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The discrete-time filtering problem

State dynamics and observations

Stochastic dynamics: vn+1 = Ψ(vn) + ξn, ξn ∼ N(0,Σ),

Data model: yn+1 = h(vn+1) + ηn+1, ηn+1 ∼ N(0,Γ ).

Independence assumption:

v0 ⊥⊥ {ξn} ⊥⊥ {ηn}

Initial state: v0 ∼ N(m0,C0).

Notations:

{vn}n∈J0,NK is the unknown state in Rd.

{yn}n∈J1,NK are the observations in RK .

Ψ: Rd → Rd and h : Rd → RK are nonlinear operators.

Y †
n = {y†

1, . . . , y
†
n} is a given realization of the data up to time n.

Goal: Approximate sequentially µn = Law(vn|Y †
n ).
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Key Linear Operators on P

Definition of P, G

P(Rr) : all probability measures on Rr.

G(Rr) : all Gaussian probability measures on Rr.

Definition of P

P : P(Rd) → P(Rd) is the linear operator:

Pπ(u) =
1√

(2π)d detΣ

∫
exp

(
−1

2
|u−Ψ(v)|2Σ

)
π(v) dv.

Definition of Q

Q : P(Rd) → P(Rd ×RK) is the linear operator:

Qπ(u, y) =
1√

(2π)K det Γ
exp

(
−1

2

∣∣y − h(u)
∣∣2
Γ

)
π(u).
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Unconditioned Dynamics

State dynamics and observations

Stochastic dynamics: vn+1 = Ψ(vn) + ξn, ξn ∼ N(0,Σ),

Data model: yn+1 = h(vn+1) + ηn+1, ηn+1 ∼ N(0,Γ ).

Independence assumption:

v0 ⊥⊥ {ξn} ⊥⊥ {ηn}

Initial state: v0 ∼ N(m0,C0).

Evolution of unconditioned dynamics

Let vn ∼ πn and (vn, yn) ∼ χn. Then

πn+1 = Pπn,

χn+1 = Qπn+1

The discrete-time filtering problem 5 / 20



Evolution of the true filtering distribution

Key Nonlinear Operator on P: conditioning

B( • ; y†) : P(Rd ×RK) → P(Rd) describes conditioning on observation y = y†:

B(ρ; y†)(u) =
ρ(u, y†)∫

Rd ρ(U, y†) dU
.

Probability Viewpoint (Nonlinear)

Notation: Y †
n = {y†

ℓ}
n
ℓ=1, vn|Y †

n ∼ µn.

µ̂n+1 = Pµn, vn+1|Y †
n ∼ µ̂n+1

ρn+1 = Qµ̂n+1, (vn+1, yn+1)|Y †
n ∼ ρn+1

µn+1 = B(ρn+1; y
†
n+1), conditioning.

Schematically,

Law(vn|Y †
n )

P−→ Law(vn+1|Y †
n )

B◦Q−−→ Law(vn+1|Y †
n+1).
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The True Filter

Sequential Interleaving of Prediction and Bayes Theorem

Pµn is prior prediction; L(•; y†) := B(•; y†) ◦ Q maps prior to posterior:

µn+1 = B(QPµn; y
†
n+1),

µn+1 = L(Pµn; y
†
n+1).

Particle Filter[1]

SJ : P(Rr)× Ω → P(Rr) is empirical approximation operator:

SJµ =
1

J

J∑
j=1

δvj , vj
i.i.d.∼ µ .

SJ is thus a random approximation of the identity operator on P(Rr).

µPF
n+1 = L(SJPµPF

n ; y†
n+1).

[1] A. Doucet, N. de Freitas, and N. Gordon, editors. Statistics for Engineering and
Information Science. Springer-Verlag, New York, 2001.
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Convergence of the Particle Filter (1/2)

Convergence of the particle filter[2][3]

sup
0⩽n⩽N

d
(
µn, µ

PF
n

)
⩽

C√
J
, d(µ, ν)2 := sup

|f |⩽1

E
(
µ[f ]− ν[f ]

)2
,

Comments on proof[4][5]

Metric d(•, •) on random probability measures:

Reduces to TV between deterministic measures.

Consistency + Stability Implies Convergence.

Consistency: d(SJµ, µ) ⩽ 1√
J
.

Stability: P, L Lipschitz in d(•, •).
Suffers from weight collapse.

[2] P. Del Moral. C. R. Acad. Sci. Paris Sér. I Math., 1997.
[3] P. Del Moral and A. Guionnet. Ann. Inst. H. Poincaré Probab. Statist., 2001.
[4] P. Rebeschini and R. van Handel. Ann. Appl. Probab., 2015.
[5] D. Sanz-Alonso, A. Stuart, and A. Taeb. Cambridge University Press, 2023.
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Convergence of the Particle Filter (2/2)

True filtering distribution and particle filter:

µn+1 = L(Pµn; y
†
n+1)

µPF
n+1 = L(SJPµPF

n ; y†
n+1).

Sketch of proof

Consistency. Monte Carlo error

∀µ ∈ P(Rd), d(SJµ, µ) ⩽
1√
J
.

Stability. Under appropriate assumptions,

∀(µ, ν) ∈ P(Rd)×P(Rd), d(Pµ,Pν) ⩽ d(µ, ν), d(Lµ, Lν) ⩽ ℓLd(µ, ν).

Main argument.

d(µn+1, µ
PF
n+1) ⩽ ℓLd

(
Pµn,S

JPµPF
n

)
⩽ ℓLd

(
Pµn,Pµ

PF
n

)
+ ℓLd

(
PµPF

n , SJPµPF
n

)
⩽ ℓLd

(
µn, µ

PF
n

)
+

ℓL√
J
.
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Weights

Particle Filter (Weight Collapse)

v̂
(j)
n+1 = Ψ

(
v(j)n

)
+ ξ(j)n , v(j)n ∼ µPF

n ,

ℓ
(j)
n+1 = exp

(
−1

2

∣∣y†
n+1 − h

(
v̂
(j)
n+1

)∣∣2
Γ

)
,

µPF
n+1 =

J∑
j=1

w
(j)
n+1δv̂(j)

n+1

, w
(j)
n+1 = ℓ

(j)
n+1

/( J∑
m=1

ℓ
(m)
n+1

)
.

Ensemble Kalman Filter (No Weight Collapse!)

v̂
(j)
n+1 = Ψ

(
v(j)n

)
+ ξ(j)n ,

ŷ
(j)
n+1 = h(v̂

(j)
n+1) + η

(j)
n+1,

v
(j)
n+1 = v̂

(j)
n+1 + Cvy(ρEK,J

n+1

)
Cyy(ρEK,J

n+1

)−1(
y†
n+1 − ŷ

(j)
n+1

)
,

ρEK,J
n+1 =

1

J

J∑
j=1

δ(
v̂
(j)
n+1,ŷ

(j)
n+1

).
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The ensemble Kalman filter from a mean field perspective[6] (1/2)

Block Form Of State-Data Covariance

Write covariance under ρ ∈ P(Rd ×RK) as:

covρ =

(
Cvv(ρ) Cvy(ρ)

Cvy(ρ)⊤ Cyy(ρ)

)
.

Mean field ensemble Kalman filter

v̂n+1 = Ψ(vn) + ξn, ξn ∼ N(0,Σ),

ŷn+1 = h(v̂n+1) + ηn+1, ηn+1 ∼ N(0,Γ ).

vn+1 = v̂n+1 + Cvy(ρEK
n+1

)
Cyy(ρEK

n+1

)−1(
y†
n+1 − ŷn+1

)
,

(v̂n+1, ŷn+1) ∼ ρEK
n+1.

Approximate filtering distribution µEK
n = Law(vn).

[6] E. Calvello, S. Reich, and A. M. Stuart. Acta Numerica, 2025.
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Evolution equation for the approximate filtering distribution

Key Nonlinear Operator on P
T(•; y†) : P(Rd ×RK) → P(Rd) approximates conditioning of ρ on y = y†:

T(•, •; ρ, y†) : Rd ×RK → Rd;

(v, y) 7→ v + Cvy(ρ)Cyy(ρ)−1(y† − y
)
,

T(ρ; y†) =
(
T(•, •; ρ, y†)

)
♯
ρ.

With this notation:

µn+1 = B(QPµn; y
†
n+1)

µEK
n+1 = T(QPµEK

n ; y†
n+1), µEK

0 = µ0.

Key fact: T(•; y†) ≡ B(•; y†) for Gaussian inputs.

⇝ mean field ensemble Kalman is exact in the Gaussian setting.
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Towards an error estimate for mean field EnKF

Best Gaussian Approximation in KL

G : P → G,
Gπ = argminp∈G dKL(π∥p).

More concretely, Gπ = N(meanπ, covπ).

Weighted TV Metric

Let g(v) = 1 + |v|2.

dg(µ1, µ2) = sup
|f |⩽g

∣∣µ1[f ]− µ2[f ]
∣∣, µ[f ] =

∫
f(u)µ(du).
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Closeness of exact filter and EnKF (1/2)

Definition

Measure of how close true filter {µn} is to being Gaussian:

ε := sup 0⩽n⩽N dg(GQPµn,QPµn).

Theorem[7]

Let µEK
0 = µ0 and assume that ∥Ψ∥L∞ , ∥h∥L∞ and |h|C0,1 are bounded by r.

Then there is C := C(N, r) > 0 such that

sup
0⩽n⩽N

dg
(
µn, µ

EK
n

)
⩽ Cε.

[7] J. A. Carrillo, F. Hoffmann, A. M. Stuart, and U. Vaes. arXiv preprint, 2022.

Error estimate for the mean field ensemble Kalman filter 14 / 20



Closeness of exact filter and EnKF (2/2)

Assumptions

Data Y †
j lies in set

By :=

{
Y † ∈ RKJ : max

0⩽j⩽J
|y†

j | ⩽ κy

}
.

Ψ0 : R
d → Rd and h0 : R

d → RK are constant functions.

Denote by BΨ,h(r) the set (Ψ, h) satisfying Ψ ∈ BL∞(Ψ0, r), h ∈ BL∞(h0, r).

Corollary[8]

Suppose that the assumptions of the previous theorem and the assumption
above are satisfied. Then for any ϵ > 0 there is δ > 0 such that

sup
Y †∈By

sup
(Ψ,h)∈BΨ,h(δ)

(
sup

0⩽n⩽N
dg(µn, µ

EK
n )

)
⩽ ϵ.

[8] J. A. Carrillo, F. Hoffmann, A. M. Stuart, and U. Vaes. arXiv preprint, 2022.
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Ingredients of the proof (1/1)

Linear Maps P,Q

The maps P, Q are globally Lipschitz on P(Rd) in dg.

Nonlinear Conditioning Map By†

The maps By†
(•) := B(•; y†) satisfy:

∀µ ∈ P(Rd) dg
(
By†

(GQPµ),By†
(QPµ)

)
⩽ ℓB dg(GQPµ,QPµ) .
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Ingredients of the proof (2/2)

Let PR denote the following subset of probability measures

PR(Rr) =

{
µ ∈ P(Rr) : max

{
|mean(µ)|, |cov(µ)|

1
2 , |cov(µ)|−

1
2

}
⩽ R

}
.

Using linearity of T, which defines nonlinear map Ty†
:

Approximate Nonlinear Conditioning Map Ty†

The maps Ty†
(•) := T(•; y†) satisfy, using Ψ bounded,

∀(µ, ρ) ∈ P(Rd)× PR(R
d ×RK),

dg(T
y†
(QPµ),Ty†

(ρ)
)
⩽ ℓT (R) dg(QPµ, ρ),

Moment bounds

Assume that ∥Ψ∥L∞ , ∥h∥L∞ and Σ ,Γ ≻ 0. Then there is R such that

Im(QP) ∈ PR(R
d+K)
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Proof of Theorem

Strategy: Consistency + Stability Implies Convergence

Since Ty
†
n+1(G•) = By

†
n+1(G•) we have

dg(µ
EK
n+1, µn+1) = dg

(
Ty

†
n+1(QPµEK

n ),By
†
n+1(QPµn)

)
⩽ dg

(
Ty

†
n+1(QPµEK

n ),Ty
†
n+1(QPµn)

)
+ dg

(
Ty

†
n+1(QPµn),T

y
†
n+1(GQPµn)

)
+ dg

(
Ty

†
n+1(GQPµn),B

y
†
n+1(QPµn)

)
⩽ ℓT (R) dg

(
QPµEK

n ,QPµn

)
+ ℓT (R) dg

(
QPµn,GQPµn)

)
+ dg

(
By

†
n+1(GQPµn),B

y
†
n+1(QPµn)

)
⩽ cdg(µ

EK
n , µn) + (ℓT (R) + ℓB) ε.
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Perspectives for future work

Control growth of error with N ;

Extend to continuous-time setting;

Extend to unbounded setting (in progress);

Extend to particle approximations[9];

Relax assumptions of non-zero noises;

Extend to other transport maps[10].

Thank you for your attention!

[9] F. Le Gland, V. Monbet, and V.-D. Tran. In The Oxford handbook of nonlinear
filtering. Oxford Univ. Press, Oxford, 2011.

[10] E. Calvello, S. Reich, and A. M. Stuart. Acta Numerica, 2025.
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