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The discrete-time filtering problem

We consider the following stochastic dynamics and data model:

Dynamics and observations

Stochastic dynamics: Unt1 = ¥(un) + &n, &n ~ N(0,2),
Data model: Yn+1 = h(Un+1) + Nnt1, Mn+1 ~ N(O, I).

Independence assumption:
uo L & L ny,

Initial state: ug ~ N(mo, Co).

Notations:

® {Un}nepo,n] is the unknown state in R”.
® {yn}neq1,n] are the observations in RK.
m U: R - R? and h: R? — R are nonlinear operators.

nY, = {yI, ...,yh} is a given realization of the data up to time n.

Goal: Approximate sequentially the probability measure P(u,|Y,) for n € [1, NJ.
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Evolution of the filtering distribution

Update formula for the true filtering distribution

Let pn = P(un+1|Yn+1). Then
Pn+1 = anpn

For simplicity, we assume that all the measures have densities.
m The map P: P(R%) — P(R?) is the prediction:
Pp(u) = ;/ex <—1 |lu — \I/(v)\2) (v)dv
g V(2m)d det X PA2 = )P '
m The map L,: P(R?) — P(R?) is the analysis (Bayes’ theorem):
1 T 2
exp | =5 [vnr1 = (W)}, ) plu)

= /R Lexp (—ényH - h(U)\i) p(U) dU

Schematically,

P(un|Yn) = P(tni1|Vn) =2 P(tng1[Yai1).
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Example of a particle approximation for the filtering problem

Bootstrap particle filter

One of the simplest filtering methods is based on the iteration
pay1 = LnS7 Ppf.

where S7 is the sampling operator

J
, 1 3 ..
S7p = i E NOY w9 ~piid.
i=1

m The filtering distribution is approximated by a sum of Dirac masses;

m The convergence of this approach can be proved[l]’p] in the metric

di(p,v) = sup Ey/|ulf] - v[f]]".

1 flloo <1

[1] P. REBESCHINI and R. van HANDEL. Can local particle filters beat the curse of dimensionality? Ann.
Appl. Probab., 2015.

[2] D. Sanz-ALoNsO, A. M. STUART, and A. TAEB. Inverse Problems and Data Assimilation with
Connections to Machine Learning. arXiv preprint, 2018.
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Goal of our work

The bootstrap particle filter

m converges to the true filtering distribution in the limit J — oo,

m but tends to perform poorly for high-dimensional problems.
In this talk, we study the ensemble Kalman filter,

®m more robust in high-dimensional setting,

m but converges to the right limit as J — oo only in the Gaussian setting.

Objective: obtain an error estimate away from the Gaussian setting.

[3] P. BickEL, B. L1, and T. BENGTSSON. Sharp failure rates for the bootstrap particle filter in high
dimensions. In Pushing the limits of contemporary statistics: contributions in honor of Jayanta K.
Ghosh, Inst. Math. Stat. (IMS) Collect. 2008.
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Using stochastic filtering to solve inverse problems (1/2)

Inverse problem considered

Find an unknown parameter u € R? from data y € R* where

y = h(u) +n,
m h is the forward operator;

m 7) is observational noise.
Bayesian approach:

m Probability distribution on parameter: u ~ po, encoding prior knowledge;

m Probability distribution for the noise: 1 ~ v.
Bayesian posterior distribution given observation y:

oY (u) o< po(u) z/(yJr — h(u)) = prior X likelihood.

)) polw).
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In the Gaussian case where v = N(0, I"),

o () = exp (— (% ly" — hw)



Using stochastic filtering to solve inverse problems (2/2)

Connection with stochastic filtering

The posterior distribution coincides with the filtering distribution at n = N for

Un+1 = Un,
Ynt+1 = h(Unt1) + Ont1, Mnt1 ~ N(O, NI').

with observations 4, = y' and initial state uo ~ po.

Indeed, in this case P is the identity map and so

exp (= 4ly" = h(w)3, ) pu(w)
Jaexp (=3|yt = @)%, ) pu(U) aU
e (=il -, pow)

" fpaexp (—%\y* - h(U)!fw/n) po(U) AU

Pn+1 = Lpn =

~» Numerical methods for filtering are useful in the context of inverse problems.
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Example: inference of the thermal conductivity in a plate

Mathematical model:
Solution:
=V (u(@)VT(z)) = f(), z €Q,
T(z) =0, z € 0.
Unknown parameter: coble™
\:or"""“d v
Thermal conductivity u(z)
Temperature field T'(z)
s Data:
(true) ”
MAP estimator:
i |nverse proPIe™ | Noisy temperature measurements:
y=(T(z1),...,T(xm)) + 7.
(reconéifﬂcfed) e
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Analysis of a simple Gaussian projection scheme

A simple (mean field) filter based on Gaussian projections

We consider the dynamics
puii =GLnlp%,  Gp:=N(M(p),C(p)).

where

M) = [ 6pa0). ()= [ (0~ M) ® (0~ M(p)) ().

m If U and h are linear, then p§ = p,.

m The Gaussian projection satisfies the following property:

Gp = argmin dkr.(p||7), where G = Gaussians.
TEG

m Next step: approximation by a particle system:
1
¢ J o G Jo ' G Y s
oni1 = GL,S" Poy,, SYp = i jEZl 0,3 s U pi.id.
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Objective and assumptions

What we want to show

In the near-Gaussian setting, the probability measures {pg}
filtering distributions {pn }

ey e close to the true

nell,N]*
Metric on probability measures: weighted total variation

do(uv) = sup [ulf] = vIfll,  gru— 1+, plf] = / fdp.

Ifl<g

Assumptions:
m (Near-Gaussian setting) There is € > 0 such that
dg(Gpn,pn) <€ Vn € [0, NJ.
m (Boundedness) There is k < 0o such that
1| oo ey V Bl Loo (may < K-

m (Non-degenerate noise) X' > 0 and I" > 0.
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Strategy of proof

Let Pr denote the set of probability measures with bounded first and second moments:

Pr(R7) = {u e P(RY): max{W(u)L IC(mll; Hcm)u—l} < R}.
Auxiliary results:

m The map I is Lipschitz over P(R?) for d,.
m For any R > 1, the maps L, and G are Lipschitz over Pr(R?) for d,.
m Moment bounds: Ppn, PpS, Ly P pn, LnPpS belong to Pr, (Rd) for some R..

Main theorem

Under the assumptions,

Vn € [[OaN]]v dg(pgapn) <e (2 __11> :

Proof. Denoting by £ the Lipschitz constant of G L,, I’ over Pr, (R%), we have
dg(Pris1s prt1) < dg(prst, Gponsr) + dg(Gpnit, prs1)
=dy(GLnpg,GLnPpn) + dg(Gpns1, pri1)
<ldy(py,pn) +e< o
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Auxiliary result 1: the prediction is globally Lipschitz!*!

Recall the definition

rotwy = [ SPEEERO) )0 = [ ooty

Take any f < g. Since ¥(v) is bounded by assumption,

/f vudu</g( )p(v, u) du
= [T()]* + tr(2) < £” + tr(2).

[ruts) = retg)] = | [ (] fwtonu) ) ute) = viwn) ao

= [t = )| < (W + 00(2) ) dy 11, 0),

Therefore,

[4] P. REBESCHINI and R. van HANDEL. Can local particle filters beat the curse of dimensionality? Ann.
Appl. Probab., 2015.
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Analysis

Auxiliary result 2: the analysis is locally Lipschitz

Recall the definition

exp (—%|yl+1 — h(u)’i) w(w)

S exp (= 3|yb s = HO)[}) () U

Since h is bounded by assumption, there exists K such that

Lnp(u) =

vu € RY, K™ < ¢n(u) :=exp (—%|yl+l —h(u)fi) <K.

For any f < g, we have

n] V[f¢n]

| Lol f] -

v[fén] (V[¢N] - N[¢n])
p[pn] v[én]

dg(p,v) + K'v[gldg(p,v) = (K> + K'v[g]) dg(p, v).

fuvm1+

IA
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Auxiliary result 3: the Gaussian projection is locally Lipschitz

This is established in two steps:

m Control [M(p) — M(v)| and |C(p) — C(v)]| using dg(p,v). For example:

(M) = M@)| = sup [a” (M() = M(v))]

la|=1

= sup |ufa"u] ~ viaTu]| < dy(, ).

la|=1
~» The weight in dg is essential for this step!
m Show that, for any two Gaussian measures ;= N(mi, S1) and v = N(mz2, S2),

dg(p,v) <1/ (ulg?] + v[g?)) (3 HS{ISH — Il + [my — m2|52) ,

This generalizes a similar result for d1[5].

[5] L. DEVROYE, A. MEHRABIAN, and T. REDDAD. The total variation distance between high-dimensional
Gaussians. arXiv e-prints, 2018.
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Extending the error estimate to the particle approximation

Goal: Generalize the approach to the iteration

0 =GLS Po, 8=

<l

J
S 0w, u? ~piid.

j=1

Since (%) are random measures, we extend the definition of d, to the random setting:

dqg (1, v) = sup B/ |ulf] = v[f]|".

f<g

m The sampling operator satisfies!®!

dy (1, 57 p1) < %E(l M) + () )

m but the Lipschitz continuity of L,, and G is difficult to show for random measures. ..

| Lot ] = Lavlf]] < (K* + K*v[9)) [ulénf] = viénf]].

[6] D. SaNz-ALONSO, A. M. STUART, and A. TAEB. Inverse Problems and Data Assimilation with
Connections to Machine Learning. arXiv preprint, 2018.
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Rewriting the evolution of the true filtering distribution

Filtering problem

Stochastic dynamics: Unt+1 = U(un) + &n, &n ~ N(0, %),
Data model: Ynt1 = h(Uunt1) + Nnt1, Nnt1 ~ N(O, I).

The true filtering evolves according to

pr+1 = Lnlpn = B"Qpn.
= Q: P(R?) — P(R? x R¥)
Qp(u) = exp (~5lu = 1l ) o)

m B™: P(R? x R¥) — P(R?) is the conditioning on the observation y,11 = yLH.

plu,yl )

Do) = gt du

Schematically,
P (un|Yn) 2 P(tnt1|Yn) 5 P((ns1,ynt1) | V) 2 Plunga|Vasa)
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The ensemble Kalman filter from a mean field perspectivell (1/2)

One iteration of ensemble Kalman at the mean field level

an+l :¢(un)+€n7 gn ~ N(O3 2)7
@\n+1 = h(anJrl) + Mn+1,
Unt+1 = Un+t1 + Cuy(%n-‘-l)cyy(%n-&-l)_l(yl.;_l - §n+1), Nnt1 ~ N(0, I").

Here p41 = Law(Un+1, Yns1) and, for 7 € P(R? x RF),
wu uy

0= ey onia))
The third equation may be rewritten

Unt1 = T (Unt1, Unt1; Tni1),
with 7™ the following mean-field transport map:

T"(e,0;m): RT x R = RY,
(u,y) = u+C(m)C () " (Yl — ).

In the following, we use the shorthand notation 737 = (7™ (e, ;w))ﬁw.

[7] E. CAaLvELLO, S. REICH, and A. M. STUART. Ensemble Kalman Methods: A Mean Field Perspective.
arXiv preprint, 2022.
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The ensemble Kalman filter from a mean field perspective

One iteration of ensemble Kalman at the mean field level

an«kl = \Il(un) +§n7 En ~ N(Oa 2)7
:'/J\TH»I = h(an+l) 2 Mn+1,
Un4+1 = an+1 aF Cuy(ﬁn-ﬁ-l)cyy(%n-&-l)_l(yL-H - §n+1)7 Mn+1 ~ N((), F)-

Let pX¥ = Law(u,). Then

Pnt+1 = B"QPpn (True filtering distribution)
PR = T?Ql’pfﬂ (Ensemble Kalman filtering distribution)

Schematically, for mean field ensemble Kalman:
P ~ Q ~ 7
Law(un) — Law (Unt1) — Law((unH, yn+1)) — Law(un+1)
Key result for the analysis: For any Gaussian p
»Iw’g,p — Bnp.

~> as expected, mean field ensemble Kalman is exact in the Gaussian setting.
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Estimate in the near-Gaussian setting

What we want to show

In the near-Gaussian setting, the probability measures {pf}ne[[l Ny 3re close to the true

filtering distributions {pn}, .11 np-
Assumptions:
m (Near-Gaussian setting) There is € > 0 such that
dg(QPpn,GQPpn) < e Vn € [0, NJ.
m (Boundedness) There is k < oo such that
||‘I’||L°°(Rd) 4 ||h||L°°(Rd) < K.

m (Lipschitz continuity) The map h is globally Lipschitz continuous.
m (Non-degenerate noise) X' > 0 and I" > 0.

Main theorem: There exists Cn independent of € such that

Vn e [0,N],  dy(pn,pn) < Cne.
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Strategy of proof

Auxiliary results:

m The maps 7, L,, and G are Lipschitz on Pg(R?) with constant £(R).
m The maps B" and T} satisfy: V(u,v) € P(R?) x Pr(R? x R®),

dg(B"QPp, B"v) < €(R) dg(Q 1 p, v)
dg(T§¥QPp, Tiv) < U(R)dg(QPp,v),

~~ “Lipschitz" when the first argument is in the range of Q) /.
® Moment bounds: all the appropriate measures are in Pr, .

The main idea of the proof is to use the triangle inequality. Since
dg(prs1; pri1) = dg ('/‘FQ/)pff, B"Q/"pn)
and “I¥G = B,G" we have
dy (T5QPpE B QPpn) < dy (T3QPPE, T3QPpw) + dy (TFQPp0, TEGQI pr)
+d, (B"GQPpn,B"Q/’pn)
< U(R.)*dg(pr . pn) + 20(R.)e.
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Perspectives and conclusions

In this presentation,

m we confined ourselves to the mean field setting;
m we analysed a simple filter based on Gaussian projections;

m we analysed the ensemble Kalman filter in the near-Gaussian setting.
Perspectives for future work:

m Obtain error estimates with a better scaling with respect to V;

Obtain error estimates for continuous-time Gaussian filtering methods;

m Derive error bounds for the particle approximations;

Identify settings in which the “near-Gaussian” assumption is provably correct.
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Thank you for your attention!
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