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The generalized Langevin equation in its general form

The generalized Langevin equation is in general an integro-differential equation:

G =-V'(q) - /Ot A(t —s) gs ds + F(t).

Simple setting: one particle, one dimension, unit mass.

V' is a periodic potential;

(gt)¢>0 is the position process;

~(-) is a memory kernel;

m [ is a stationary Gaussian noise process.

The kernel 5(+) and the noise F' are related through the fluctuation/dissipation relation:

E(F(s)F(t)) =B "3t — s).
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Quasi-Markovian approximation for exponential memory kernels

When the memory kernel is of the form
() = (e MAN),
for A € R™*" with positive eigenvalues and A € R", the GLE is equivalent to

dqg = pdt,
dp = —V'(g) dt + (X, z) dt,
dz = —pAdt — Azdt +XdW,, z(0) ~ NV(0, 87'1),

where 3 € R"*" is related to A by the fluctuation/dissipation relation:

=x" =5 A+ AT).
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The simplest example: Ornstein—Uhlenbeck noise

Throughout this presentation, we focus on the simple case where

A(t) = vexp (—%) :

In this case GLE is equivalent to
dg: = p: dt,

dps = —=V'(q) dt + ? z¢ dt,

1
dzt:fﬂptdtf%ztdzﬂrq/zg dW;.
14 14

Relation to other dynamics:

m When v — 0: convergence in law to the solution of the Langevin equation[”:

i=-V'(¢) =i+ V2B W.

m When v — co: convergence in law to the overdamped Langevin equation®:
¢=-V'(g)+ V2671 W.

[1] M. Ottobre and G. A. Pavliotis (2011). “Asymptotic analysis for the generalized Langevin equation”.
In: Nonlinearity.

[2] Z. Schuss (2010). Theory and applications of stochastic processes. Applied Mathematical Sciences.
An analytical approach. Springer, New York.
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Invariant measure and the associated Markov semigroup

Unique invariant measure over T x R x R (Boltzmann-Gibbs):

2 2
u(dgdpdz) o< exp (7,6’ <V(q) + % + %)) dgdpdz.

We denote by ||-|| and (-, -) the norm and inner product of L(y), and

Li(p) = {<p € L(n): (p,1) =Eup = 0}~

Associated Markov semigroup:

The semigroup associated with the dynamics is given by
(4,7, 2) = E(g.p,) (#(ae: 1t 20)),
with generator
L=pd—V'(qQ)0p+ v (20, —p0.) —v (20. — B719?2)

This operator is not elliptic, only hypoelliptic.
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Aim 1: obtain long-time convergence estimates for the semigroup

Ergodic theoremP!: for an observable ¢ € L' (1),

t
Pt = 7/ o(gs, ps, 2s) ds =2 Eup.
t Jo t— 00

Central limit theorem!: If the following Poisson equation has a solution ¢ € L?(p),
—L¢=¢—Eup,
then a central limit theorem holds:

Vi@~ Bup) ZEN(0,03),  0f = (60— Eup).

Link between resolvent and semigroup: On L2 (1), it holds that

-t :/ e“t dt,
0

Aim 1: Understand the behaviour of €' in different parameter regimes.

[3] W. Kliemann (1987). “Recurrence and invariant measures for degenerate diffusions”. In: Ann. Probab.
[4] R. N. Bhattacharya (1982). “On the functional central limit theorem and the law of the iterated
logarithm for Markov processes”. In: Z. Wahrsch. Verw. Gebiete.
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Aim 2: study the effective diffusion

In the particular case where ¢ = p, the CLT gives

t
exye2 —> N(0,2D, 1), Tt :/ ps ds.
e—0 0

t =103.00, D = 0.855

=== Pure diffusion
0.06 BN GL1 (MC simulation)
0.05
0.04
0.03
0.02
0.01
0.00-
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Aim 2: Study the behaviour of D, , in asymptotic regimes of physical interest.
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Effective diffusion for the GLE

Indeed, applying 1t&'s formula to the solution ¢ of —Lgb =p,

dé(qe, pe, ze) = —pedt + /28w~ 299 Qt7pt,Zt ) dW.

Therefore,

t/e?
ETy/e2 = 5/ psds = 7€(¢(qt/627pt/627zt/52) - ¢(QO7P0720))
0

—0 in LP(Q, C([O T],R))

+ \/ 2,8 1V—2€/ qS7psazs)dWS7

—+/2D~,, Wy weakly in C([0, o0)) by MCLT

where

D’y,v = ,B_IV_2 <8z¢7 8z¢> = ﬂ_lV_Q <8:8z¢7 ¢> = - <['¢7 ¢> = <p: ¢> .
Functional central limit theorem
ETy/er —oF V2D, ., Wy weakly in C([0,00)) .
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The challenge: non-coercivity

The generator can be decomposed into symmetric and antisymmetric parts in L?(1):

L=pB""(8,05 —0;0p) + B~ " v ' (0,05 — 9:0,)—B v 2050,

= B; + By—A"A.
Therefore 14 ) )
S 79 :<£ew%et£w>:7HAew(p

— No instantaneous decay of the norm if ¢ = p(q,p);
= There does not exist® X\ > 0 such that

Using a hypocoercivity approach, we will be able to show

—At

ol <e el

o <ceMel, o>

[5] C. Villani (2009). “Hypocoercivity”. In: Mem. Amer. Math. Soc.
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Very brief review of some hypocoercivity techniques

m Lyapunov approaches give exponential convergence in weighted L™ spaceslﬁ];
= Difficult to be explicit in minorization condition.
m Standard H'(u) approach a la Villanil”);

m Based on a modification of the inner product;
= Can be combined with regularization to show L?(u) convergence.

m Direct L2 approach[s]:
%

= More direct than “H'(u) + regularization” and usually quite flexible;
m Seems difficult to apply in the case of the GLE.

m Entropic approach a la Villani gives convergence of the law in relative entropy;

= Gives exponential convergence in a larger function space;
m More restrictive assumptions than for H' (1) hypocoercivity.

m Schur complement approachlg]

m Enables to prove resolvent estimates directly.

[6] J. C. Mattingly, A. M. Stuart, and D. J. Higham (2002). “Ergodicity for SDEs and approximations:
locally Lipschitz vector fields and degenerate noise”. In: Stochastic Process. Appl.
[7] C. Villani (2009). “Hypocoercivity”. In: Mem. Amer. Math. Soc.

[8] J. Dolbeault, C. Mouhot, and C. Schmeiser (2009). “Hypocoercivity for kinetic equations with linear
relaxation terms”. In: C. R. Math. Acad. Sci. Paris.

[9] E. Bernard et al. (2020). “Hypocoercivity with Schur complements”. In: arXiv preprint.
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Hypocoercivity: a toy example

. (0 -1 N 9
x—Lx.—(1 _1>x, x—(y)eR.

d 2 2
)

Defining ((x,x)) = 2 — 2azy + 32, with 0 < a < 1,

Notice

d T2 - 2
G G =2(0x) = (207G < el

so ((x¢,%1)) < e ((x0,%0)).

N
o
¥
X

0.0 0.5 1.0 =05 0.0

Figure: Level sets of |x|? (left) and ((x, x)) (right).

Long-time behavior

27



The H'(11) hypocoercivity approach for the GLE!

Define a modified inner product from the norm
(h, h) = |IRlI* + ao [|8:R]1* + a1 1|8ph]1* + a2 [|9gh||* —2b0(D:h, Dph)—2b1(Dph, Dgh)

m By the Cauchy-Schwarz inequality, we have

[0:R1\" [ a0 —bo O [0=Al|
(A ) = [|01* + { 1|8sn] —bo a1 —h phll |,
0g | 0 —bi a [[0gh|
=M

m On the other hand, after some calculations,

000N [ 1p (10001\  (1RINT(10uh
~(oeny = (oo | (355 ( lo-aunl | + (lownll | n ol ).
10-0,h] 0.0} \llauh I64h]

where M also depends on ag, a1, a2z, bo, bi.

— Simpler expression than in Villani's general hypocoercivity framework!

[10] M. Ottobre and G. A. Pavliotis (2011). “Asymptotic analysis for the generalized Langevin equation”.
In: Nonlinearity.
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The H'(p) hypocoercivity approach for the GLE (continued)

Proposition

If V" € L, then there exists a choice of small parameters ag, a1, az,bo, b1 < 1
(dependent on v and v), and a constant C' > 0 independent of v and v, such that

My = C' min (’y,l,%> I,
v v

0<M; <L

Vy,v >0,

Using this, we deduce the exponential convergence to equilibrium for h € H} (11):

% %((eM h,e'* h)) < —C min (% %, %) (" h,e"“ h)).

By Gronwall's lemma, this implies

(e“ h, et h) < e PM(h,h),  A(y,v) = C min (% 1 ) :
0

v4

Using the norm equivalence between ((-, -)) and || - || g1(,,,, We have

Lt
o<

(p)

< K(y,v)e 2wt 1Al g1,y -

H1(pn)
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Obtaining a decay estimate in L? (1) by hypoelliptic regularization

Defining a Lyapunov functional(*!

Nu(t) = ||h|* + aot H(‘?Z et~ hH2 +art? Hap el hH2 +axt? Haq et~ hH2
—2bot® (0. e“ h,0, e h) —2b1 t* (9, e“ h,0qe'" ),
where a1, a2, as, b1, by are the same parameters as before, we can show
4
dt
From this we deduce, fort > 1,

(Nn(t)) <0 0<t<1 = (e" h,e“h) <|h|?.

|| eEt h” _ || eL‘,(t—l) eE h” < Ce—;min(ry,ryfl,ryy*4)t Hh“ )

Remark

L?(p) decay can also be obtained using a recent approach® based on introducing
Q: = e~ te*! and using an inequality for self-adjoint operators(*3l.

[11] F. Hérau (2007). “Short and long time behavior of the Fokker-Planck equation in a confining potential
and applications”. In: J. Funct. Anal.

[12] G. Deligiannidis et al. (2018). “Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy
Particle Sampler and Dimension-Free Convergence Rates”. In: arXiv e-prints.

[13] M. Hairer, A. M. Stuart, and S. J. Vollmer (2014). “Spectral gaps for a Metropolis-Hastings algorithm
in infinite dimensions”. In: Ann. Appl. Probab.
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The obtained decay rates are sharp

In the case where V' is a quadratic potential, the quasi-Markovian GLE is a
multidimensional Ornstein—Uhlenbeck process.

— the spectrum of the associated generator can be obtained explicitly in terms of the
eigenvalues of the drift matrix DI

o(L)y=9— > pky k.€N

peo(D)
The characteristic polynomial of the drift matrix is

2
p(/\)—A%LA—Jr’WjLAjLi

By asymptotic analysis, we can rigorously obtain the scaling w.r.t. v and v of the root
with largest real part, and the obtained scalings match our general findings.

[14] G. Metafune, D. Pallara, and E. Priola (2002). “Spectrum of Ornstein-Uhlenbeck operators in L?
spaces with respect to invariant measures”. In: J. Funct. Anal.
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Decay in L?(u): summary of our results

1/2
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Effective diffusion: limits of interest

m The underdamped limit: v — 0;
m The overdamped limit: v — oo;

® The short memory limit: v — 0.
Summary of our results:

N v —=0
D)/ (—’YD’Y,V

DY ¢=-==== === - ’}/D,I},'ang _________ > Dovd
v —

Yy — o0

The limits are found by formal asymptotics, and are then made rigorous by employing our
explicit L3 (i) resolvent estimate:

oo
127 2z < / 1€ [l 23 dt < Cmax (7,717 '),
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Example: the short memory limit v — 0

Recipe for finding and proving scalings of the effective diffusion coefficient:

m Decompose the generator according to the small parameter, here v:

L=p"" (005 — 0;0p) + B v ' (9,05 — 050,) — B v 20%0.

1 1
Lo+ L1+ 7£0~
v v

m Expand the solution to the Poisson equation —L¢, = p as ¢o + vo1 + 2 pa + -+ -

O(1/v*)  Logo =0,
o(1/v') Log1 + L1¢o =0,
o(1) Lotz + L1¢1 + Lago = —p,
O(v) Lopita + L1¢it1 + Lagi =0, 1 =1,2,...

m These equations can be solved successively, applying solvability solutions!*™,

—ELang¢0:p, ¢1:4.., ¢2:

[15] G. A. Pavliotis and A. M. Stuart (2008). Multiscale methods. Texts in Applied Mathematics.
Averaging and homogenization. Springer, New York.
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Example: the short memory limit ¥ — 0 (continued)

m By construction, it holds that
_£(¢u — (¢po +vo1 + Vo + 1/3¢>3)) = v%rhs

We now use a result from*® to show that rhs € LZ(u): if f(q,p) € L3 (1) is a
smooth function that grows, together with all its derivatives, at most polynomially as
|p| — oo, then so is the solution in L (1) of

L5 ¢1, = f(q,p).

m Apply the resolvent estimate found earlier (here uniform in v) and take the limit
v — 0 to conclude that

6 — (¢ + v1 + 172 + 1°¢3) || = Ouyo (V)
= ¢ — do — v || = Ovo(v?) for fixed ~.

m Substitute in the expression DGLE (pv, p) of the effective diffusion to conclude

|DSLP — DY = O, 0(v°),  because DY = (o + v, p).

[16] Marie Kopec (2015). “Weak backward error analysis for Langevin process”. In: BIT Numer. Math.
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This approach not work for the underdamped limit. ..

... but a formal analysis enables to show that
lim vD, ., — D;,,
~y—0
lim D, — D",
v—0

In general D}, # D* for v > 0.

0.3164 —— D* (Langevin)
. D:(GLE)

0.314+

0.3124

0.310

0.308

0.306 +— - - - - -
0.0 0.2 0.4 0.6 0.8 1.0
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Numerical approaches for calculating of the effective diffusion coefficient

m Einstein’s relation:
2
D,, = hm —E|q q(O)‘ .

m Green—Kubo formula: Since —£~' = [ et dt,

D,, = /(—L‘lp)deZ/ /(etﬁp)PdetI/ Ey.(pop:) dt.
0 0

m Linear response approach:

L1
Dy = lim By, p.

where (i, is the invariant distribution of
dg = pdt,
dp =ndt — V'(q)dt —yp+ /2B~ AW (1),

m Fourier/Hermite Galerkin method for the Poisson equation.
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Fourier/Hermite Galerkin method

We employ a Fourier/Hermite spectral method for the Poisson equation, with the
saddle-point formulation*"):

— [N LIONDPN + anvuny = HNp,

(PN, un) =0, (2)

where

m Iy is the L2 () projection operator on a finite-dimensional subspace Vi,

m uy = In1/||TIn1]|. Eq. (2) ensures that the system is well-conditioned.

For Vi, we use the following basis functions:

1
€i gk = (Z eﬁ(H(q’p)Hz'z)) * Gilq) Hj(p) Hi(2), 0<1i,5,k<N,

where (G;)i>0 are trigonometric functions and (H;);» o are Hermite polynomials.

[17] J. Roussel and G. Stoltz (2018). “Spectral methods for Langevin dynamics and associated error
estimates”. In: ESAIM: Math. Model. Numer. Anal.
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A slightly more general GLE

In numerical experiments, we consider the GLE with the following paramaters:

_1i _1/(0 -« _/2B71a?2 (0 0
)\_I/(O)7 A_z/z(a a2>_> 2= v? 01/

In particular, we recover model GL1 as o — oo (the overdamped limit of the noise).

m % is horizontal scaling;

m 7y is a vertical scaling;
m « encodes the shape;

10 ---- a=o0 (GL1)

0.8 — a=05
—— a=
0.6 — a=

— a=

- 04

0.0

—0.2

—0.4
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Dependence of D on ~

D
102 0]
10° 0.61
1072
0.4
0% 102 100 100 100 10* 10° 0% 1072 100 100 10' 10 103
v v

Figure: Diffusion coefficient as a function of v, when v = o = 1.
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Dependence of D on v and «

D
0.840{ — L
. GLI

0.8351 ——. QL2
0.830 1
0.825 1
0.820
0.815 {rmsmsnaagaten™=
0.810 4 . . - . .

0.0 0.2 0.4 06 0.8 1.0

Figure: Effective diffusion coefficient against v, for fixed values 8 = v = 1.
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Perspectives for future work

m Numerical study of the underdamped limit with variance reduction methods.

m Generalization to other systems? Higher-dimensional GLEs, atom chains, ...
m Direct L?(p) or Schur complement approach?
m Study of the spectral method, e.g. discrete hypocoercivity, convergence?

Thank you for your attention!
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