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The generalized Langevin equation in its general form

The generalized Langevin equation is in general an integro-differential equation:

q̈t = −V ′(q)−
∫ t

0

γ̂(t− s) q̇s ds+ F (t).

Simple setting: one particle, one dimension, unit mass.

V is a periodic potential;

(qt)t>0 is the position process;

γ̂(·) is a memory kernel;

F is a stationary Gaussian noise process.

The kernel γ̂(·) and the noise F are related through the fluctuation/dissipation relation:

E
(
F (s)F (t)

)
= β−1 γ̂(t− s).
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Quasi-Markovian approximation for exponential memory kernels

When the memory kernel is of the form

γ̂(t) =
〈

e−A|t| λ,λ
〉
,

for A ∈ Rn×n with positive eigenvalues and λ ∈ Rn, the GLE is equivalent to

dq = p dt,

dp = −V ′(q) dt+ 〈λ, z〉 dt,

dz = −pλdt−A z dt+ Σ dWt, z(0) ∼ N (0, β−1I),

where Σ ∈ Rn×n is related to A by the fluctuation/dissipation relation:

ΣΣT = β−1 (A + AT ).
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The simplest example: Ornstein–Uhlenbeck noise

Throughout this presentation, we focus on the simple case where

γ̂(t) = γ exp

(
− t

ν2

)
.

In this case GLE is equivalent to

dqt = pt dt,

dpt = −V ′(qt) dt+

√
γ

ν
zt dt,

dzt = −
√
γ

ν
pt dt− 1

ν2
zt dt+

√
2β−1

ν2
dWt.

Relation to other dynamics:

When ν → 0: convergence in law to the solution of the Langevin equation[1]:

q̈ = −V ′(q)− γq̇ +
√

2γβ−1 Ẇ .

When γ →∞: convergence in law to the overdamped Langevin equation[2]:

q̇ = −V ′(q) +
√

2β−1 Ẇ .

[1] M. Ottobre and G. A. Pavliotis (2011). “Asymptotic analysis for the generalized Langevin equation”.
In: Nonlinearity.

[2] Z. Schuss (2010). Theory and applications of stochastic processes. Applied Mathematical Sciences.
An analytical approach. Springer, New York.
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Invariant measure and the associated Markov semigroup

Unique invariant measure over T×R×R (Boltzmann-Gibbs):

µ(dq dp dz) ∝ exp

(
−β
(
V (q) +

p2

2
+
z2

2

))
dq dp dz.

We denote by ‖·‖ and 〈·, ·〉 the norm and inner product of L2(µ), and

L2
0(µ) =

{
ϕ ∈ L2(µ) : 〈ϕ, 1〉 = Eµϕ = 0

}
.

Associated Markov semigroup:

The semigroup associated with the dynamics is given by

etLϕ(q, p, z) = E(q,p,z)

(
ϕ(qt, pt, zt)

)
,

with generator

L = p ∂q − V ′(q) ∂p +
√
γ ν−1(z ∂p − p ∂z)− ν−2(z ∂z − β−1∂2

z )

This operator is not elliptic, only hypoelliptic.
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Aim 1: obtain long-time convergence estimates for the semigroup

Ergodic theorem[3]: for an observable ϕ ∈ L1(µ),

ϕ̂t =
1

t

∫ t

0

ϕ(qs, ps, zs) ds
a.s.−−−→
t→∞

Eµϕ.

Central limit theorem[4]: If the following Poisson equation has a solution φ ∈ L2(µ),

−Lφ = ϕ−Eµϕ,

then a central limit theorem holds:
√
t
(
ϕ̂t −Eµϕ

) Law−−−→
t→∞

N (0, σ2
ϕ), σ2

ϕ = 〈φ, ϕ−Eµϕ〉 .

Link between resolvent and semigroup: On L2
0(µ), it holds that

−L−1 =

∫ ∞
0

eLt dt,

Aim 1: Understand the behaviour of etL in different parameter regimes.

[3] W. Kliemann (1987). “Recurrence and invariant measures for degenerate diffusions”. In: Ann. Probab.
[4] R. N. Bhattacharya (1982). “On the functional central limit theorem and the law of the iterated

logarithm for Markov processes”. In: Z. Wahrsch. Verw. Gebiete.
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Aim 2: study the effective diffusion

In the particular case where ϕ = p, the CLT gives

ε xt/ε2 −−−→
ε→0

N (0, 2Dγ,νt), xt =

∫ t

0

ps ds.

Aim 2: Study the behaviour of Dγ,ν in asymptotic regimes of physical interest.
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Effective diffusion for the GLE

Indeed, applying Itô’s formula to the solution φ of −Lφ = p,

dφ(qt, pt, zt) = −pt dt+
√

2β−1ν−2
∂φ

∂z
(qt, pt, zt) dWt.

Therefore,

εxt/ε2 = ε

∫ t/ε2

0

ps ds = − ε(φ(qt/ε2 , pt/ε2 , zt/ε2)− φ(q0, p0, z0))︸ ︷︷ ︸
→0 in Lp

(
Ω, C([0, T ],R)

)
+
√

2β−1ν−2ε

∫ t/ε2

0

∂φ

∂z
(qs, ps, zs) dWs,︸ ︷︷ ︸

→
√

2Dγ,νWt weakly in C([0,∞)) by MCLT

where

Dγ,ν = β−1ν−2 〈∂zφ, ∂zφ〉 = β−1ν−2 〈∂∗z∂zφ, φ〉 = −〈Lφ, φ〉 = 〈p, φ〉 .

Functional central limit theorem

εxt/ε2 −−−→
ε→0

√
2Dγ,νWt weakly in C([0,∞)) .
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The challenge: non-coercivity

The generator can be decomposed into symmetric and antisymmetric parts in L2(µ):

L = β−1
(
∂q∂
∗
p − ∂∗q∂p

)
+ β−1√γν−1 (∂p∂

∗
z − ∂∗z∂p)−β−1ν−2∂∗z∂z

= B1 +B2−A∗A.

Therefore
1

2

d

dt

∥∥∥etL ϕ
∥∥∥2

=
〈
L etL ϕ, etL ϕ

〉
= −

∥∥∥A etL ϕ
∥∥∥2

→ No instantaneous decay of the norm if ϕ = ϕ(q, p);
⇒ There does not exist[5] λ > 0 such that∥∥∥etL ϕ

∥∥∥ 6 e−λt ‖ϕ‖ .

Using a hypocoercivity approach, we will be able to show∥∥∥etL ϕ
∥∥∥ 6 C e−λt ‖ϕ‖ , C > 1.

[5] C. Villani (2009). “Hypocoercivity”. In: Mem. Amer. Math. Soc.
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Very brief review of some hypocoercivity techniques

Lyapunov approaches give exponential convergence in weighted L∞ spaces[6];

Difficult to be explicit in minorization condition.

Standard H1(µ) approach à la Villani[7];

Based on a modification of the inner product;
Can be combined with regularization to show L2(µ) convergence.

Direct L2(µ) approach[8]:

More direct than “H1(µ) + regularization” and usually quite flexible;
Seems difficult to apply in the case of the GLE.

Entropic approach à la Villani gives convergence of the law in relative entropy;

Gives exponential convergence in a larger function space;
More restrictive assumptions than for H1(µ) hypocoercivity.

Schur complement approach[9]

Enables to prove resolvent estimates directly.

[6] J. C. Mattingly, A. M. Stuart, and D. J. Higham (2002). “Ergodicity for SDEs and approximations:
locally Lipschitz vector fields and degenerate noise”. In: Stochastic Process. Appl.

[7] C. Villani (2009). “Hypocoercivity”. In: Mem. Amer. Math. Soc.
[8] J. Dolbeault, C. Mouhot, and C. Schmeiser (2009). “Hypocoercivity for kinetic equations with linear

relaxation terms”. In: C. R. Math. Acad. Sci. Paris.
[9] E. Bernard et al. (2020). “Hypocoercivity with Schur complements”. In: arXiv preprint.
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Hypocoercivity: a toy example

ẋ = Lx :=

(
0 −1

1 −1

)
x, x =

(
x

y

)
∈ R2.

Notice
d

dt
|x|2 = −2y2,

Defining ((x,x)) = x2 − 2αxy + y2, with 0 < α� 1,

d

dt
((x,x)) = 2((Lx,x)) = −xT

(
2α −α
−α 2− 2α

)
x 6 −ξ |x|2 6 −ξ̃((x,x)),

so ((xt,xt)) 6 e−ξ̃t((x0,x0)).
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Figure: Level sets of |x|2 (left) and ((x,x)) (right).
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The H1(µ) hypocoercivity approach for the GLE[10]

Define a modified inner product from the norm

((h, h)) = ‖h‖2 + a0 ‖∂zh‖2 + a1 ‖∂ph‖2 + a2 ‖∂qh‖2−2b0〈∂zh, ∂ph〉−2b1〈∂ph, ∂qh〉

By the Cauchy–Schwarz inequality, we have

((h, h)) > ‖h‖2 +

 ‖∂zh‖‖∂ph‖
‖∂qh‖

T  a0 −b0 0

−b0 a1 −b1
0 −b1 a2


︸ ︷︷ ︸

:=M1

 ‖∂zh‖‖∂ph‖
‖∂qh‖

,

On the other hand, after some calculations,

−((h,Lh)) >

 ‖∂z∂zh‖‖∂z∂ph‖
‖∂z∂qh‖

T (
M1

ν2β

) ‖∂z∂zh‖‖∂z∂ph‖
‖∂z∂qh‖

+

 ‖∂zh‖‖∂ph‖
‖∂qh‖

T

M2

 ‖∂zh‖‖∂ph‖
‖∂qh‖

,
where M2 also depends on a0, a1, a2, b0, b1.

→ Simpler expression than in Villani’s general hypocoercivity framework!

[10] M. Ottobre and G. A. Pavliotis (2011). “Asymptotic analysis for the generalized Langevin equation”.
In: Nonlinearity.
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The H1(µ) hypocoercivity approach for the GLE (continued)

Proposition

If V ′′ ∈ L∞, then there exists a choice of small parameters a0, a1, a2, b0, b1 � 1
(dependent on ν and γ), and a constant C > 0 independent of γ and ν, such that

∀γ, ν > 0,

M2 < C min

(
γ,

1

γ
,
γ

ν4

)
I,

0 ≺M1 4 I.

Using this, we deduce the exponential convergence to equilibrium for h ∈ H1
0 (µ):

1

2

d

dt
((etL h, etL h)) 6 −C min

(
γ,

1

γ
,
γ

ν4

)
((etL h, etL h)).

By Grönwall’s lemma, this implies

((eLt h, eLt h)) 6 e−2λ(ν,γ)t((h, h)), λ(γ, ν) = C min

(
γ,

1

γ
,
γ

ν4

)
.

Using the norm equivalence between (( · , · )) and ‖ · ‖H1(µ), we have∥∥∥eLt h
∥∥∥
H1(µ)

6 K(γ, ν) e−λ(γ,ν)t ‖h‖H1(µ) .
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Obtaining a decay estimate in L2 (µ) by hypoelliptic regularization

Defining a Lyapunov functional[11]

Nh(t) = ‖h‖2 + a0 t
∥∥∂z etL h

∥∥2
+ a1 t

3
∥∥∂p etL h

∥∥2
+ a2 t

5
∥∥∂q etL h

∥∥2

− 2 b0 t
2
〈
∂z etL h, ∂p etL h

〉
− 2 b1 t

4
〈
∂p etL h, ∂q etL h

〉
,

where a1, a2, a3, b1, b2 are the same parameters as before, we can show

d

dt

(
Nh(t)

)
6 0 0 6 t 6 1 ⇒ ((eL h, eL h)) 6 ‖h‖2 .

From this we deduce, for t > 1,

‖ eLt h‖ = ‖ eL(t−1) eL h‖ 6 C e−λ̄min
(
γ,γ−1,γν−4

)
t ‖h‖ .

Remark

L2(µ) decay can also be obtained using a recent approach[12] based on introducing
Qt = eL

∗t eLt and using an inequality for self-adjoint operators[13].

[11] F. Hérau (2007). “Short and long time behavior of the Fokker-Planck equation in a confining potential
and applications”. In: J. Funct. Anal.

[12] G. Deligiannidis et al. (2018). “Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy
Particle Sampler and Dimension-Free Convergence Rates”. In: arXiv e-prints.

[13] M. Hairer, A. M. Stuart, and S. J. Vollmer (2014). “Spectral gaps for a Metropolis-Hastings algorithm
in infinite dimensions”. In: Ann. Appl. Probab.
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The obtained decay rates are sharp

In the case where V is a quadratic potential, the quasi-Markovian GLE is a
multidimensional Ornstein–Uhlenbeck process.

→ the spectrum of the associated generator can be obtained explicitly in terms of the
eigenvalues of the drift matrix D[14]:

σ(L) =

− ∑
µ∈σ(D)

µkµ, kµ ∈ N

 .

The characteristic polynomial of the drift matrix is

p(λ) = λ3 +
λ2

ν2
+
λγ

ν2
+ λ+

1

ν2
.

By asymptotic analysis, we can rigorously obtain the scaling w.r.t. γ and ν of the root
with largest real part, and the obtained scalings match our general findings.

[14] G. Metafune, D. Pallara, and E. Priola (2002). “Spectrum of Ornstein-Uhlenbeck operators in Lp

spaces with respect to invariant measures”. In: J. Funct. Anal.

Long-time behavior 16 / 27



Decay in L2(µ): summary of our results

The rates in red correspond to V (q) = k q
2

2
.

ν
2 =

γ

γ = 1

ν = 1

λ = O( γ
ν4

)

λ = O( 1
γ

)λ = O(γ)

0 1

1

γ
1+γ

ν2

1+ν2

λ ≈ γ
2kν4

λ
≈

k γ

λ
≈

γ
2
(k
ν
4
+

1
)

γ = 2
√
k

λ ≈ γ
2 λ ≈ 1

2
(γ −

√
γ2 − 4k)

Long-time behavior 17 / 27



Outline

Introduction

Long-time behavior

Effective diffusion coefficient



Effective diffusion: limits of interest

The underdamped limit: γ → 0;

The overdamped limit: γ →∞;

The short memory limit: ν → 0.

Summary of our results:

D∗ γ DLang
γ Dovd

D∗ν γ Dγ,ν

γ → ∞

γ → 0

γ → 0 γ → ∞

ν → 0 ν → 0

The limits are found by formal asymptotics, and are then made rigorous by employing our
explicit L2

0(µ) resolvent estimate:∥∥L−1
∥∥
L2

0(µ)
6
∫ ∞

0

‖ etL ‖L2
0(µ) dt 6 C max

(
γ, γ−1, γ−1ν4) .
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Example: the short memory limit ν → 0

Recipe for finding and proving scalings of the effective diffusion coefficient:

Decompose the generator according to the small parameter, here ν:

L = β−1 (∂q∂∗p − ∂∗q∂p)+ β−1√γν−1 (∂p∂
∗
z − ∂∗z∂p)− β−1ν−2∂∗z∂z

=: L2 +
1

ν
L1 +

1

ν2
L0.

Expand the solution to the Poisson equation −Lφν = p as φ0 + νφ1 + ν2φ2 + · · · :

O(1/ν2) L0φ0 = 0,

O(1/ν1) L0φ1 + L1φ0 = 0,

O(1) L0φ2 + L1φ1 + L2φ0 = −p,
O(ν) L0φi+2 + L1φi+1 + L2φi = 0, i = 1, 2, . . .

These equations can be solved successively, applying solvability solutions[15],

−LLangφ0 = p, φ1 = . . . , φ2 = . . .

[15] G. A. Pavliotis and A. M. Stuart (2008). Multiscale methods. Texts in Applied Mathematics.
Averaging and homogenization. Springer, New York.
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Example: the short memory limit ν → 0 (continued)

By construction, it holds that

−L
(
φν − (φ0 + νφ1 + ν2φ2 + ν3φ3)

)
= ν2rhs

We now use a result from[16] to show that rhs ∈ L2
0(µ): if f(q, p) ∈ L2

0(µ) is a
smooth function that grows, together with all its derivatives, at most polynomially as
|p| → ∞, then so is the solution in L2

0(µ) of

−LLangφL = f(q, p).

Apply the resolvent estimate found earlier (here uniform in ν) and take the limit
ν → 0 to conclude that

‖φν − (φ0 + νφ1 + ν2φ2 + ν3φ3)‖ = Oν→0(ν2)

⇒ ‖φν − φ0 − νφ1‖ = Oν→0(ν2) for fixed γ.

Substitute in the expression DGLE
γ,ν = 〈φν , p〉 of the effective diffusion to conclude

|DGLE
γ,ν −DLang

γ | = Oν→0(ν2), because DLang
γ = 〈φ0 + νφ1, p〉.

[16] Marie Kopec (2015). “Weak backward error analysis for Langevin process”. In: BIT Numer. Math.
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This approach not work for the underdamped limit. . .

. . . but a formal analysis enables to show that

lim
γ→0

γDν,γ → D∗ν ,

lim
ν→0

D∗ν → D∗,

In general D∗ν 6= D∗ for ν > 0.

0.0 0.2 0.4 0.6 0.8 1.0
ν

0.306

0.308

0.310

0.312

0.314

0.316 D∗ (Langevin)

D∗
ν (GLE)
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Numerical approaches for calculating of the effective diffusion coefficient

Einstein’s relation:

Dγ,ν = lim
t→∞

1

2t
E
∣∣q(t)− q(0)

∣∣2.
Green–Kubo formula: Since −L−1 =

∫∞
0

etL dt,

Dγ,ν =

∫
(−L−1p) p dµ =

∫ ∞
0

∫
(etL p)p dµ dt =

∫ ∞
0

Eµ(p0pt) dt.

Linear response approach:

Dγ,ν = lim
η→0

1

η
Eµη p.

where µη is the invariant distribution of

dq = p dt,

dp = η dt− V ′(q)dt− γp+
√

2γβ−1 dW (t),

Fourier/Hermite Galerkin method for the Poisson equation.
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Fourier/Hermite Galerkin method

We employ a Fourier/Hermite spectral method for the Poisson equation, with the
saddle-point formulation[17]:

−ΠN LΠNΦN + αNuN = ΠNp,

〈ΦN , uN 〉 = 0, (2)

where

ΠN is the L2 (µ) projection operator on a finite-dimensional subspace VN ,

uN = ΠN1/ ‖ΠN1‖. Eq. (2) ensures that the system is well-conditioned.

For VN , we use the following basis functions:

ei,j,k =
(
Z eβ(H(q,p)+|z|2)

) 1
2
Gi(q)Hj(p)Hk(z), 0 6 i, j, k 6 N,

where (Gi)i>0 are trigonometric functions and (Hj)i> 0 are Hermite polynomials.

[17] J. Roussel and G. Stoltz (2018). “Spectral methods for Langevin dynamics and associated error
estimates”. In: ESAIM: Math. Model. Numer. Anal.
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A slightly more general GLE

In numerical experiments, we consider the GLE with the following paramaters:

λ =
1

ν

(√
γ

0

)
, A =

1

ν2

(
0 −α
α α2

)
→ Σ =

√
2β−1 α2

ν2

(
0 0

0 1

)
.

In particular, we recover model GL1 as α→∞ (the overdamped limit of the noise).

ν2 is horizontal scaling;
γ is a vertical scaling;
α encodes the shape;

0 2 4 6 8 10 12 14
t/ν2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ν
2
γ
(t
)/
γ

α = ∞ (GL1)

α = 0.5

α = 1

α = 2

α = 3
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Dependence of D on γ
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Figure: Diffusion coefficient as a function of γ, when ν = α = 1.
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Dependence of D on ν and α
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Figure: Effective diffusion coefficient against ν, for fixed values β = γ = 1.
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Perspectives for future work

Numerical study of the underdamped limit with variance reduction methods.

Generalization to other systems? Higher-dimensional GLEs, atom chains, . . .

Direct L2(µ) or Schur complement approach?

Study of the spectral method, e.g. discrete hypocoercivity, convergence?

Thank you for your attention!
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