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Goals of molecular dynamics

e Computation of macroscopic properties from Newtonians atomistic models:

m Static properties, such as
m the heat capacity and

& 14007
= the equations of state P = P(p,T). E 1o
< 1000
. . =
m Dynamical properties, such as transport @ 8007
. 93
coefficients: o 600y

m the viscosity;
m the thermal conductivity;

= the mobility of ions in solution. O 00 S0 100
Pressure (MPa)

Equation of state of argon at 300K.
® ‘+': molecular simulation;

@ Solid line: experimental measurements[ll.

e Numerical microscope: used in physics, biology, chemistry.

[1] https://webbook.nist.gov/chemistry/fluid/
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Some background material on the Langevin equation

Consider the (one-particle) Langevin equation

dqt = pt dt7 ( )
Qg Po) ~ K
dp, = —VV(q,) dt —yp, dt + \/2y8~ dW, o
where v is the friction, V is a periodic potential, and § = lm%
m The invariant probability measure is
_ Ipl?
w(a,p) = %e_ﬁH(q’p) = le B(V(qH 2 )7 on T¢ x R%.

m The generator of the associated Markov semigroup

(e“*¢) (a,p) = E((ar, p,)| (a0, Po) = (. P)
is the following operator:
L=(p Vq—VV(q) Vp)+7(~PVp+ B 'Ap) =t Lram + 7 Lrb.
We denote by ||-|| and {-,-) the norm and inner product of L*(u), and

L3 = {# € (1) : (1) = Bup = 0}
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Definition of the mobility

Consider Langevin dynamics with additional forcing in a direction e:

dq, = p, dt,
dp, = —VV(q,)dt + nedt — yp, dt + v/2v8- 1 dW,.

This dynamics admits a unique invariant probability distribution pu,, € P(T? x RY).
Definition (Mobility)

The mobility in direction e is defined mathematically as
.1 T
Me = lim —E,, [e p]

= factor relating the mean momentum to the strength of the inducing force.

m There is a symmetric mobility tensor M such that M. = e'Me.

m Einstein’s relation: D = 7'M, with D the effective diffusion coefficient.
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Effective diffusion

It is possible to show a functional central limit theorem for the Langevin dynamicsi?:
€/~ V2D W, weakly on C(]0, 00)).
e—>

In particular, q,/v/t — N(0,2D) weakly.
—oo

t =3.00, D = 0.000

s Pure diffusion
Ui55 B GL1 (MC simulation)
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Position
Figure: Histogram of g /+/t. The potential V' (q) = — cos(q)/2 is illustrated in the background.

[2] R. N. BHATTACHARYA. On the functional central limit theorem and the law of the iterated logarithm
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Mathematical expression for the effective diffusion (dimension 1)

Expression of D in terms of the solution to a Poisson equation

The effective diffusion coefficient is given by where D = (¢, p) and ¢ is the solution to

—Lo=p, ¢ € Li(p) :== {u € L*(p) : (u,1) = 0}.

Key idea of the proof: Apply Ité's formula to ¢

do(gs,ps) = —psds +/2y8~1 = QSaps dWs

and then rearrange:
t/<2
€(qt/s2 - qo) = E/ Ds ds
0

= E(¢(q07p0) - ¢(qt/5 2, Pt/e2 ) + V 276 16/ QSvps)dWs .

—0

—V2D W} weakly by MCLT

In the multidimensional setting, De = (¢e,e'p) with —L¢e =e'p
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Open question: surface diffusion when v < 18]

Applications:

m integrated circuits;

m catalysis.

Open question: behavior of the effective diffusion coefficient when v < 1?7

2
D= lim 7“"53‘ T

)
t—o0

[3] Source of the video: https://en.wikipedia.org/wiki/Surface_diffusion
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Langevin dynamics: underdamped and overdamped regimes!*!

4 4
3 3
2 2
1 ~ 1 5
. .
-1 -1
=2 -2
3 -3
—4 —4

2o

Figure: Langevin dynamics with friction v = 0.1 (left) and v = 10 (right)

m The underdamped limit as v — 0 is well understood in dimension 1 but not in the
multi-dimensional setting.

m Overdamped limit: as v — oo, the rescaled process t — ¢+ converges weakly to the
solution of the overdamped Langevin equation:

q=-VV(g)+ V251 W.

[4] M. HAIRER and G. A. PavLIOTIS. From ballistic to diffusive behavior in periodic potentials. J. Stat.
Phys., 2008.
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The underdamped limit in dimension 1

As v — 0, the Hamiltonian of the rescaled process

a(t) = q(t/v),
P~ () = p(t/7),

converges weakly to a diffusion process on a graph.
g y p grap p<0 p>0

Eo

Emin

In this limit, it holds that

p=—L"p=7"buna + 00 ).
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Scaling of the effective diffusion coefficient for Langevin dynamicsl®!

In dimension 1, limy—0vD” = Dyna and limy_,00 YD7 = Dgyq.

Our aims in this work:

m How can we efficiently estimate the effective diffusion coefficient when v < 17

m How does the mobility scale as v — 0 in the multidimensional setting?

[5] G. A. PavrioTis and A. VociaNNoU. Diffusive transport in periodic potentials: underdamped
dynamics. Fluct. Noise Lett., 2008.
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Outline

Efficient mobility estimation
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Brief literature review

In dimension > 1, it does not hold that vDZ —0> Duna when V' is non separable, e.g.
y—

Vigq) = —% (cos(ql) + cos(q2)) — d cos(q1) cos(qz)

Open question: how does D behave when v <« 1 and d = 27
Various answers are given in the literature:

m D] x 7’1/2 for specific potentials®;
~1/3

m DI xy for specific potentials;

m DY «x vy~ ¢ with o depending on the potentiall®.

[6] L. Y. CHEN, M. R. BALDAN, and S. C. YING. Surface diffusion in the low-friction limit: Occurrence
of long jumps. Phys. Rev. B, 1996.

[7] O. M. BrRAUN and R. FERRANDO. Role of long jumps in surface diffusion. Phys. Rev. E, 2002.

[8] J. RoussEL. Theoretical and Numerical Analysis of Non-Reversible Dynamics in Computational
Statistical Physics. PhD thesis, Université Paris-Est, 2018.
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Numerical approaches for calculating the effective diffusion coefficient

m Linear response approach:

1 T
De = Iy - By, (e'p).

where p1,, is the invariant distribution of the system with external forcing.

m Green—Kubo formula: Since —£71 = ooew dt,

e-/ﬁ epepd,u // epep)d,udt

~ [T B poeTR)

0
m Einstein’s relation:

1
De = lim Q—tEu[!eT(qt - qo)!2]~

t—

m Deterministic method, e.g. Fourier/Hermite Galerkin, for the Poisson equation

—Lpe = eTPa De = (e, p) -

Efficient mobility estimation
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Estimation of the effective diffusion coefficient from Einstein's relation

Consider the following estimator of the effective diffusion coefficient De:

e’ — 2
ury = 12wl g

Bias of this estimator:
E[u(T)] = De — /0 <ew(eTp),eTp> min {17 %} dt.

Using the decay estimate for the semigroup[g]

[E[u(T)] = De|

_ i -1
etl: <Le Lmin{~y,y~ "}t

’B(Lgm) ’
we deduce )

_ Cmax{r*7~%}

— T -

[9] J. RoussiL and G. SToLTz. Spectral methods for Langevin dynamics and associated error estimates.
ESAIM: Math. Model. Numer. Anal., 2018.
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Variance of the estimator u(7T') for large T'

For T > 1, it holds approximately that

e’ (ar —ay) | e L C VL1 N
T %2~ N(0, De) (T) = X (1).

Therefore, we deduce
lim V[u(T)] =2DZ.

T — o0

The relative standard deviation (asymptotically as 7' — o) is therefore

li V(D) =2 independent of
T%W = independent of .

Scaling of the mean square error when using J realizations

Assuming an asymptotic scaling as v~ 7 of De, we have

MSE C
DZ — ’}/4_2"T2

Vy € (0,1), +%
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Variance reduction using control variates

Let ¢ denote the solution to the Poisson equation

~L¢e(q,p) =e'p,  ¢e € L(11).

and let Y. denote an approximation of ¢e. By Itd’s formula, we obtain

T T
de(dr, Pr) — Pe(dg; Pg) = */ eTptdtJr\/?vﬂ‘l/ Vpde(a, py) - dWy.
0

0
T
/ e'p,dt
0

T
—te(qr, Pr) + Ye(qg; Pg) + \/2vﬂ‘1/0 Vpte(a, py) - AWy =: Er.

Therefore

.
e (ar —qp)

Q

which suggests the improved estimator

T 2
=l (18] n[5F]).
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Properties of the improved estimator

Smaller bias if —Lve ~ e p:

Blo(ry) - D3] < ET ery | (5777 4 2l

Smaller variance:
V[u(T)] <C (T—llwe — YellLag” + 7 Vode — vaenm(uf)

X (T e + wel3ag + 711 Vot + VovelFag, ) -

Construction of v in the one-dimensional setting. We consider two approaches:

m Approximate the solution to the Poisson equation by a Galerkin method.

m Use asymptotic result for the Poisson equation:
L2 (u)
VP > Qund,
~—0

which suggests letting ¥ = ¢una /7.
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Construction of the approximate solution e in dimension 2

We consider the potential

Viq) = f% (cos(ql) + cos(qz)) — d cos(q1) cos(q2).

m For this potential, D is isotropic ~~ sufficient to consider e = (1,0),

D1,0) = (¢(1,0):P1) —Lo1,0)(q,P) =p1.

m If 6 = 0, then the solution is ¢(1,0)(q, P) = ¢1D(q1,p1), Where ¢1p solves

—Lip¢ip(g,p) = p, Vin(q) = % cos(q).

m We take 9 1,0y(q, P) = ¥1p(q1,p1), where ¢¥1p = ¢1p.

Efficient mobility estimation 19 /25
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Numerical experiments
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Numerical experiments for the one-dimensional case (1/2)

Effective diffusion coefficient: vD7/Dya

—— MC/No control
—=— MC/Galerkin
—— MC/Underdamped

—— Galerkin

10-° 1074 10-° 102 107!

Numerical experiments

Relative standard deviation
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Numerical experiments for the one-dimensional

case (2/2)

Sample mean
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Figure: Evolution of the sample mean and standard deviation, estimated from J = 5000 realizations for v = 103,
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Performance of the control variates approach in dimension 2

Relative standard deviation Relative standard deviation
. —— No control
.- 5=00 ~-o- MC/Underdamped, § = 0.0
—a 5=004 o o - MC/Underdamped. & = 0.04
-~ MC/Galerkin, & = 0.08 - MC/Underdamped, § = 0.08
-~ MC/Galerkin, § =016 * - MC/Underdamped, 8 = 0.16
”',,., MC, kin, 5 =032 . - MC/Underdamped, § = 0.32
e e Kin, & = 0.61 - MC/Underdamped, § = 0.64
10°
107!
04 104 1072 0t 10" 104 0 02 107! 10°

m Variance reduction is possible if |§| /v < 1;

m Control variates are not very useful when v < 1 and § is fixed.
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Scaling of the mobility in dimension 2

e §=0.0,Doccy 07
101 ° 0=0.04,D oy
o §=0.08D oy
o §=0.16,D ocy 07
10 o §=032,D oy 00
o §=0.64,D oy ?
102
10!
101)
10°° 104 1073 1072 107! 10°
~y
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Summary and perspectives for future work

In this talk, we presented

m a variance reduction approach for efficiently estimating the mobility;

m numerical results showing that the scaling of the mobility is not universal.
Perspectives for future work:

m Use alternative methods (PINNSs, Gaussian processes) to solve the Poisson equation;

m Improve and study variance reduction approaches for other transport coefficients.

Thank you for your attention!
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Connection with the asymptotic variance of MCMC estimators

Ergodic theorem!™: for an observable » € L* (1),

1 t a.s.
b= Z/o e(a,,p,)ds —— Eup.

Central limit theorem[™!: If the following Poisson equation has a solution ¢ € L?(p),

—Lo=p—Eup,
then a central limit theorem holds:

~ Law
V(@1 — Eup) =" N(0,07), 0 = (6,0 — Eugp).

Connection with effective diffusion: Apply this result with ¢(q,p) = e'p.

[10] W. KLIEMANN. Recurrence and invariant measures for degenerate diffusions. Ann. Probab., 1987.
[11] R. N. BHATTACHARYA. On the functional central limit theorem and the law of the iterated logarithm
for Markov processes. Z. Wahrsch. Verw. Gebiete, 1982.
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