

an

Journées McKean–Vlasov à Jussieu

Urbain Vaes urbain.vaes@inria.fr

MATHERIALS – Inria Paris & CERMICS – École des Ponts ParisTech

October 2024

Nicolai Gerber

Hausdorff Center for Mathematics

Franca Hoffmann

Caltech

References:

- N. J. Gerber, F. Hoffmann, and UV. Arxiv preprint, 2023 Mean-field limits for Consensus-Based Optimization and Sampling
- ▶ UV. Arxiv preprint, 2024

Sharp propagation of chaos for the Ensemble Langevin Sampler

Motivation

The classical synchronous coupling approach

Extending the synchronous coupling approach for CBO/S

Extending the synchronous coupling approach for EKS

Consensus-based optimization (CBO)^{1,2}

Global optimization problem:

Find
$$x \in \underset{x \in \mathbf{R}^d}{\operatorname{arg\,min}} \mathcal{F} \qquad (\mathcal{F} \colon \mathbf{R}^d \to \mathbf{R})$$

CBO interacting particle system

$$dX_t^j = -\left(X_t^j - \mathcal{M}_{\boldsymbol{\beta}}\left(\boldsymbol{\mu}_t^J\right)\right) dt + \sqrt{2}\sigma \left|X_t^j - \mathcal{M}_{\boldsymbol{\beta}}\left(\boldsymbol{\mu}_t^J\right)\right| dW_t^j, \qquad j = 1, \dots, J,$$

• β is "inverse temperature" parameter.

- μ_t^J is empirical measure $\mu_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j}$.
- $\mathcal{M}_{\beta} : \mathcal{P}(\mathbf{R}^d) \to \mathbf{R}^d$ is weighted mean operator:

$$\mathcal{M}_{\boldsymbol{\beta}}(\boldsymbol{\mu}) = \frac{\int x \, \mathrm{e}^{-\boldsymbol{\beta}\mathcal{F}(x)} \, \boldsymbol{\mu}(\mathrm{d}x)}{\int \mathrm{e}^{-\boldsymbol{\beta}\mathcal{F}(x)} \, \boldsymbol{\mu}(\mathrm{d}x)}, \qquad \mathcal{M}_{\boldsymbol{\beta}}\left(\boldsymbol{\mu}_{t}^{J}\right) = \frac{\sum_{j=1}^{J} X_{t}^{j} \exp\left(-\boldsymbol{\beta}\mathcal{F}(X_{t}^{j})\right)}{\sum_{j=1}^{J} \exp\left(-\boldsymbol{\beta}\mathcal{F}(X_{t}^{j})\right)}$$

¹R. Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.

²J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.

Sampling problem:

Generate samples from distribution
$$\pi \propto e^{-\mathcal{F}}$$
 $(\mathcal{F}: \mathbf{R}^d \to \mathbf{R})$

CBS interacting particle system

$$\mathrm{d}X_t^j = -\left(X_t^j - \mathcal{M}_{\boldsymbol{\beta}}\left(\mu_t^J\right)\right)\mathrm{d}t + \sqrt{2(1+\boldsymbol{\beta})\,\mathcal{C}_{\boldsymbol{\beta}}(\mu_t^J)}\,\mathrm{d}W_t^j, \qquad j = 1, \dots, J,$$

- β is "inverse temperature" parameter.
- μ_t^J is empirical measure $\mu_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j}$.

• $C_{\beta} : \mathcal{P}(\mathbf{R}^d) \to \mathbf{R}^{d \times d}$ is weighted covariance operator:

$$\mathcal{C}_{\beta}(\mu) = \frac{\int (x \otimes x) e^{-\beta \mathcal{F}(x)} \mu(\mathrm{d}x)}{\int e^{-\beta \mathcal{F}(x)} \mu(\mathrm{d}x)} - \mathcal{M}_{\beta}(\mu) \otimes \mathcal{M}_{\beta}(\mu).$$

¹J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.

Motivation

Taking formally $J \rightarrow \infty$ in the interacting particle systems leads to

CBO mean field limit

$$\begin{cases} \mathrm{d}\overline{X}_t = -\left(\overline{X}_t - \mathcal{M}_{\beta}(\overline{\rho}_t)\right) \mathrm{d}t + \sqrt{2}\sigma \left|\overline{X}_t - \mathcal{M}_{\beta}(\overline{\rho}_t)\right| \mathrm{d}\overline{W}_t,\\ \overline{\rho}_t = \mathrm{Law}(\overline{X}_t). \end{cases}$$

CBS mean field limit

$$\begin{cases} \mathrm{d}\overline{X}_t = -\left(\overline{X}_t - \mathcal{M}_{\beta}(\overline{\rho}_t)\right) \mathrm{d}t + \sqrt{2(1+\beta)}\mathcal{C}_{\beta}(\overline{\rho}_t) \,\mathrm{d}\overline{W}_t,\\ \overline{\rho}_t = \mathrm{Law}(\overline{X}_t). \end{cases}$$

▶ Nonlinear Markov processes in \mathbf{R}^d : future depends on \overline{X}_t and its distribution;

Associated Fokker–Planck equations are nonlinear and nonlocal.

Notation: Wasserstein distances¹

Wasserstein distance in \mathbf{R}^d (here $|\cdot|$ is always the Euclidean norm)

For
$$\mu, \nu \in \mathcal{P}(\mathbf{R}^d)$$
, $W_p(\mu, \nu) = \inf_{\gamma \in \Gamma(\mu, \nu)} \left(\mathbf{E}_{(X, Y) \sim \gamma} |X - Y|^p \right)^{\frac{1}{p}}$

Wasserstein distance in \mathbf{R}^{dJ}

For
$$f^{J}, g^{J} \in \mathcal{P}(\mathbf{R}^{dJ})$$
, $W_{p}(f^{J}, g^{J}) = \inf_{\gamma \in \Gamma(f^{J}, g^{J})} \left(\mathbf{E}_{(\mathbf{X}, \mathbf{Y}) \sim \gamma} \frac{1}{J} \sum_{j=1}^{J} |X^{j} - Y^{j}|^{p} \right)^{\frac{1}{p}}$

- With this normalization, $W_p(\mu^{\otimes J}, \nu^{\otimes J}) \leqslant W_p(\mu, \nu)$.
- For associated empirical measures, $\mathbf{E}\left[W_p(\mu_f^J, \mu_g^J)^p\right] \leqslant W_p(f^J, g^J)^p$.

Below $f^J, \overline{f}^J \in \mathcal{P}(\mathbf{R}^{dJ})$ are joint laws, while $\mu^J, \overline{\mu}^J \in \mathcal{P}(\mathcal{P}(\mathbf{R}^d))$ are empirical measures:

$$\mu^J = \frac{1}{J} \sum_{j=1}^J \delta_{X^j}, \qquad \overline{\mu}^J = \frac{1}{J} \sum_{j=1}^J \delta_{\overline{X}^j}$$

¹L.-P. Chaintron and A. Diez. Kinet. Relat. Models, 2022.

Motivation

Convergence results in mean field law for CBO and CBS

Let $W_2: \mathcal{P}_2(\mathbf{R}^d) \times \mathcal{P}_2(\mathbf{R}^d) \to \mathbf{R}$ denote the Wasserstein-2 metric.

Convergence of mean field CBO^{1,2}

Under mild conditions including existence of a unique minimizer, there is λ such that

$$\forall t \in [0, T_{\beta}], \qquad W_2(\overline{\rho}_t, \delta_{x_*}) \leqslant W_2(\overline{\rho}_0, \delta_{x_*}) e^{-\lambda t}, \qquad x_* = \operatorname*{arg\,min}_{x \in \mathbf{R}^d} \mathcal{F}$$

Furthermore $T_{\beta} \to \infty$ as $\beta \to \infty$.

Convergence of mean field CBS³

If $\pi \propto e^{-\mathcal{F}}$ is Gaussian and $\overline{\rho}_0$ is Gaussian, then

$$\forall t \ge 0, \qquad W_2(\overline{\rho}_t, \pi) \le C \,\mathrm{e}^{-\left(rac{\beta}{1+\beta}\right)t}.$$

¹J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.

²M. Fornasier, T. Klock, and K. Riedl. SIAM J. Optim., 2024.

³J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.

Convergence for the interacting particle systems

Let $f_t^J = \text{Law}(X_t^1, \dots, X_t^J)$. By the triangle inequality,

$$W_2\left(f_t^J, \nu^{\otimes J}\right) \leqslant \underbrace{W_2\left(f_t^J, \overline{\rho}_t^{\otimes J}\right)}_{\to 0 \text{ as } J \to \infty???} + \underbrace{W_2(\overline{\rho}_t, \nu)}_{\leqslant C e^{-\lambda t}}, \qquad \nu = \begin{cases} \delta_{x_*} & \text{ for CBO,} \\ e^{-f} & \text{ for CBS.} \end{cases}$$

.

Pre-existing mean field results for CBO (i.i.d. initial condition and fixed t)

¹Based on a compactness argument, it was shown that

$$\mu_t^J \xrightarrow[J \to \infty]{\text{Law}} \overline{\rho}_t, \qquad (\text{no rate}), \qquad \mu_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j}.$$

▶ ²For all $\varepsilon > 0$, there is $\Omega_{\varepsilon} \subset \Omega$ and $C_{\varepsilon} > 0$ such that for all J

$$\mathbf{P}[\Omega \setminus \Omega_{\boldsymbol{\varepsilon}}] \leqslant \boldsymbol{\varepsilon} \quad \text{and} \quad \mathbf{E}\left[W_2\left(\mu_t^J, \overline{\rho}_t^J\right) \middle| \Omega_{\boldsymbol{\varepsilon}}\right] \leqslant C_{\boldsymbol{\varepsilon}} J^{-\alpha}, \qquad \qquad C_{\boldsymbol{\varepsilon}} \xrightarrow[\boldsymbol{\varepsilon} \to 0]{} \infty$$

Our goal: obtain an estimate of the form $W_p(f_t^J, \overline{\rho}_t^{\otimes J}) \leqslant C J^{-\frac{1}{2}}$.

¹H. Huang and J. Qiu. Math. Methods Appl. Sci., 2022.

²M. Fornasier, T. Klock, and K. Riedl. SIAM J. Optim., 2024.

Motivation

The classical synchronous coupling approach

Extending the synchronous coupling approach for CBO/S

Extending the synchronous coupling approach for EKS

Toy example (with $\mathcal{M}(\mu)$ the usual mean under μ)

Interacting particle system:

$$\mathrm{d}X_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right)\mathrm{d}t + \mathrm{d}W_t^j, \qquad X_0^j = x_0^j \stackrel{\mathrm{i.i.d.}}{\sim} \overline{\rho}_0 \qquad j = 1, \dots, J.$$

Mean field limit:

$$\begin{cases} \mathrm{d}\overline{X}_t = -\left(\overline{X}_t - \mathcal{M}(\overline{\rho}_t)\right) \mathrm{d}t + \mathrm{d}\overline{W}_t, \\ \overline{\rho}_t = \mathrm{Law}(\overline{X}_t). \end{cases}$$

Synchronous coupling

We couple to the particle system J copies of the mean field dynamics:

$$dX_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right) dt + dW_t^j, \qquad X_0^j = x_0^j, \qquad j = 1, \dots, J,$$
$$d\overline{X}_t^j = -\left(\overline{X}_t^j - \mathcal{M}(\overline{\rho}_t)\right) dt + dW_t^j, \qquad \overline{X}_0^j = x_0^j, \qquad j = 1, \dots, J,$$

with same initial condition and driving Browian motions.

Synchronous coupling $j \in \{1, \ldots, J\}$

$$dX_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right) dt + dW_t^j, \qquad X_0^j = x_0^j,$$

$$d\overline{X}_t^j = -\left(\overline{X}_t^j - \mathcal{M}(\overline{\rho}_t)\right) dt + dW_t^j, \qquad \overline{X}_0^j = x_0^j.$$

Key fact: mean field processes are i.i.d. with law $\overline{X}_t^j \sim \overline{\rho}_t$, so

$$W_2\left(f_t^J, \overline{\rho}_t^{\otimes J}\right) = W_2\left(f_t^J, \overline{f}_t^J\right), \qquad \overline{f}_t^J = \operatorname{Law}\left(\overline{X}_t^1, \dots, \overline{X}_t^J\right).$$

By definition of Wasserstein distance and exchangeability,

$$W_2\left(f_t^J, \overline{f}_t^J\right)^2 \leqslant \mathbf{E}\left[\frac{1}{J}\sum_{j=1}^{J} \left|X_t^j - \overline{X}_t^j\right|^2\right] = \mathbf{E}\left[\left|X_t^1 - \overline{X}_t^1\right|^2\right]$$

Bounding the remaining term (using Sznitman's approach¹)

Synchronous coupling $j \in \{1, \ldots, J\}$

$$dX_t^j = -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right) dt + dW_t^j, \qquad X_0^j = x_0^j,$$

$$d\overline{X}_t^j = -\left(\overline{X}_t^j - \mathcal{M}(\overline{\rho}_t)\right) dt + dW_t^j, \qquad \overline{X}_0^j = x_0^j.$$

Key Lemma: Lipschitz continuity of $\mathcal{M} \colon \mathcal{P}_1(\mathbf{R}^d) \to \mathbf{R}^d$

$$\forall (\mu, \nu) \in \mathcal{P}_1(\mathbf{R}^d) \times \mathcal{P}_1(\mathbf{R}^d), \qquad \left| \mathcal{M}(\mu) - \mathcal{M}(\nu) \right| \leqslant W_2(\mu, \nu).$$

$$\begin{split} \mathbf{E} \left[\left| X_t^1 - \overline{X}_t^1 \right|^2 \right] \lesssim & \int_0^t \mathbf{E} \left| X_s^1 - \overline{X}_s^1 \right|^2 + \mathbf{E} \left| \mathcal{M} \left(\mu_s^J \right) - \mathcal{M} \left(\overline{\rho}_s \right) \right|^2 \, \mathrm{d}s \\ \lesssim & \int_0^t \mathbf{E} \left| X_s^1 - \overline{X}_s^1 \right|^2 + \mathbf{E} \left| \mathcal{M} \left(\mu_s^J \right) - \mathcal{M} \left(\overline{\mu}_s^J \right) \right|^2 + \mathbf{E} \left| \mathcal{M} \left(\overline{\mu}_s^J \right) - \mathcal{M} \left(\overline{\rho}_s \right) \right|^2 \, \mathrm{d}s \\ \lesssim & \int_0^t \mathbf{E} \left| X_s^1 - \overline{X}_s^1 \right|^2 + \mathbf{E} \left[W_2 \left(\mu_s^J, \overline{\mu}_s^J \right)^2 \right] \, \mathrm{d}s + C_{\mathrm{MC}} J^{-1} \\ \lesssim & \int_0^t \mathbf{E} \left| X_s^1 - \overline{X}_s^1 \right|^2 \, \mathrm{d}s + C_{\mathrm{MC}} J^{-1} \qquad \qquad \mathbf{E} \left[|X_t^1 - \overline{X}_t^1|^2 \right] \leqslant C(t) J^{-1} \end{split}$$

¹A.-S. Sznitman. In École d'Été de Probabilités de Saint-Flour XIX—1989. Springer, Berlin, 1991.

The classical synchronous coupling approach

A triangle inequality gives

$$\begin{split} \left(\mathbf{E}W_2(\mu_t^J,\overline{\rho}_t)^2\right)^{\frac{1}{2}} &\leqslant \left(\mathbf{E}W_2(\mu_t^J,\overline{\mu}_t^J)^2\right)^{\frac{1}{2}} + \left(\mathbf{E}W_2(\overline{\mu}_t^J,\overline{\rho}_t)^2\right)^{\frac{1}{2}} \\ &\leqslant \left(\mathbf{E}\frac{1}{J}\sum_{j=1}^J \left|X_t^j - \overline{X}_t^j\right|^2\right)^{\frac{1}{2}} + \left(\mathbf{E}W_2(\overline{\mu}_t^J,\overline{\rho}_t)^2\right)^{\frac{1}{2}} \\ &\lesssim J^{-\frac{1}{2}} + J^{-\alpha}, \end{split}$$

for $\alpha > 0$ depending on dimension¹.

¹N. Fournier and A. Guillin. Probab. Theory Related Fields, 2015.

Synchronous coupling for CBO, $j \in \{1, \dots, J\}$

$$\begin{split} \mathrm{d}X_t^j &= -\left(X_t^j - \mathcal{M}_{\boldsymbol{\beta}}\left(\boldsymbol{\mu}_t^J\right)\right) \mathrm{d}t + \sqrt{2}\sigma \left|X_t^j - \mathcal{M}_{\boldsymbol{\beta}}\left(\boldsymbol{\mu}_t^J\right)\right| \mathrm{d}W_t^j, \qquad X_0^j = \boldsymbol{x}_0^j, \\ \mathrm{d}\overline{X}_t^j &= -\left(\overline{X}_t^j - \mathcal{M}_{\boldsymbol{\beta}}(\overline{\rho}_t)\right) \mathrm{d}t + \sqrt{2}\sigma \left|\overline{X}_t^j - \mathcal{M}_{\boldsymbol{\beta}}(\overline{\rho}_t)\right| \mathrm{d}W_t^j, \qquad \overline{X}_0^j = \boldsymbol{x}_0^j. \end{split}$$

Technical difficulties:

• $\mathcal{M}_{\beta} : \mathcal{P}_1(\mathbf{R}^d) \to \mathbf{R}^d$ is not globally Lipschitz continuous in general.

Usual Monte Carlo estimates do not enable to bound

$$\mathbf{E}\left|\mathcal{M}_{\boldsymbol{\beta}}\left(\overline{\mu}_{s}^{J}\right)-\mathcal{M}_{\boldsymbol{\beta}}(\overline{\rho}_{s})\right|^{2},$$

but estimates are given in the literature^{1,2}.

²S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.

¹P. Doukhan and G. Lang. Bernoulli, 2009.

Motivation

The classical synchronous coupling approach

Extending the synchronous coupling approach for CBO/S

Extending the synchronous coupling approach for EKS

Main result: quantitative mean field limits

Assumption (focusing on the unbounded \mathcal{F} setting for simplicity here)

Local Lischitz continuity. \mathcal{F} is bounded from below by $\mathcal{F}_{\star} = \inf \mathcal{F}$ and satisfies

$$orall x, y \in \mathbf{R}^d, \qquad |\mathcal{F}(x) - \mathcal{F}(y)| \le L_f \left(1 + |x| + |y|\right)^s |x - y|, \qquad s \ge 0.$$

Growth at infinity. There are constants c, u > 0 and a compact $K \subset \mathbf{R}^d$ such that

$$\forall x \in \mathbf{R}^d \setminus K, \qquad \frac{1}{c} |x|^u \leqslant \mathcal{F}(x) \leqslant c |x|^u.$$

Main theorem¹, holds for both CBO and CBS

If ${\mathcal F}$ satisfies the above assumption and $\overline{
ho}_0$ has infinitely many moments, then

$$\forall J \in \mathbf{N}^+, \quad \forall j \in \{1, \dots, J\}, \quad \mathbf{E}\left[\sup_{t \in [0,T]} \left|X_t^j - \overline{X}_t^j\right|^p\right] \le CJ^{-\frac{p}{2}}.$$

¹N. J. Gerber, F. Hoffmann, and UV. Arxiv preprint, 2023.

Definition of $\mathcal{P}_{p,R}(\mathbf{R}^d)$

$$\mathcal{P}_{p,\boldsymbol{R}}(\mathbf{R}^d) = \left\{ \mu \in \mathcal{P}_p(\mathbf{R}^d) : W_p(\mu, \delta_0) \leqslant \boldsymbol{R} \right\}.$$

▶ Local Lipschitz continuity for \mathcal{M}_{β} . For all R > 0 and for all $p \ge 1$, $\exists L$ s.t.

 $\forall (\mu, \nu) \in \mathcal{P}_{p,R}(\mathbf{R}^d) \times \mathcal{P}_p(\mathbf{R}^d), \qquad \left| \mathcal{M}_{\beta}(\mu) - \mathcal{M}_{\beta}(\nu) \right| \leq L W_p(\mu, \nu).$

• Moment bound: Suppose $\overline{\rho}_0 \in \mathcal{P}_q(\mathbf{R}^d)$. Then there is $\kappa > 0$ such that

$$\forall J \in \mathbf{N}^+, \qquad \mathbf{E}\left[\sup_{t \in [0,T]} \left|X_t^j\right|^q\right] \quad \lor \quad \mathbf{E}\left[\sup_{t \in [0,T]} \left|\overline{X}_t^j\right|^q\right] \leqslant \kappa.$$

Sketch of the proof: stopping time approach¹

• Local Lipschitz continuity of \mathcal{M}_{β} motivates stopping time

$$\theta_J = \inf \left\{ t \ge 0 : W_2(\overline{\mu}_t^J, \delta_0) \ge R \right\}, \qquad \overline{\mu}_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{\overline{X}_t^j}.$$

Then decompose

$$\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{p}\right]=\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{p}\mathbf{1}_{\left\{\theta_{J}>T\right\}}\right]+\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{p}\mathbf{1}_{\left\{\theta_{J}\leqslant T\right\}}\right].$$

► First term can be shown to scale as CJ^{-^p/₂} using classical approach;

Second term handled as follows (q > p):

$$\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{p}\mathbf{1}_{\left\{\boldsymbol{\theta}_{J}\leqslant\boldsymbol{T}\right\}}\right]\leqslant\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{q}\right]^{\frac{p}{q}}\mathbf{P}\left[\boldsymbol{\theta}_{J}\leqslant\boldsymbol{T}\right]^{\frac{q-p}{q}}$$

First factor bounded using moment bounds.
 Second factor: for sufficiently large R, by generalized Chebyshev inequality,

$$\forall \boldsymbol{a} > 0, \quad \exists C(\boldsymbol{a}) : \qquad \mathbf{P}\left[\theta_J \leqslant T\right] \leqslant C(\boldsymbol{a}) J^{-\boldsymbol{a}}$$

¹D. J. Higham, X. Mao, and A. M. Stuart. SIAM J. Numer. Anal., 2002.

Details of the proof: first term (1/2)

Starting point: the following is an upper bound for $\left|X_t^j - \overline{X}_t^j\right|^p \mathbf{1}_{\{\theta_J > T\}}$.

$$\begin{split} \left| X_{t \wedge \theta_J}^j - \overline{X}_{t \wedge \theta_J}^j \right|^p &\leqslant \left| \int_0^{t \wedge \theta_J} b\left(X_s^j, \mu_s^J \right) - b\left(\overline{X}_s^j, \overline{\rho}_s \right) \, \mathrm{d}s \right|^p \\ &+ \left| \int_0^{t \wedge \theta_J} \sigma\left(X_s^j, \mu_s^J \right) - \sigma\left(\overline{X}_s^j, \overline{\rho}_s \right) \, \mathrm{d}W_s \right|^p. \end{split}$$

By Doob's optional stopping and Burkholder–Davis–Gundy,

$$\mathbf{E}\left[\sup_{s\in[0,t]}\left|X_{s\wedge\theta_{J}}^{j}-\overline{X}_{s\wedge\theta_{J}}^{j}\right|^{p}\right] \leqslant (2T)^{p-1}\mathbf{E}\int_{0}^{t\wedge\theta_{J}}\left|b\left(X_{s}^{j},\mu_{s}^{J}\right)-b\left(\overline{X}_{s}^{j},\overline{\rho}_{s}\right)\right|^{p}\,\mathrm{d}s\right.\\ \left.+C_{\mathrm{BDG}}2^{p-1}T^{\frac{p}{2}-1}\mathbf{E}\int_{0}^{t\wedge\theta_{J}}\left\|\sigma\left(X_{s}^{j},\mu_{s}^{J}\right)-\sigma\left(\overline{X}_{s}^{j},\overline{\rho}_{s}\right)\right\|_{\mathrm{F}}^{p}\,\mathrm{d}s=:A_{t}+B_{t}.$$

Both terms handled similarly. For the drift, by the triangle inequality,

$$A_t \lesssim \int_0^t \mathbf{E} \left| b \left(X_{s \wedge \theta_J}^j, \mu_{s \wedge \theta_J}^J \right) - b \left(\overline{X}_{s \wedge \theta_J}^j, \overline{\mu}_{s \wedge \theta_J}^J \right) \right|^p \, \mathrm{d}s \\ + \int_0^t \mathbf{E} \left| b \left(\overline{X}_s^j, \overline{\mu}_s^J \right) - b \left(\overline{X}_s^j, \overline{\rho}_s \right) \right|^p \, \mathrm{d}s =: A_t^{(1)} + A_t^{(2)}.$$

Extending the synchronous coupling approach for CBO/S

Details of the proof: first term (2/2)

▶ In order to bound $A_t^{(1)}$, recall that $b(x, \mu) = -x + \mathcal{M}_{\beta}(\mu)$, so

$$\begin{split} \mathbf{E} \left| b \left(X_{s \wedge \theta_J}^j, \mu_{s \wedge \theta_J}^J \right) - b \left(\overline{X}_{s \wedge \theta_J}^j, \overline{\mu}_{s \wedge \theta_J}^J \right) \right|^p \lesssim \mathbf{E} \left| X_{s \wedge \theta_J}^j - \overline{X}_{s \wedge \theta_J}^j \right|^p \\ &+ \mathbf{E} \left| \mathcal{M}_{\boldsymbol{\beta}} \left(\mu_{s \wedge \theta_J}^J \right) - \mathcal{M}_{\boldsymbol{\beta}} \left(\overline{\mu}_{s \wedge \theta_J}^J \right) \right|^p \end{split}$$

By local W_p Lipschitz continuity of \mathcal{M}_β and definition of θ_J ,

$$\begin{split} \mathbf{E} \left| \mathcal{M}_{\boldsymbol{\beta}} \left(\mu_{s \wedge \theta_{J}}^{J} \right) - \mathcal{M}_{\boldsymbol{\beta}} \left(\overline{\mu}_{s \wedge \theta_{J}}^{J} \right) \right|^{p} &\lesssim C(\boldsymbol{R}) \mathbf{E} \left| W_{p} \left(\mu_{s \wedge \theta_{J}}^{J}, \overline{\mu}_{s \wedge \theta_{J}}^{J} \right) \right|^{p} \\ &\leqslant C(\boldsymbol{R}) \mathbf{E} \left| X_{s \wedge \theta_{J}}^{j} - \overline{X}_{s \wedge \theta_{J}}^{j} \right|^{p}. \end{split}$$

▶ In order to bound $A_t^{(2)}$, we use known results^{1,2}

$$\mathbf{E}\left|b\left(\overline{X}_{s}^{j},\overline{\mu}_{s}^{J}\right)-b\left(\overline{X}_{s}^{j},\overline{\rho}_{s}\right)\right|^{p}\propto\mathbf{E}\left|\mathcal{M}_{\beta}\left(\overline{\mu}_{s}^{J}\right)-\mathcal{M}_{\beta}\left(\overline{\rho}_{s}\right)\right|^{p}\lesssim J^{-\frac{p}{2}}$$

•

Putting everything together and using Grönwall,

$$\mathbf{E}\left[\sup_{t\in[0,T]}\left|X_{t\wedge\theta_J}^j-\overline{X}_{t\wedge\theta_J}^j\right|^p\right]\lesssim J^{-\frac{p}{2}}$$

¹P. Doukhan and G. Lang. Bernoulli, 2009.

²S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.

The more difficult part is to bound

$$\mathbf{P}[\theta_J(R) \leqslant T] = \mathbf{P}\left[\sup_{t \in [0,T]} \frac{1}{J} \sum_{j=1}^J \left| \overline{X}_t^j \right|^p \geqslant R \right]$$
$$\leqslant \mathbf{P}\left[\frac{1}{J} \sum_{j=1}^J Z_j \geqslant R\right], \qquad Z_j := \sup_{t \in [0,T]} \left| \overline{X}_t^j \right|^p.$$

Let $X = \frac{1}{J} \sum_{j=1}^{J} Z_j$. By the Marcinkiewicz–Zygmund inequality, it holds for $r \ge 2$ that

$$\mathbf{E} |X - \mathbf{E}[X]|^r \lesssim J^{-r} \mathbf{E} \left[\left(\sum_{j=1}^{J} |Z_j - \mathbf{E}[Z_j]|^2 \right)^{\frac{r}{2}} \right] \leqslant J^{-\frac{r}{2}} \mathbf{E} \left[|Z_1 - \mathbf{E}[Z_1]|^r \right],$$

where we used Jensen's inequality and exchangeability. If $R > \mathbf{E}[X]$, then

$$\mathbf{P}\left[X \ge R\right] \leqslant \mathbf{P}\left[\left|X - \mathbf{E}[X]\right|^r \ge \left(R - \mathbf{E}[X]\right)^r\right] \leqslant \mathbf{E}\left[\frac{\left|X - \mathbf{E}[X]\right|^r}{\left(R - \mathbf{E}[X]\right)^r}\right] \leqslant \frac{CJ^{-\frac{r}{2}}}{\left(R - \mathbf{E}[X]\right)^r},$$

where we used Markov's inequality.

Extending the synchronous coupling approach for CBO/S

Motivation

The classical synchronous coupling approach

Extending the synchronous coupling approach for CBO/S

Extending the synchronous coupling approach for EKS

Ensemble Kalman Sampler (EKS) to sample from $\pi \propto {
m e}^{-f}$

$$\mathrm{d}X_t^j = -\mathcal{C}(\boldsymbol{\mu}_t^J)\nabla \mathcal{F}(X_t^j)\,\mathrm{d}t + \sqrt{2\mathcal{C}(\boldsymbol{\mu}_t^J)}\,\mathrm{d}W_t^j, \qquad j = 1, \dots, J.$$

Formal mean field limit:

$$\mathrm{d}\overline{X}_t = -\mathcal{C}(\overline{\rho}_t)\nabla\mathcal{F}(\overline{X}_t)\,\mathrm{d}t + \sqrt{2\mathcal{C}(\overline{\rho}_t)}\,\mathrm{d}\overline{W}_t, \qquad \overline{\rho}_t = \mathrm{Law}(\overline{X}_t).$$

Additional technical difficulties:

- Covariance is a quadratic nonlinearity,
- "One-sided" local Lipschitz continuity does not hold.

Local Lipschitz continuity of $\mathcal{C} \colon \mathcal{P}_2(\mathbf{R}^d) \to \mathbf{R}^{d \times d}$

$$\forall (\mu,\nu) \in \mathcal{P}_2(\mathbf{R}^d) \times \mathcal{P}_2(\mathbf{R}^d), \qquad \left\| \mathcal{C}(\mu) - \mathcal{C}(\nu) \right\|_{\mathrm{F}} \leqslant 2 \Big(W_2(\mu,\delta_0) + W_2(\nu,\delta_0) \Big) W_2(\mu,\nu).$$

Synchronous coupling for EKS

$$dX_t^j = -\mathcal{C}(\mu_t^J)\nabla\mathcal{F}(X_t^j) dt + \sqrt{2\mathcal{C}(\mu_t^J)} dW^{(j)}, \qquad X_0^j = x_0^j, \qquad j = 1, \dots, J,$$

$$d\overline{X}_t^j = -\mathcal{C}(\overline{\rho}_t)\nabla\mathcal{F}(\overline{X}_t^j) dt + \sqrt{2\mathcal{C}(\overline{\rho}_t)} dW^{(j)}, \qquad X_0^j = x_0^j, \qquad j = 1, \dots, J.$$

First almost optimal propagation of chaos result proved by Ding and Li^{1,2}:

$$\forall \boldsymbol{\varepsilon} > 0, \qquad \exists C_{\boldsymbol{\varepsilon}} > 0, \qquad \mathbf{E} \left[\left| X_T^j - \overline{X}_T^j \right|^2 \right] \leqslant C_{\boldsymbol{\varepsilon}} J^{-1 + \boldsymbol{\varepsilon}}.$$

Theorem: sharp propagation of chaos³

If ${\cal F}$ is strongly convex with quadratic growth and $\overline{
ho}_0$ has infinitely many moments, then

$$\forall J \in \mathbf{N}^+, \quad \forall j \in \{1, \dots, J\}, \quad \mathbf{E}\left[\sup_{t \in [0,T]} \left|X_t^j - \overline{X}_t^j\right|^2\right] \le CJ^{-1}$$

¹Z. Ding and Q. Li. Stat. Comput., 2021.
²Z. Ding and Q. Li. SIAM J. Math. Anal., 2021.
³UV. Arxiv preprint, 2024.

Mean field limit for ensemble Kalman sampler: idea of the proof

Key idea: covariance function $\mathcal{C}\colon \mathcal{P}_2(\mathbf{R}^d)\to \mathbf{R}^{d\times d}$ is Lipschitz continuous on

$$P_R := \left\{ \nu \in \mathcal{P}(\mathbf{R}^d) : W_2(\nu, \delta_0) \leqslant R \right\}.$$

• Motivates letting $\theta_J(R) = \tau_J(R) \wedge \overline{\tau}_J(R)$ with

$$\begin{aligned} \tau_J(R) &= \inf \left\{ t \ge 0 : W_2(\mu_t^J, \delta_0) \ge R \right\}, \qquad \mu_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{X^j}, \\ \overline{\tau}_J(R) &= \inf \left\{ t \ge 0 : W_2(\overline{\mu}_t^J, \delta_0) \ge R \right\}, \qquad \overline{\mu}_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{\overline{X}^j}. \end{aligned}$$

Then decompose

$$\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{2}\right] = \mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{2}\mathbf{1}_{\left\{\boldsymbol{\theta}_{J}>T\right\}}\right] + \mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{2}\mathbf{1}_{\left\{\boldsymbol{\theta}_{J}\leqslant T\right\}}\right]$$

First term can be shown to scale as $C_R J^{-1}$ using classical approach;

Second term requires to bound

$$\mathbf{P}\left[\theta_{J} \leqslant T\right] \leqslant \underbrace{\mathbf{P}\left[\overline{\tau}_{J} \leqslant T\right]}_{\lesssim J^{-a} \quad \forall a > 0} + \underbrace{\mathbf{P}\left[\tau_{J} \leqslant T \leqslant \overline{\tau}_{J}\right]}_{\lesssim J^{-???}}$$

$$\begin{aligned} \mathbf{P}\left[\tau_{J} \leqslant T < \overline{\tau}_{J}\right] &\leqslant \mathbf{P}\left[\sup_{t \in [0,T]} W_{2}\left(\mu_{t \wedge \theta_{J}}^{J}, \delta_{0}\right) = R\right] \\ &= \mathbf{P}\left[\sup_{t \in [0,T]} W_{2}\left(\mu_{t \wedge \theta_{J}}^{J}, \overline{\mu}_{t \wedge \theta_{J}}^{J}\right) + \sup_{t \in [0,T]} W_{2}\left(\overline{\mu}_{t \wedge \theta_{J}}^{J}, \delta_{0}\right) \geqslant R\right] \\ &\leqslant \mathbf{P}\left[\sup_{t \in [0,T]} W_{2}\left(\mu_{t \wedge \theta_{J}}^{J}, \overline{\mu}_{t \wedge \theta_{J}}^{J}\right) \geqslant \frac{R}{2}\right] + \mathbf{P}\left[\sup_{t \in [0,T]} W_{2}\left(\overline{\mu}_{t \wedge \theta_{J}}^{J}, \delta_{0}\right) \geqslant \frac{R}{2}\right], \end{aligned}$$

First term decreases as J⁻¹ by Markov and estimate for stopped particle systems
 Second term decreases as J^{-α} for all α ≥ 0, as before.

In the end, this leads to a suboptimal estimate: for all q > 2,

$$\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{2}\mathbf{1}_{\left\{\theta_{J}\leqslant T\right\}}\right]\leqslant\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{q}\right]^{\frac{2}{q}}\mathbf{P}\left[\theta_{J}\leqslant T\right]^{\frac{q-2}{q}}\lesssim J^{-\frac{q-2}{q}}.$$

Details: making the estimate optimal

▶ Take R sufficiently large and let $\theta_{J,r} = \tau_{J,r} \land \overline{\tau}_{J,r}$ with $r \ge 2$ and

$$\begin{aligned} \tau_{J,r}(R) &= \inf \left\{ t \ge 0 : W_r(\mu_t^J, \delta_0) \ge R \right\}, \qquad \mu_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{X^j}, \\ \overline{\tau}_{J,r}(R) &= \inf \left\{ t \ge 0 : W_r(\overline{\mu}_t^J, \delta_0) \ge R \right\}. \qquad \overline{\mu}_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{\overline{X}^j}. \end{aligned}$$

Prove propagation of chaos in L^r for the stopped particle system:

$$\mathbf{E}\left[\sup_{t\in[0,T]}\left|X_{t\wedge\theta_{J,r}}^{j}-\overline{X}_{t\wedge\theta_{J,r}}^{j}\right|^{r}\right]\leq CJ^{-\frac{r}{2}}.$$

▶ Reasoning as before, prove that $\mathbf{P}[\tau_J \leq T < \overline{\tau}_J] \lesssim J^{-\frac{r}{2}}$.

Conclude as before

$$\mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{2}\right] = \mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{2}\mathbf{1}_{\left\{\boldsymbol{\theta}_{J}>T\right\}}\right] + \mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{2}\mathbf{1}_{\left\{\boldsymbol{\theta}_{J}\leqslant T\right\}}\right]$$
$$\lesssim J^{-1} + \mathbf{E}\left[\left|X_{t}^{j}-\overline{X}_{t}^{j}\right|^{q}\right]^{\frac{2}{q}}\left(J^{-\frac{r}{2}}\right)^{\frac{q-2}{q}} \lesssim J^{-1}.$$

- ▶ We presented optimal mean field estimates for CBO/S.
- These estimates are valid over a finite time horizon.
- Desirable improvement: prove uniform-in-time estimates:

$$\forall J \in \mathbf{N}^+, \qquad \mathbf{E}\left[\sup_{t \in [0,\infty)} \left| X_t^j - \overline{X}_t^j \right|^p \right] \le C J^{-\frac{p}{2}}.$$

Thank you for your attention!