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Goals of computational statistical physics

e Computation of macroscopic properties from Newtonians atomistic models:

m Static properties, such as
m the heat capacity and

& 14007
= the equations of state P = P(p,T). E 1o
< 1000
. . =
m Dynamical properties, such as transport @ 8007
. 93
coefficients: o 600y

m the viscosity;
m the thermal conductivity;

= the mobility of ions in solution. O 00 S0 100
Pressure (MPa)

Equation of state of argon at 300K.
® ‘+': molecular simulation;

@ Solid line: experimental measurements[ll.

e Numerical microscope: used in physics, biology, chemistry.

[1] https://webbook.nist.gov/chemistry/fluid/
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Some background material on the Langevin equation

Consider the (one-particle) Langevin equation
dqt = pt dt7
dp, = —VV(q,)dt —yp, dt + /2y~ AWy,

where v is the friction, V is a periodic potential, and § =

(dosPo) ~ K
1
EpT "

m The invariant probability measure is

1 1 —8(v@+=2
N(%P)Ize FH(aP) Z© B( @+ )7 on T¢ x R%.

m The generator of the associated Markov semigroup

(e“*¢) (a,p) = E((ar, p,)| (a0, Po) = (. P)
is the following operator:
L=(p Vq—VV(q) Vp)+7(~PVp+ B 'Ap) =t Lram + 7 Lrb.
We denote by ||-|| and {-,-) the norm and inner product of L*(u), and

L3 = {# € (1) : (1) = Bup = 0}
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Definition of the mobility

Consider Langevin dynamics with additional forcing in a direction e:

dq, = p, dt,
dp, = —VV(q,)dt + nedt — yp, dt + v/2v8- 1 dW,.

This dynamics admits a unique invariant probability distribution pu,, € P(T? x RY).
Definition (Mobility)

The mobility in direction e is defined mathematically as
.1 T
Me = lim —E,, [e p]

= factor relating the mean momentum to the strength of the inducing force.

m There is a symmetric mobility tensor M such that M. = e'Me.

m Einstein’s relation: D = 7'M, with D the effective diffusion coefficient.
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Effective diffusion

It is possible to show a functional central limit theorem for the Langevin dynamicsi?:
€/~ V2D W, weakly on C(]0, 00)).
e—>

In particular, q,/v/t — N(0,2D) weakly.
—oo

t =3.00, D = 0.000

s Pure diffusion
Ui55 B GL1 (MC simulation)
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-8 —6 4 g 0 p 6 8
Position
Figure: Histogram of g /+/t. The potential V' (q) = — cos(q)/2 is illustrated in the background.

[2] R. N. BHATTACHARYA. On the functional central limit theorem and the law of the iterated logarithm
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Mathematical expression for the effective diffusion (dimension 1)

Expression of D in terms of the solution to a Poisson equation

The effective diffusion coefficient is given by where D = (¢, p) and ¢ is the solution to

—Lo=p, ¢ € Li(p) == {u € L*(p) : (u,1) = 0}.

Key idea of the proof: Apply Ité's formula to ¢

do(gs,ps) = —psds +/2y8~1 = QSaps dWs

and then rearrange:

t/<2
€(qt/s2 - qo) = E/ Ds ds
0

= E(¢(q07p0) - ¢(qt/5 2, Pt/e2 ) + V 276 16/ QSvps)dWs .

—0

—V2D W} weakly by MCLT

In the multidimensional setting, De = (¢e,e'p) with —L¢e =e'p
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Langevin dynamics: underdamped and overdamped regimes!!

4 4
3 3
2 2 H
1 - 1 1
o o
-1 -1
-2 -2
-3 -3
-5 -2 -1 [ 1 2 3 3 -2 -1 1 2 3

0
q
Figure: Langevin dynamics with friction v = 0.1 (left) and v = 10 (right)

m The underdamped limit as v — 0 is well understood in dimension 1 but not in the
multi-dimensional setting. In dimension 1, it holds that

¢ = _‘C'_lp = ’771¢und + 0(7_1/2)'

m Overdamped limit: as v — oo, the rescaled process t — ¢+ converges weakly to the
solution of the overdamped Langevin equation:

q=-VV(g) + V25 W.

[3] M. HAIRER and G. A. PavLIOTIs. From ballistic to diffusive behavior in periodic potentials. J. Stat.
Phys., 2008.
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The underdamped limit in dimension 1

As v — 0, the Hamiltonian of the rescaled process

p<O0 p>0

Ey

Emin
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Scaling of the effective diffusion coefficient for Langevin dynamics!*!

In dimension 1, limy—0YDY = Dund := {(Pund, p) and limy_,oc ¥D? = Doya.

-3 -2

10

[4] G. A. PavrioTis and A. VociaNNoU. Diffusive transport in periodic potentials: underdamped
dynamics. Fluct. Noise Lett., 2008.
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Open question: surface diffusion when v < 10

Applications:
m integrated circuits;

m catalysis.

In dimension > 1, it does not hold that yDZ —0> Duna when V' is non-separable, e.g.
v

V(a) =~ (cos(ar) + cos(az) ) — 5 cos(an) cos(2)

Open question: behavior of the effective diffusion coefficient when v < 17

2
Dl =1 L[’eth‘ ] -7 299
e — ti}glo ot ~Y o, o =100

[5] Source of the video: https://en.wikipedia.org/wiki/Surface_diffusion
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Brief literature review

Open question:
How does DZ behave when v < 1 and d = 27

Various answers are given in the literature:

—1/2

m DY vy for specific potentials®;

1/3

m DY x /3 for specific potentialsl’:;

m D? o« v~ 7 with o depending on the potentiall®l.

Difficulty with v < 1:

m Deterministic methods for the Poisson equation —L¢. = e p are ill-conditioned.

m Probabilistic methods are very slow to converge.

[6] L. Y. CHEN, M. R. BALDAN, and S. C. YING. Surface diffusion in the low-friction limit: Occurrence
of long jumps. Phys. Rev. B, 1996.

[7] O. M. BrRAUN and R. FERRANDO. Role of long jumps in surface diffusion. Phys. Rev. E, 2002.

[8] J. RoussEL. Theoretical and Numerical Analysis of Non-Reversible Dynamics in Computational
Statistical Physics. PhD thesis, Université Paris-Est, 2018.
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Efficient mobility estimation

Optimal importance sampling for overdamped Langevin dynamics
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Numerical approaches for calculating the effective diffusion coefficient

m Linear response approach:

1 T
De = Iy - By, (e'p).

where p1,, is the invariant distribution of the system with external forcing.

m Green—Kubo formula: Since —£71 = ooew dt,

e-/ﬁ epepd,u // epep)d,udt

~ [T B poeTR)

0
m Einstein’s relation:

X 1
De = lim Q—tE# [’eT(Clt - QO)F]

t—o0

m Deterministic method, e.g. Fourier/Hermite Galerkin, for the Poisson equation

—Lpe = eTPa De = (e, p) -

Mobility estimation for Langevin dynamics using control variates — Efficient mobility estimation
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Estimation of the effective diffusion coefficient from Einstein's relation

Consider the following estimator of the effective diffusion coefficient De:

e’ — 2
ury = 12wl g

Bias of this estimator:
E[u(T)] = De — /0 <ew(eTp),eTp> min {17 %} dt.

Using the decay estimate for the semigroup[g]

[E[u(T)] = De|

)

etl:H < Leflmin{'y,’y_l}t
B(L3(w))

we deduce )

- Cmax{r*.y"?)
— T -

[9] J. RoussiL and G. SToLTz. Spectral methods for Langevin dynamics and associated error estimates.
ESAIM: Math. Model. Numer. Anal., 2018.
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Variance of the estimator u(7T') for large T'

For T > 1, it holds approximately that

e’ (ar —ay) | D) _fefar—a)|” >
T 0 ~ N(0, Do) = X (1).

Therefore, we deduce
lim V[u(T)] =2DZ.

T — o0

The relative standard deviation (asymptotically as 7" — o) is therefore

li V(D) =2 independent of
T%W = independent of .

Scaling of the mean square error when using J realizations

Assuming an asymptotic scaling as v~ 7 of De, we have

MSE C
DZ — ,Y4—2¢T2

Vy € (0,1), +%
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Variance reduction using control variates

Let ¢ denote the solution to the Poisson equation

~L¢e(q,p) =e'p,  ¢e € Li(p)

and let Y. denote an approximation of ¢e. By Itd’s formula, we obtain

T T
de(dr, Pr) — Pe(dg; Pg) = */ eTptdtJr\/?vﬂ‘l/ Vpde(a, py) - dWy.
0

0
T
/ e'p,dt
0

T
—te(qr, Pr) + Ye(qg; Pg) + \/2vﬂ‘1/0 Vpte(a, py) - AWy =: Er.

Therefore

.
e (ar —qp)

Q

which suggests the improved estimator

T 2
=l (18] n[5F]).
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Properties of the improved estimator

Smaller bias if —Lve ~ e p:

Blo(ry) - D3] < ET ery | (5777 4 2l

Smaller variance:
V[u(T)] <C (T—llwe — YellLag” + 7 Vode — vaenm(uf)

X (T e + wel3ag + 711 Vot + VovelFag, ) -

Construction of v in the one-dimensional setting. We consider two approaches:

m Approximate the solution to the Poisson equation by a Galerkin method.

m Use asymptotic result for the Poisson equation:
L2 (u)
VP > Qund,
~—0

which suggests letting ¥ = ¢una /7.
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Construction of the approximate solution e in dimension 2

We consider the potential

Viq) = f% (cos(ql) + cos(qz)) — d cos(q1) cos(q2).

m For this potential, D is isotropic ~~ sufficient to consider e = (1,0),

D1,0) = (¢(1,0):P1) —Lo1,0)(q,P) =p1.

m If 6 = 0, then the solution is ¢(1,0)(q, P) = ¢1D(q1,p1), Where ¢1p solves

—Lip¢ip(g,p) = p, Vin(q) = % cos(q).

m We take 9 1,0y(q, P) = ¥1p(q1,p1), where ¢¥1p = ¢1p.
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Numerical experiments

Optimal importance sampling for overdamped Langevin dynamics
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Numerical experiments for the one-dimensional case (1/2)

Effective diffusion coefficient: vD7/Dya Relative standard deviation

—— MC/No control

—=— MC/Galerkin
—— MC/Underdamped

—— Galerkin

2794 —— MC/No control
—— MC/Galerkin
—— MC/Underdamped

2—6
— V2
10-° 104 1073 102 107! 10°
Y v
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Numerical experiments for the one-dimensional case (2/2)

Sample mean Standard deviation
—— MC/No control
340 600 — -+ MC/Galerkin
= = MC/Underdamped
>, g LN YaY/
3201, B S e 5001
i
! 400 1
300
300
280 200
R KOs RIS I R
/
= MC/No control 004 . |
260 =+ MC/Galerkin I.r‘
== MC/Underdamped
0]
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
t t

Figure: Evolution of the sample mean and standard deviation, estimated from J = 5000 realizations for v = 103,
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Performance of the control variates approach in dimension 2

Relative standard deviation Relative standard deviation
. — No control
.- 5=00 ~-o- MC/Underdamped, § = 0.0
—a 5=001 o o ~e MC/Underdamped, & = 0.04
-~ MC/Galerkin, & = 0.08 - MC/Underdamped, § = 0.08
-~ MC/Galerkin, § =016 * - MC/Underdamped, 8 = 0.16
”',,., MC, kin, 5 =032 - MC/Underdamped, § = 0.32
0 e e kin, & = 0.64 - MC/Underdamped, § = 0.64
10%;
107!
04 104 1072 0t 10" 104 0 1072 107! 10°

m Variance reduction is possible if |§| /v < 1;

m Control variates are not very useful as v — 0 and ¢ is fixed. ..
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Scaling of the mobility in dimension 2

e §=0.0,Doccy 07
101 ° 0=0.04,D oy
. §=10.08,D o ,Y—U.Sii
°  0=016,D oy
10 o §=032,D oy 00
o §=0.64,D oy ?
102
10!
10°
107° 1074 1073 1072 107 10°
~y
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Summary of part | and perspectives for future work

In this part, we presented

m a variance reduction approach for efficiently estimating the mobility;

m numerical results showing that the scaling of the mobility is not universal.
Perspectives for future work:

m Use alternative methods (PINNs, Gaussian processes) to solve the Poisson equation;

m Study and improve variance reduction approaches for other transport coefficients.
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Optimal importance sampling for overdamped Langevin dynamics

Background and problem statement
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The sampling problem

Objective of the sampling problem

Calculate averages with respect to

Often in applications:

m The dimension d is large;
m The normalization constant Z is unknown;

m We cannot generate i.i.d. samples from p.

Markov chain Monte Carlo (MCMC) approach:

e ulf) % i ()= 5 [ 00

for a Markov process (Y:):>0 that is ergodic with respect to p.

Example: overdamped Langevin dynamics

dY; = —VV(Y;)dt + V2dW;, Yo = yo.
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Importance sampling in the MCMC context

If (X¢)e>0 is a Markov process ergodic with respect to
-v-uU

€ -V-U
= s Juy = e 5
="z v [rd

then I = p(f) may be approximated by

*/ fe Xt
Markov process: overdamped Langevin dynamics

dX, = —V(V + U)(Xy)dt + V2dW:,  Xo = xo.

Asymptotic variance: Under appropriate conditions, it holds that

VT (ui(f) 1) La—wmf(o a7U]).

Objective

Find U such that the asymptotic variance o7 [U] is minimized.
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Background: importance sampling in the i.i.d. setting (1/2)

Given i.i.d. samples {X* X2 ...} from py, we define

Np o Zaa (PN L w X ((f = De”) (X7)
S S Te  EE S S IR

Numerator: by the central limit theorem,

jﬁi((f—])e(f) (X")%N<O7/N (f_I)eU‘leuU>

Denominator: by the strong law of large numbers,
N
1 U n a.s. Z
v () e s g
n—

Therefore, by Slutsky’s theorem,

VN(ud (f) = I) 225 N (0,57 [U]),  s3U) ::% Tn!(f—f)e”lzduU.
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Background: importance sampling in the i.i.d. setting (2/2)

By the Cauchy—Schwarz inequality, it holds that

2 2
012 2 ([ -1 aw) = ([ 1r-nev)

with equality when |f — I|eY is constant.

Optimal importance distribution

The optimal py in the i.i.d. setting is

pu o< |f —Ije™”
Objectives:

m Is there a counterpart of this formula in the MCMC setting?

m If not, can we approximate the optimal distribution numerically?
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Optimal importance sampling for overdamped Langevin dynamics

Minimizing the asymptotic variance for one observable
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Formula for the asymptotic variance

Let Ly denote the generator of the Markov semigroup associated to the modified potential;

Ly=-V(V+U)-V+A.

Limit theorem
Under appropriate conditions, it holds that

VI (1) - 1) 225 N (0,03 (01).

The asymptotic variance is given by

O'?‘[U = ) e d)u‘Ua

where ¢y is the unique solution in Hl(,uU) N L3(uv) to

—Lugy = (f—1)e”

Main ideas of the proof: central limit theorem for martingales, Slutsky’s theorem.
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Explicit optimal U in dimension 1
In dimension one, it holds that
of[U] > </|F +A|dx) . (1)

F(z) := /Oz (F(&) —I)e V@ de.

This inequality (1) is an equality for

where

U(z) = Us(z) = =V (z) — In|F(z) + A4,
where A, is the constant achieving the infimum in (1).

m The potential U, is generally singular: impractical for numerics. . .

m The lower bound in (1) can be approached by a smooth U.
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Example (1/2)

Assume that V =0 and f(x) = cos(z).

3

— f
— V+U
— exp(=V-U)

~» The optimal potential “divides” the domain into two parts.
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Example (2/2)

Assume that V(z) = 5cos(2z) and f(x) = sin(x). The target measure is multimodal.

3
— f
— V+U
2 — exp(=V-U)

Variance reduction by a factor > 1000!
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Finding the optimal U in the multidimensional setting

Proposition (Functional derivative of the asymptotic variance)
Let ¢u denote the solution to
— Lugy = (f—T)e”. (2)

Under appropriate conditions, it holds for all SU € C*°(T%) that

%da,%[U] 8U = lim % (03U + e6U] — o3[U])

Z2
= 7[; 5U<|V¢U|2 —/ |V¢>U|2duu) duu. (3)
Td Td

Steepest descent approach:

m Solve the Poisson equation (2) numerically;
2,

m Construct an ascent direction G for a]% using (3), e.g. 60U = |Vou

m Perform a step in this direction: U < U — nG,

m Repeat until convergence.
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No smooth minimizers

Corollary (No smooth minimizer)

Unless f is constant, there is no perturbation potential U € C*°(T™) that is a critical
point of o}[U].

Proof. Assume by contradiction that U. is smooth critical point. Then
_ 1.5 _ 7% 2 2
0= *dO’f[U*] -0U = o) U |V¢U*‘ - ‘V¢U*| d,uU* dMU*7
2 Z Td Td

for all §U € C°°(T%).

m Therefore, it must hold that |[V¢y, |* = C is constant.
m Since ¢y, is a smooth function, there is z € T such that V¢, (z) = 0.

m Consequently C' =0 and so V¢y, = 0: contradiction because then Ly, ¢u, = 0.
~~ The optimal perturbation potential is not convenient in practice. ..
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Example (1/2)

Assume that V =0 and f(z) = sin(z1) + sin(z2).

3 2 1 o 1 2 3

Figure: Optimal total potential (left) together with the solution to the associated Poisson equation (right).

~~ The domain is again divided into subdomains that suffice for estimating 1.
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Example (2/2): multimodal target e~V

Assume that V(z) = 2cos(z1) — cos(z2) and f(z) = sin(z1).

6

5

|4

s

2

2 1
III o

3 2 1 o 1 2 3
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Optimal importance sampling for overdamped Langevin dynamics

Minimizing the asymptotic variance for a class of observables
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Alternative: minimizing the expected variance over a class of observables

Assume that the observables are well described by a Gaussian random field
J
f:Z \/>‘J—ujfj7 Uj NN(O7 1)7 )‘j € (0,00)
j=1

Question: can we find U such that 0*[U] := E(o}[U]) is minimized?

m |t holds that ,
o*[U] = Z )\jaij.
j=1

m The functional derivative of ¢*[U] is given by

L2 _Zj/ B v 2
5o’ U]+ 0U = 73 5 U TdéUduU ;Mvm dp .

m The steepest descent approach can be employed in this case too!
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Example

Here V(z) = 2cos(2z1) — cos(z2) and f ~ N (0,(A+TI)7").

Figure: Potential V' (left) and optimal potential V' 4 U (right).
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Summary of part Il and perspectives for future work

In this part,

m We studied an importance sampling approach for the overdamped Langevin dynamics.

m We proposed an approach for calculating the optimal perturbation potential.
Perspectives:

m Solving the Poisson equation accurately is not possible in high dimension.

m Application to high-dimensional systems:

U(z) =U(&(x)), £ reaction coordinate.

Thank you for your attention!
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Connection with the asymptotic variance of MCMC estimators

Ergodic theorem!™: for an observable » € L* (1),

1 t a.s.
b= Z/o e(a,,p,)ds —— Eup.

Central limit theorem[™!: If the following Poisson equation has a solution ¢ € L?(p),

—Lo=p—Eup,
then a central limit theorem holds:

~ Law
V(@1 — Eup) =" N(0,07), 0 = (6,0 — Eugp).

Connection with effective diffusion: Apply this result with ¢(q,p) = e'p.

[10] W. KLIEMANN. Recurrence and invariant measures for degenerate diffusions. Ann. Probab., 1987.
[11] R. N. BHATTACHARYA. On the functional central limit theorem and the law of the iterated logarithm
for Markov processes. Z. Wahrsch. Verw. Gebiete, 1982.
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