
Derivative-free Bayesian Inversion Using Multiscale Dynamics

Working group on CBO&S

Urbain Vaes
urbain.vaes@inria.fr

MATHERIALS – Inria Paris & CERMICS – École des Ponts ParisTech
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Introduction to inverse problems

Paradigmatic inverse problem

Find an unknown parameter u ∈ U from data y ∈ Rm where

y = G(u) + η,

I G is the forward operator;

I η is observational noise.

Two difficulties1 associated with this problem are the following:

I Because of the noise, it might be that y /∈ Im(G);

I The problem might be underdetermined.

Additionally, in many PDE applications,

I G is expensive to evaluate;

I The derivatives of G are difficult to calculate;

I u is a function → infinite dimension.

1M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. In Handbook of uncertainty quantification.
Vol. 1, 2, 3. Springer, Cham, 2017.
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Example: inference of the thermal conductivity in a plate

Unknown parameter:

Thermal conductivity u(x)

(true)

MAP estimator:

(reconstructed)

Solution:

Temperature field T (x)

Mathematical model:

−∇ ·
(
u(x)∇T (x)

)
= f(x), x ∈ Ω,

T (x) = 0, x ∈ ∂Ω.

Forward problem

Data:

��
��	

�

Noisy temperature measurements:

y =
(
T (x1), . . . , T (xm)

)
+ η.

Inverse problem
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Optimization approach for solving “y = Gu+ η”

Optimization approach

Find a minimizer of the regularized least-squares functional

u† = argmin
u∈U

(
1

2
|y − G(u)|2Γ +R(u)

)
,

where |x|2A := 〈x, x〉A :=
〈
x,A−1x

〉
and R(u) is a regularization term.

I Example regularization (Tikhonov):

R(u) =
1

2
|u−m|2Σ .

I Modeling step: choice of Γ, m, Σ.

Inverse problems: optimization and sampling approaches 5 / 24



Probabilistic approach for solving “y = Gu+ η”1

Bayesian approach to inverse problems

Modeling step:

I Probability distribution on parameter: u ∼ π, encoding our prior knowledge;

I Probability distribution for noise: η ∼ ν.

An application of Bayes’ theorem gives the posterior distribution

ρy(u) ∝ π(u) ν
(
y − G(u)

)
(valid in finite dimension).

In the Gaussian case where π = N (m,Σ) and ν = N (0,Γ),

ρy(u) ∝ exp

(
−
(

1

2
|y − G(u)|2Γ +

1

2
|u−m|2Σ

))
=: exp

(
−ΦR(u)

)
.

Two approaches for extracting information:

I Find the maximizer of ρy(u) (maximum a posteriori estimation);

I Sample the posterior distribution ρy(u).

1A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 2010.
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EnKF for inverse problems1,2,3

Artificial state-estimation problem amenable to EnKF

Dynamical system: zn+1 = Ξ(zn), Ξ(z) =

(
u

G(u)

)
.

Data model: yn+1 = ( 0 I )zn+1 + ηn+1 = G(un+1) + ηn+1, ηn+1 ∼ N (0, h−1Γ)

Key idea: reuse the data from the inverse problem: yn = y for all n ∈ N.y Continuous-time limit h→ 0 (viewing h as algorithmic time)

Interacting particle system for optimization (Ensemble Kalman Inversion):

u̇(j) = − 1

J

J∑
k=1

〈G(u(k))− Ḡ,G(u(j))− y〉Γ (u(k) − ū), j = 1, . . . , J,

with ū =
1

J

J∑
j=1

u(j) and Ḡ =
1

J

J∑
j=1

G(u(j)).

1Y. Chen and D. S. Oliver. Ensemble randomized maximum likelihood method as an iterative ensemble smoother.
Math. Geosci., January 2012.

2A. A. Emerick and A. C. Reynolds. Investigation of the sampling performance of ensemble-based methods with a
simple reservoir model. Comput. Geosci., 2013.

3M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems. Inverse Problems,
2013.
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Ensemble Kalman Inversion in the linear setting1

When G is linear,

1

J

J∑
k=1

〈G(u(k))− Ḡ,G(u(j))− y〉Γ (u(k) − ū)

=
1

J

J∑
k=1

〈G(u(k) − ū),G(u(j))− y〉Γ (u(k) − ū)

=
1

J

J∑
k=1

(
∇Φ(u(j)) · (u(k) − ū)

)
(u(k) − ū) = C(U)∇Φ(u(j)),

with

C(U) =
1

J

J∑
j=1

(u(j) − ū)⊗ (u(j) − ū), Φ(u) =
1

2
|G(u)− y|2Γ .

→ EKI is a preconditioned gradient descent:

u̇(j) = −C(U)∇Φ(u(j)), j = 1, . . . , J.

1C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse problems. SIAM J. Numer. Anal.,
2017.
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Generalization to sampling

Ensemble Kalman Sampling (EKS)1

u̇(j) =− 1

J

J∑
k=1

〈G(u(k))− Ḡ,G(u(j))− y〉Γ (u(k) − ū)

−C (U)Σ−1(u(j) −m) +
√

2C (U) Ẇ (j), j = 1, . . . , J.

In the linear setting:

u̇(j) =− C (U)∇ΦR(u(j)) +
√

2C (U) Ẇ (j), j = 1, . . . , J.

→ preconditioned overdamped Langevin dynamics.

Mean field limit J →∞:

∂ρ

∂t
= ∇ ·

(
Cov(ρ) (∇ΦR ρ+∇ρ)

)
.

1A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: gradient structure and
ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.
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Advantages and limitations of EnKF methods for inverse problems

Main advantages of EKI and EKS:

I They are derivative-free;

I They are based on interacting particle systems;

I They are affine invariant1 → self-preconditioning;

I They have good convergence properties in the linear setting:

Exponential convergence for the EKS mean field equation2,3

W2 (ρt, ρ∞) ≤ C e−t W2 (ρ0, ρ∞) , ρ∞ : Bayesian posterior.

Main limitation

Uncontrolled gradient approximation in the nonlinear case → sampling error!

1A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for Bayesian inference.
SIAM Journal on Applied Dynamical Systems, 2020.

2A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: gradient structure and
ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.

3J. A. Carrillo and U. Vaes. Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations.
Nonlinearity, 2021.
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A Wasserstein stability estimate for the EKS

With José A. Carrillo, we studied the mean-field, gradient EKS equation

∂ρ

∂t
= ∇ ·

(
C(ρ) (∇ΦR ρ+∇ρ)

)
,

when the forward model is linear. In this case,

e−ΦR ∝ N (u†, B).

Our goal was to establish a stability estimate of the form

Proposition (Stability estimate in Wasserstein distance)

W2

(
ρ1
t , ρ

2
t

)
≤ C(ρ1

0, ρ
2
0) e−t W2

(
ρ1

0, ρ
2
0

)
.

→ Consistent with the fact that the EKS is self-preconditioning.

As a byproduct, this shows the convergence to ρ∞ at a rate independent of ΦR.
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A Wasserstein stability estimate for the EKS: idea of the proof

The first two moments satisfy a closed system of ODEs,

δ̇(t) = −C (t)B−1δ(t), δ(t) = m(t)− u†

Ċ (t) = −2C (t)B−1C (t) + 2C (t),

The second equation admits the explicit solution

C (t) =
(

(1− e−2t) B−1 + e−2t C (0)−1
)−1

.

By substituting this expression in the PDE, we obtain a linear Fokker–Planck equation:

∂ρ

∂t
= ∇ ·

(
C (t) (∇ΦR ρ+∇ρ)

)
.

This equation admits an explicit solution as a convolution:

ρ(•, t) ∝ ρ0

(
U (t)−1•+ u†

)
? g
(
• ;u†,Σ(t)

)
,

where U(t) and Σ(t) are explicit matrices. Then apply the convexity inequality

∀f1, f2, g ∈ P2(Rd), W2 (f1 ? g, f2 ? g) ≤W2(f1, f2).
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Uncontrolled gradient approximation for the derivative-free EKS

The derivative-free ensemble Kalman sampler is based on the approximation

C(U)∇Φ(u(j)) ≈ 1

J

J∑
k=1

〈G(u(k))− Ḡ,G(u(j))− y〉Γ (u(k) − ū).

When the posterior is not Gaussian, this approximation can be inaccurate.

I The method produces approximate posterior samples;

I Can we correct the error?

Our contribution: a derivative free sampling method which

I can be systematically refined to produce accurate posterior samples and

I generalizes an existing derivative-free optimization method1.

1E. Haber, F. Lucka, and L. Ruthotto. Never look back - A modified EnKF method and its application to the training
of neural networks without back propagation. arXiv e-prints, May 2018.
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A multiscale approach with small parameters σ and δ

u̇ = −

EnKF approximation of C(Ξ)∇ΦR(u)︷ ︸︸ ︷
1

Jσ2

J∑
j=1

〈G(u(j))−G(u), G(u)− y〉Γ (u(j) − u)−C(Ξ)Σ−1(u−m)+
√

2 Ẇ ,

u(j) = u+ σ ξ(j), j = 1, . . . , J,

ξ̇(j) = − 1

δ2
ξ(j) +

√
2

δ2
Ẇ (j), ξ(j)(0) ∼ N (0, Id), j = 1, . . . , J,

where

C (Ξ) =
1

J

J∑
k=1

ξ(k) ⊗ ξ(k),

I u ∈ Rd: distinguished particle, provides useful information for sampling;

I (u(1), . . . , u(J)): collection of “explorers” useful for gradient approximation;

I σ: radius of exploration around the distinguished particle u;

I δ2: correlation time of the Ornstein–Uhlenbeck processes ξ(j).

EX∼ρyϕ(X) ≈ 1

T

∫ T

0

ϕ
(
u(t)

)
dt, ρy : Bayesian posterior.
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A multiscale approach: motivation

When σ is small, it holds with good accuracy that

G(u(k))− G(u) ≈ ∇G(u)(u(k) − u).

→ the equation for u reduces to

u̇ = − 1

J

J∑
k=1

(
ξ(k) ⊗ ξ(k)

)
∇Φ(u)− C (Ξ)Σ−1u+

√
2Ẇ

= −C (Ξ)∇ΦR(u) +
√

2Ẇ .

I C (Ξ)∇ΦR(u) can be viewed as a projection of ∇ΦR(u) on Span{ξ(1), . . . , ξ(J)}.
I Many-particle limit: if J � 1, then

C(Ξ) =
1

J

J∑
k=1

ξ(k) ⊗ ξ(k) ≈ Id.

I Averaging limit: if δ � 1, then u(t) can be well approximated by the solution to

u̇ = −∇ΦR(u) +
√

2Ẇ . (Overdamped Langevin dynamics)
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Formal derivation of the averaging limit δ → 0

Simplified setting: u ∈ R, quadratic ΦR(u) = 1
2
ku2, one explorer (J = 1):

u̇ = −kξ2u+
√

2 Ẇu,

ξ̇ = − 1

δ2
ξ +

√
2

δ2
Ẇ ξ.

Over a small time interval δ2 � ∆t� 1,

1

∆t

∫ t+∆t

t

kξ(s)2u(s) ds ≈ ku(t)
1

∆t

∫ t+∆t

t

ξ(s)2 ds

≈ ku(t)

∫
R

ξ2

(
1√
2π

e−
ξ2

2

)
dξ = ku(t),

by ergodicity of the fast process ξ.

→ When δ � 1, the slow process u(t) solves approximately

u̇ = −ku+
√

2 Ẇu.
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Rigorous averaging result in joint limit σ → 0, δ → 0

Let ϑ denote the solution to

ϑ̇ = −∇ΦR(ϑ) +
√

2Ẇ .

Using standard tools from multiscale analysis1, it is possible to prove

Theorem (Pathwise convergence to an overdamped Langevin dynamics)

Let p > 1 and assume that G ∈ C2(Td,RK). Then for any T > 0, there exists a constant
C = C(T, J) such that

E

(
sup

0≤t≤T
|ut − ϑt|p

)
≤ C(δp + σp).

Future research directions:

I Generalization to unbounded domains;

I Convergence of the law in the longtime limit.

1G. A. Pavliotis and A. M. Stuart. Multiscale methods. Texts in Applied Mathematics. Springer, New York, 2008.
Averaging and homogenization.
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Discretization in time

To discretize the multiscale system in time, we use

I the Euler–Maruyama method for u;

I the exact solution of the OU process for ξ(j);

ûn+1 = ûn −
1

Jσ

J∑
j=1

〈G(ûn + σξ̂(j)
n )− G(ûn),G(ûn)− y〉Γ ξ̂(j)

n ∆

− C (Ξ̂n)Σ−1(ûn −m)∆ +
√

2∆xn, xn ∼ N (0, 1),

ξ̂
(j)
n+1 = e

− ∆
δ2 ξ̂(j)

n +

√
1− e

− 2∆
δ2 x(j)

n , x(j)
n ∼ N (0, 1), j = 1, . . . , J.

Theorem

Assume that G ∈ C2(Td). Then there exists C = C(T, J) such that

sup
0≤n≤bT/∆c

E |ûn − ϑn∆|2 ≤ C
(
∆ + σ2 + log(1 + δ−1) δ2) .
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Importance of preconditioning

Simplified setting:

I ΦR is quadratic:

ΦR =
1

2
|u|2C , C � 0.

I Explicit Euler for u̇ = −∇ΦR(u) = −C−1u:

un+1 = (I −∆t C−1)un

Stability requires ∆t < λmin(C)! When ∆t = 1
2
λmin(C),

|un| ≤
∣∣∣∣1− 1

2

λmin(C)

λmax(C)

∣∣∣∣n |u0|.

I Slow convergence when λmin(C)� λmax(C)!

I Need for preconditioning:

u̇ = −K∇ΦR(u), Optimal preconditioner: K = C = Cov

(
1

2
e−ΦR(u)

)
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Improving convergence of the multiscale method with preconditioning

The method can be preconditioned with an appropriate matrix K � 0.

u̇ = − 1

Jσ2

J∑
j=1

〈G(u(j))− G(u),G(u)− y〉Γ (u(j) − u)− CK(Ξ)Σ−1u+
√

2K Ẇ

u(j) = u+ σ
√
Kξ(j), j = 1, . . . , J,

ξ̇(j) = − 1

δ2
ξ(j) +

√
2

δ2
Ẇ (j), ξ(j)(0) ∼ N (0, Id), j = 1, . . . , J,

where CK(Ξ) :=
√

K C (Ξ)
√

K .

Formal justification: For small σ,

u̇ ≈ −CK(Ξ)∇ΦR +
√

2K Ẇ,

which, in the limit δ → 0, converges to

u̇ ≈ −K∇ΦR +
√

2K Ẇ.

In practice, we set K ≈ Cov
(

1
Z

e−ΦR(u)
)

approximated by ensemble Kalman sampling.
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Example 1: effect of preconditioning

Here we use the multiscale method to find the minimizer of

Φ(u) =
1

2

(
|u1 − 1|2 + k2|u2 − 1|2 + k4|u3 − 1|2

)
, k = 5.

u

u

u

u

u

u

Figure: Error between the iterates and the MAP estimator, without (left) and with (right)
preconditioning.
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Example 2: two-dimensional elliptic BVP – MAP estimation

Inference of the conductivity in a plate

Find u(x) from 100 noisy measurements of the temperature T (x) where

−∇ ·
(

eu(x)∇T (x)
)

= cst x ∈ D = [0, 1]2, + homogeneous Dirichlet BC.

Model: u(x) ∼ N (0, C) with C = (−∆ + τ2I)−α:

KL expansion : u(x) =
∑

ui
√
λiϕi(x), ui ∼ N (0, 1), Cϕi = λiϕi.

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.0

0.2

0.4

0.6

0.8

1.0

x
1

0.0 0.2 0.4 0.6 0.8 1.0
x0

−0.12

−0.06

0.00

0.06

0.12

0.18

0.24

0.30

0.36

True (left) and reconstructed (right) log-conductivity (δ = σ = 10−5, J = 8)
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Example 2: two-dimensional elliptic boundary value problem – Sampling

Approximate posterior from 10,000 iterations of the multiscale method:

(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 0) (1, 2) (2, 1) (2, 2) (0, 3) (3, 0) (1, 3) (3, 1) (2, 3) (3, 2) (3, 3)
Karhunen–Loève coefficients

−4

−3

−2

−1

0

1

2

3

Truth

Approximate posterior (EKS)

Approximate posterior (multiscale)

Approximate MAP estimator (multiscale)
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Conclusions and perspectives for future work

In this presentation, we presented a novel method for sampling and optimization which

I is derivative-free and based on a system of interacting particles;

I is provably refineable over finite time intervals;

I can be preconditioned using information from EnKF methods for efficiency.

Many interesting questions remain open:

I Uniform-in-time weak error estimate;

I Estimate on invariant measure of multiscale system;

I Adaptive σ for computational efficiency;

I Alternative (e.g. semi-implicit) time discretizations.

Thank you for your attention!
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