼ N(m0,C0).

Notations:

{un}n∈J0,NK is the unknown state in Rd.

{yn}n∈J1,NK are the observations in RK .

Ψ: Rd → Rd and h : Rd → RK are nonlinear operators.

Yn = {y†1, . . . , y†n} is a given realization of the data up to time n.

Goal: Approximate sequentially the probability measure P(un|Yn) for n ∈ J1, NK.
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Evolution of the filtering distribution

Update formula for the true filtering distribution

Let ρn = P(un+1|Yn+1). Then
ρn+1 = LnPρn

For simplicity, we assume that all the measures have densities.

The map P : P(Rd) → P(Rd) is the prediction:

Pρ(u) =
1√

(2π)d detΣ

∫
exp

(
−1

2
|u−Ψ(v)|2Σ

)
ρ(v) dv.

The map Ln : P(Rd) → P(Rd) is the analysis (Bayes’ theorem):

Lnρ(u) =

exp

(
−1

2

∣∣y†n+1 − h(u)
∣∣2
Γ

)
ρ(u)∫

Rd

exp

(
−1

2

∣∣y†n+1 − h(U)
∣∣2
Γ

)
ρ(U) dU

Schematically,

P(un|Yn)
P−→ P(un+1|Yn)

Ln−−→ P(un+1|Yn+1).

The discrete-time filtering problem 4 / 23



Example of a particle approximation for the filtering problem

Bootstrap particle filter

One of the simplest filtering methods is based on the iteration

ρBn+1 = LnS
JPρBn .

where SJ is the sampling operator

SJρ :=
1

J

J∑
j=1

δu(j) , u(j) ∼ ρ i.i.d.

The filtering distribution is approximated by a sum of Dirac masses;

The convergence of this approach can be proved[1],[2] in the metric

d1(µ, ν) := sup
∥f∥∞≤1

E

√∣∣µ[f ]− ν[f ]
∣∣2.

[1] P. Rebeschini and R. van Handel. Can local particle filters beat the curse of dimensionality? Ann.
Appl. Probab., 2015.

[2] D. Sanz-Alonso, A. M. Stuart, and A. Taeb. Inverse Problems and Data Assimilation with
Connections to Machine Learning. arXiv preprint, 2018.
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Goal of our work

The bootstrap particle filter

converges to the true filtering distribution in the limit J → ∞,

but tends to perform poorly for high-dimensional problems[3].

In this talk, we study the ensemble Kalman filter,

more robust in high-dimensional setting,

but converges to the right limit as J → ∞ only in the Gaussian setting.

Objective: obtain an error estimate away from the Gaussian setting.

[3] P. Bickel, B. Li, and T. Bengtsson. Sharp failure rates for the bootstrap particle filter in high
dimensions. In Pushing the limits of contemporary statistics: contributions in honor of Jayanta K.
Ghosh, Inst. Math. Stat. (IMS) Collect. 2008.
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Using stochastic filtering to solve inverse problems (1/2)

Inverse problem considered

Find an unknown parameter u ∈ Rd from data y ∈ RK where

y = h(u) + η,

h is the forward operator;

η is observational noise.

Bayesian approach:

Probability distribution on parameter: u ∼ ρ0, encoding prior knowledge;

Probability distribution for the noise: η ∼ ν.

Bayesian posterior distribution given observation y†:

ρy(u) ∝ ρ0(u) ν
(
y† − h(u)

)
= prior× likelihood.

In the Gaussian case where ν = N(0,Γ ),

ρy(u) = exp

(
−
(
1

2

∣∣∣y† − h(u)
∣∣∣2
Γ

))
ρ0(u).
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Using stochastic filtering to solve inverse problems (2/2)

Connection with stochastic filtering

The posterior distribution coincides with the filtering distribution at n = N for

un+1 = un,

yn+1 = h(un+1) + ηn+1, ηn+1 ∼ N(0, NΓ ).

with observations y†n = y† and initial state u0 ∼ ρ0.

Indeed, in this case P is the identity map and so

ρn+1 = Lρn =
exp

(
− 1

2

∣∣y† − h(u)
∣∣2
NΓ

)
ρn(u)∫

Rd exp
(
− 1

2

∣∣y† − h(U)
∣∣2
NΓ

)
ρn(U) dU

= . . . =
exp

(
− 1

2

∣∣y† − h(u)
∣∣2
NΓ/n

)
ρ0(u)∫

Rd exp
(
− 1

2

∣∣y† − h(U)
∣∣2
NΓ/n

)
ρ0(U) dU

.

⇝ Numerical methods for filtering are useful in the context of inverse problems.
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Example: inference of the thermal conductivity in a plate

Unknown parameter:

Thermal conductivity u(x)

(true)

MAP estimator:

(reconstructed)

Solution:

Temperature field T (x)

Mathematical model:

−∇ ·
(
u(x)∇T (x)

)
= f(x), x ∈ Ω,

T (x) = 0, x ∈ ∂Ω.

Forwa
rd proble

m

Data:

��
��	

�

Noisy temperature measurements:

y =
(
T (x1), . . . , T (xm)

)
+ η.

Inverse problem
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Analysis of a simple Gaussian projection scheme

A simple (mean field) filter based on Gaussian projections

We consider the dynamics

ρGn+1 = GLnPρ
G
n , Gρ := N

(
M(ρ), C(ρ)

)
.

where

M(ρ) =

∫
θρ(dθ) , C(ρ) =

∫ (
θ −M(ρ)

)
⊗

(
θ −M(ρ)

)
ρ(dθ) .

If Ψ and h are linear, then ρGn = ρn.

The Gaussian projection satisfies the following property:

Gρ = argmin
π∈G

dKL(ρ||π), where G = Gaussians.

Next step: approximation by a particle system:

ϱGn+1 = GLnS
JPϱGn , SJρ :=

1

J

J∑
j=1

δu(j) , u(j) ∼ ρ i.i.d.
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Objective and assumptions

What we want to show

In the near-Gaussian setting, the probability measures
{
ρGn

}
n∈J1,NK are close to the true

filtering distributions {ρn}n∈J1,NK.

Metric on probability measures: weighted total variation

dg(µ, ν) = sup
|f |≤g

∣∣µ[f ]− ν[f ]
∣∣, g : u→ 1 + |u|2 , ρ[f ] :=

∫
fdρ.

Assumptions:

(Near-Gaussian setting) There is ε > 0 such that

dg(Gρn, ρn) ≤ ε ∀n ∈ J0, NK.

(Boundedness) There is κ <∞ such that

∥Ψ∥L∞(Rd) ∨ ∥h∥L∞(Rd) ≤ κ.

(Non-degenerate noise) Σ > 0 and Γ > 0.

Analysis of a simple Gaussian projection filter 11 / 23



Strategy of proof

Let PR denote the set of probability measures with bounded first and second moments:

PR(R
d) =

{
µ ∈ P(Rd) : max

{
|M(µ)|, ∥C(µ)∥, ∥C(µ)∥−1

}
≤ R

}
.

Auxiliary results:

The map P is Lipschitz over P(Rd) for dg.

For any R > 1, the maps Ln and G are Lipschitz over PR(R
d) for dg.

Moment bounds: Pρn, Pρ
G
n , LnPρn, LnPρ

G
n belong to PR∗(R

d) for some R∗.

Main theorem

Under the assumptions,

∀n ∈ J0, NK, dg(ρ
G
n , ρn) ≤ ε

(
ℓn − 1

ℓ− 1

)
.

Proof. Denoting by ℓ the Lipschitz constant of GLnP over PR∗(R
d), we have

dg
(
ρGn+1, ρn+1

)
≤ dg

(
ρGn+1, Gρn+1

)
+ dg

(
Gρn+1, ρn+1

)
= dg

(
GLnPρ

G
n , GLnPρn

)
+ dg

(
Gρn+1, ρn+1

)
≤ ℓ dg

(
ρGn , ρn

)
+ ε ≤ . . .
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Auxiliary result 1: the prediction is globally Lipschitz[4]

Recall the definition

Pρ(u) =

∫
Rd

exp
(
− 1

2
|u−Ψ(v)|2Σ

)√
(2π)d detΣ

ρ(v) dv =:

∫
p(v, u) ρ(v) dv.

Take any f ≤ g. Since Ψ(v) is bounded by assumption,

b(v) :=

∫
f(u)p(v, u) du ≤

∫
g(u)p(v, u) du

= |Ψ(v)|2 + tr(Σ) ≤ κ2 + tr(Σ).

Therefore, ∣∣∣Pµ[f ]− Pν[f ]
∣∣∣ = ∣∣∣∣∫ (∫

f(u)p(v, u) du

)(
µ(v)− ν(v)

)
dv

∣∣∣∣
=

∣∣∣µ[b]− ν[b]
∣∣∣ ≤ (

κ2 + tr(Σ)
)
dg(µ, ν).

[4] P. Rebeschini and R. van Handel. Can local particle filters beat the curse of dimensionality? Ann.
Appl. Probab., 2015.
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Auxiliary result 2: the analysis is locally Lipschitz

Recall the definition

Lnµ(u) =
exp

(
− 1

2

∣∣y†n+1 − h(u)
∣∣2
Γ

)
µ(u)∫

Rd exp
(
− 1

2

∣∣y†n+1 − h(U)
∣∣2
Γ

)
µ(U) dU

Since h is bounded by assumption, there exists K such that

∀u ∈ Rd, K−1 ≤ ϕn(u) := exp

(
−1

2

∣∣y†n+1 − h(u)
∣∣2
Γ

)
≤ K.

For any f ≤ g, we have∣∣Lnµ[f ]− Lnν[f ]
∣∣ = ∣∣∣∣µ[fϕn]

µ[ϕn]
− ν[fϕn]

ν[ϕn]

∣∣∣∣
≤

∣∣∣∣µ[fϕn]− ν[fϕn]

µ[ϕn]

∣∣∣∣+
∣∣∣∣∣ν[fϕn]

(
ν[ϕn]− µ[ϕn]

)
µ[ϕn] ν[ϕn]

∣∣∣∣∣
≤ K2dg(µ, ν) +K4ν[g] dg(µ, ν) =

(
K2 +K4ν[g]

)
dg(µ, ν).
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Auxiliary result 3: the Gaussian projection is locally Lipschitz

This is established in two steps:

Control |M(µ)−M(ν)| and |C(µ)− C(ν)| using dg(µ, ν). For example:

|M(µ)−M(ν)| = sup
|a|=1

∣∣∣aT(M(µ)−M(ν)
)∣∣∣

= sup
|a|=1

∣∣∣µ[aTu]− ν[aTu]
∣∣∣ ≤ dg(µ, ν).

⇝ The weight in dg is essential for this step!

Show that, for any two Gaussian measures µ = N(m1,S1) and ν = N(m2,S2),

dg
(
µ, ν

)
≤

√(
µ[g2] + ν[g2]

) (
3
∥∥S−1

2 S1 − Id
∥∥
F
+ |m1 −m2|S2

)
,

This generalizes a similar result for d1
[5].

[5] L. Devroye, A. Mehrabian, and T. Reddad. The total variation distance between high-dimensional
Gaussians. arXiv e-prints, 2018.
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Extending the error estimate to the particle approximation

Goal: Generalize the approach to the iteration

ϱGn+1 = GLnS
JPϱGn , SJµ :=

1

J

J∑
j=1

δu(j) , u(j) ∼ µ i.i.d.

Since (ϱGn ) are random measures, we extend the definition of dg to the random setting:

dg(µ, ν) := sup
f≤g

E

√∣∣µ[f ]− ν[f ]
∣∣2.

The sampling operator satisfies[6]

dg(µ, S
Jµ) ≤ 1√

J
E
(
1 + |M(µ)|2 + tr

(
C(µ)

))
but the Lipschitz continuity of Ln and G is difficult to show for random measures. . .∣∣Lnµ[f ]− Lnν[f ]

∣∣ ≤ (
K2 +K4ν[g]

) ∣∣µ[ϕnf ]− ν[ϕnf ]
∣∣.

[6] D. Sanz-Alonso, A. M. Stuart, and A. Taeb. Inverse Problems and Data Assimilation with
Connections to Machine Learning. arXiv preprint, 2018.
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Rewriting the evolution of the true filtering distribution

Filtering problem

Stochastic dynamics: un+1 = Ψ(un) + ξn, ξn ∼ N(0,Σ),

Data model: yn+1 = h(un+1) + ηn+1, ηn+1 ∼ N(0,Γ ).

The true filtering evolves according to

ρn+1 = LnPρn = BnQPρn.

Q : P(Rd) → P(Rd ×RK)

Qρ(u, y) = exp

(
−1

2

∣∣y − h(u)
∣∣2
Γ

)
ρ(u).

Bn : P(Rd ×RK) → P(Rd) is the conditioning on the observation yn+1 = y†n+1.

Bnρ(u) =
ρ(u, y†n+1)∫
ρ(u, y†n+1) du

.

Schematically,

P(un|Yn)
P−→ P(un+1|Yn)

Q−→ P
(
(un+1, yn+1)

∣∣ Yn

) Bn

−−→ P(un+1|Yn+1)
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The ensemble Kalman filter from a mean field perspective[7] (1/2)

One iteration of ensemble Kalman at the mean field level

ûn+1 = ψ(un) + ξn, ξn ∼ N(0,Σ),

ŷn+1 = h(ûn+1) + ηn+1,

un+1 = ûn+1 + Cuy(π̂n+1)Cyy(π̂n+1)
−1(y†n+1 − ŷn+1

)
, ηn+1 ∼ N(0,Γ ).

Here π̂n+1 = Law(ûn+1, ŷn+1) and, for π ∈ P(Rd ×RK),

C(π) =
(

Cuu(π) Cuy(π)

Cuy(π)T Cyy(π)

)
.

The third equation may be rewritten

un+1 = Tn(ûn+1, ŷn+1; π̂n+1),

with Tn the following mean-field transport map:

Tn(•, •;π) : Rd ×RK → Rd;

(u, y) 7→ u+ Cuy(π)Cyy(π)−1(y†n+1 − y
)
.

In the following, we use the shorthand notation Tn
♯ π =

(
Tn(•, •;π)

)
♯
π.

[7] E. Calvello, S. Reich, and A. M. Stuart. Ensemble Kalman Methods: A Mean Field Perspective.
arXiv preprint, 2022.
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The ensemble Kalman filter from a mean field perspective

One iteration of ensemble Kalman at the mean field level

ûn+1 = Ψ(un) + ξn, ξn ∼ N(0,Σ),

ŷn+1 = h(ûn+1) + ηn+1,

un+1 = ûn+1 + Cuy(π̂n+1)Cyy(π̂n+1)
−1(y†n+1 − ŷn+1

)
, ηn+1 ∼ N(0,Γ ).

Let ρKn = Law(un). Then

ρn+1 = BnQPρn (True filtering distribution)

ρKn+1 = Tn
♯QPρ

K
n+1 (Ensemble Kalman filtering distribution)

Schematically, for mean field ensemble Kalman:

Law(un)
P−→ Law(ûn+1)

Q−→ Law
(
(ûn+1, ŷn+1)

) Tn
♯−−→ Law(un+1)

Key result for the analysis: For any Gaussian ρ

Tn
♯ ρ = Bnρ.

⇝ as expected, mean field ensemble Kalman is exact in the Gaussian setting.
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Estimate in the near-Gaussian setting

What we want to show

In the near-Gaussian setting, the probability measures
{
ρKn

}
n∈J1,NK are close to the true

filtering distributions {ρn}n∈J1,NK.

Assumptions:

(Near-Gaussian setting) There is ε > 0 such that

dg(QPρn, GQPρn) ≤ ε ∀n ∈ J0, NK.

(Boundedness) There is κ <∞ such that

∥Ψ∥L∞(Rd) ∨ ∥h∥L∞(Rd) ≤ κ.

(Lipschitz continuity) The map h is globally Lipschitz continuous.

(Non-degenerate noise) Σ > 0 and Γ > 0.

Main theorem: There exists CN independent of ε such that

∀n ∈ J0, NK, dg(ρ
K
n , ρn) ≤ CNε.
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Strategy of proof

Auxiliary results:

The maps P , Ln and G are Lipschitz on PR(R
d) with constant ℓ(R).

The maps Bn and Tn
♯ satisfy: ∀(µ, ν) ∈ P(Rd)× PR(R

d ×RK),

dg(B
nQPµ,Bnν) ≤ ℓ(R) dg(QPµ, ν)

dg(T
n
♯QPµ, T

n
♯ ν) ≤ ℓ(R) dg(QPµ, ν),

⇝ “Lipschitz” when the first argument is in the range of QP .

Moment bounds: all the appropriate measures are in PR∗ .

The main idea of the proof is to use the triangle inequality. Since

dg(ρ
K
n+1, ρn+1) = dg

(
Tn

♯QPρ
K
n , B

nQPρn
)

and “Tn
♯G = BnG” we have

dg
(
Tn

♯QPρ
K
n , B

nQPρn
)
≤ dg

(
Tn

♯QPρ
K
n , T

n
♯QPρn

)
+ dg

(
Tn

♯QPρn, T
n
♯GQPρn

)
+ dg

(
BnGQPρn, B

nQPρn
)

≤ ℓ(R∗)
3dg(ρ

K
n , ρn) + 2ℓ(R∗)ε.
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Perspectives and conclusions

In this presentation,

we confined ourselves to the mean field setting;

we analysed a simple filter based on Gaussian projections;

we analysed the ensemble Kalman filter in the near-Gaussian setting.

Perspectives for future work:

Obtain error estimates with a better scaling with respect to N ;

Obtain error estimates for continuous-time Gaussian filtering methods;

Derive error bounds for the particle approximations;

Identify settings in which the “near-Gaussian” assumption is provably correct.
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Thank you for your attention!
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