

Derivative-free Bayesian Inversion Using Multiscale Dynamics

Working group on CBO&S

Urbain Vaes urbain.vaes@inria.fr

MATHERIALS – Inria Paris & CERMICS – École des Ponts ParisTech

October 17, 2021

Outline of the presentation:

Inverse problems: optimization and sampling approaches

Solving inverse problems using EnKF

A multiscale derivative-free methodology

Collaborators

José Carrillo

Mathematical Institute

Grigorios Pavliotis Imperial College London

Department of Mathematics

Andrew Stuart

Department of Computing + Mathematical Sciences

References:

- J. A. Carrillo and U. Vaes. Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations. Nonlinearity, 2021
- G. A. Pavliotis, A. M. Stuart, and U. Vaes. Derivative-free Bayesian Inversion Using Multiscale Dynamics. arXiv e-prints, 2021

Paradigmatic inverse problem

Find an unknown parameter $u \in \mathcal{U}$ from data $y \in \mathbf{R}^m$ where

 $y = \mathcal{G}(u) + \eta,$

- G is the forward operator;
- η is observational noise.

Two difficulties¹ associated with this problem are the following:

- Because of the noise, it might be that $y \notin \text{Im}(\mathcal{G})$;
- The problem might be underdetermined.

Additionally, in many PDE applications,

- G is expensive to evaluate;
- The derivatives of G are difficult to calculate;
- u is a function \rightarrow infinite dimension.

 $^{^1\}text{M}.$ Dashti and A. M. Stuart. The Bayesian approach to inverse problems. In Handbook of uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.

Example: inference of the thermal conductivity in a plate

Optimization approach

Find a minimizer of the regularized least-squares functional

$$u^{\dagger} = \operatorname*{arg\,min}_{u \in \mathcal{U}} \left(\frac{1}{2} |y - \mathcal{G}(u)|_{\Gamma}^{2} + R(u) \right),$$

where $|x|_A^2 := \langle x, x \rangle_A := \langle x, A^{-1}x \rangle$ and R(u) is a regularization term.

Example regularization (Tikhonov):

$$R(u) = \frac{1}{2} |u - m|_{\Sigma}^2.$$

• Modeling step: choice of Γ , m, Σ .

Bayesian approach to inverse problems

Modeling step:

- Probability distribution on parameter: $u \sim \pi$, encoding our prior knowledge;
- Probability distribution for noise: $\eta \sim \nu$.

An application of Bayes' theorem gives the posterior distribution

 $\rho^{y}(u) \propto \pi(u) \nu (y - \mathcal{G}(u))$ (valid in finite dimension).

In the Gaussian case where $\pi=\mathcal{N}(m,\Sigma)$ and $\nu=\mathcal{N}(0,\Gamma),$

$$\rho^{y}(u) \propto \exp\left(-\left(\frac{1}{2}\left|y - \mathcal{G}(u)\right|_{\Gamma}^{2} + \frac{1}{2}\left|u - m\right|_{\Sigma}^{2}\right)\right) =: \exp\left(-\Phi_{R}(u)\right).$$

Two approaches for extracting information:

- Find the maximizer of $\rho^{y}(u)$ (maximum a posteriori estimation);
- Sample the posterior distribution $\rho^y(u)$.

¹A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 2010.

Inverse problems: optimization and sampling approaches

Solving inverse problems using EnKF

A multiscale derivative-free methodology

EnKF for inverse problems^{1,2,3}

Artificial state-estimation problem amenable to EnKF

Dynamical system:
$$z_{n+1} = \Xi(z_n), \qquad \Xi(z) = igg(egin{array}{c} u \ \mathcal{G}(u) \end{array} igg).$$

Data model: $y_{n+1} = (0 \ I) z_{n+1} + \eta_{n+1} = \mathcal{G}(u_{n+1}) + \eta_{n+1}, \qquad \eta_{n+1} \sim \mathcal{N}(0, \mathbf{h}^{-1}\Gamma)$

Key idea: reuse the data from the inverse problem: $y_n = y$ for all $n \in \mathbf{N}$.

Continuous-time limit $h \rightarrow 0$ (viewing h as algorithmic time)

Interacting particle system for optimization (Ensemble Kalman Inversion):

$$\begin{split} \dot{u}^{(j)} &= -\frac{1}{J} \sum_{k=1}^{J} \langle \mathcal{G}(u^{(k)}) - \bar{\mathcal{G}}, \mathcal{G}(u^{(j)}) - y \rangle_{\Gamma}(u^{(k)} - \bar{u}), \qquad j = 1, \dots, J, \\ \text{with} \quad \bar{u} &= \frac{1}{J} \sum_{j=1}^{J} u^{(j)} \quad \text{and} \quad \bar{\mathcal{G}} = \frac{1}{J} \sum_{j=1}^{J} \mathcal{G}(u^{(j)}). \end{split}$$

¹Y. Chen and D. S. Oliver. Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci., January 2012.

²A. A. Emerick and A. C. Reynolds. Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci., 2013.

 $^{^{3}}$ M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems. Inverse Problems, 2013.

Ensemble Kalman Inversion in the linear setting¹

When ${\mathcal G}$ is linear,

$$\begin{split} \frac{1}{J} \sum_{k=1}^{J} \langle \mathcal{G}(u^{(k)}) - \bar{\mathcal{G}}, \mathcal{G}(u^{(j)}) - y \rangle_{\varGamma} (u^{(k)} - \bar{u}) \\ &= \frac{1}{J} \sum_{k=1}^{J} \langle \mathcal{G}(u^{(k)} - \bar{u}), \mathcal{G}(u^{(j)}) - y \rangle_{\varGamma} (u^{(k)} - \bar{u}) \\ &= \frac{1}{J} \sum_{k=1}^{J} \left(\nabla \Phi(u^{(j)}) \cdot (u^{(k)} - \bar{u}) \right) (u^{(k)} - \bar{u}) = C(U) \nabla \Phi(u^{(j)}), \end{split}$$

with

$$C(U) = \frac{1}{J} \sum_{j=1}^{J} (u^{(j)} - \bar{u}) \otimes (u^{(j)} - \bar{u}), \qquad \Phi(u) = \frac{1}{2} |\mathcal{G}(u) - y|_{\Gamma}^{2}.$$

 \rightarrow EKI is a preconditioned gradient descent:

$$\dot{u}^{(j)} = -C(U)\nabla\Phi(u^{(j)}), \qquad j = 1, \dots, J.$$

Solving inverse problems using EnKF

 $^{^{1}\}text{C}$. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse problems. SIAM J. Numer. Anal., 2017.

Generalization to sampling

Ensemble Kalman Sampling (EKS)¹

$$\dot{u}^{(j)} = -\frac{1}{J} \sum_{k=1}^{J} \langle \mathcal{G}(u^{(k)}) - \bar{\mathcal{G}}, \mathcal{G}(u^{(j)}) - y \rangle_{\Gamma}(u^{(k)} - \bar{u}) - C(U) \Sigma^{-1}(u^{(j)} - m) + \sqrt{2C(U)} \dot{W}^{(j)}, \qquad j = 1, \dots, J.$$

In the linear setting:

$$\dot{u}^{(j)} = -C(U)\nabla\Phi_R(u^{(j)}) + \sqrt{2C(U)}\,\dot{W}^{(j)}, \qquad j = 1, \dots, J.$$

 \rightarrow preconditioned overdamped Langevin dynamics.

Mean field limit $J \to \infty$:

$$\frac{\partial \rho}{\partial t} = \nabla \cdot \left(\operatorname{Cov}(\rho) \left(\nabla \Phi_R \rho + \nabla \rho \right) \right).$$

¹A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.

Main advantages of EKI and EKS:

- They are derivative-free;
- They are based on interacting particle systems;
- They are affine invariant¹ \rightarrow self-preconditioning;
- They have good convergence properties in the linear setting:

Exponential convergence for the EKS mean field equation^{2,3}

$$W_2(\rho_t, \rho_\infty) \leq C e^{-t} W_2(\rho_0, \rho_\infty), \qquad \rho_\infty$$
: Bayesian posterior.

Main limitation

Uncontrolled gradient approximation in the nonlinear case \rightarrow sampling error!

¹A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM Journal on Applied Dynamical Systems, 2020.

²A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.

³J. A. Carrillo and U. Vaes. Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations. Nonlinearity, 2021.

With José A. Carrillo, we studied the mean-field, gradient EKS equation

$$\frac{\partial \rho}{\partial t} = \nabla \cdot \Big(\mathcal{C}(\rho) \left(\nabla \Phi_R \, \rho + \nabla \rho \right) \Big),$$

when the forward model is linear. In this case,

$$e^{-\Phi_R} \propto \mathcal{N}(u^{\dagger}, B).$$

Our goal was to establish a stability estimate of the form

Proposition (Stability estimate in Wasserstein distance)

$$W_2\left(\rho_t^1, \rho_t^2\right) \le C(\rho_0^1, \rho_0^2) \ \mathbf{e}^{-t} \ W_2\left(\rho_0^1, \rho_0^2\right).$$

 \rightarrow Consistent with the fact that the EKS is self-preconditioning.

As a byproduct, this shows the convergence to ρ_{∞} at a rate independent of Φ_R .

A Wasserstein stability estimate for the EKS: idea of the proof

The first two moments satisfy a closed system of ODEs,

$$\dot{\delta}(t) = -C(t)B^{-1}\delta(t), \qquad \delta(t) = m(t) - u^{\dagger}$$

$$\dot{C}(t) = -2C(t)B^{-1}C(t) + 2C(t),$$

The second equation admits the explicit solution

$$C(t) = \left((1 - e^{-2t}) B^{-1} + e^{-2t} C(0)^{-1} \right)^{-1}.$$

By substituting this expression in the PDE, we obtain a linear Fokker-Planck equation:

$$\frac{\partial \rho}{\partial t} = \nabla \cdot \Big(\frac{C(t)}{\nabla \Phi_R \rho} + \nabla \rho \Big).$$

This equation admits an explicit solution as a convolution:

$$\rho(\bullet, t) \propto \rho_0 \left(U(t)^{-1} \bullet + u^{\dagger} \right) \star g(\bullet; u^{\dagger}, \Sigma(t)),$$

where U(t) and $\Sigma(t)$ are explicit matrices. Then apply the convexity inequality

$$\forall f_1, f_2, g \in \mathcal{P}^2(\mathbf{R}^d), \qquad W_2(f_1 \star g, f_2 \star g) \le W_2(f_1, f_2).$$

Inverse problems: optimization and sampling approaches

Solving inverse problems using EnKF

A multiscale derivative-free methodology

The derivative-free ensemble Kalman sampler is based on the approximation

$$C(U)\nabla\Phi(u^{(j)}) \approx \frac{1}{J} \sum_{k=1}^{J} \langle \mathcal{G}(u^{(k)}) - \bar{\mathcal{G}}, \mathcal{G}(u^{(j)}) - y \rangle_{\Gamma}(u^{(k)} - \bar{u}).$$

When the posterior is not Gaussian, this approximation can be inaccurate.

- The method produces approximate posterior samples;
- Can we correct the error?

Our contribution: a derivative free sampling method which

- can be systematically refined to produce accurate posterior samples and
- generalizes an existing derivative-free optimization method¹.

¹E. Haber, F. Lucka, and L. Ruthotto. Never look back - A modified EnKF method and its application to the training of neural networks without back propagation. arXiv e-prints, May 2018.

A multiscale approach with small parameters σ and δ

EnKF approximation of $C(\Xi)\nabla\Phi_R(u)$

$$\dot{u} = -\frac{1}{J\sigma^2} \sum_{j=1}^{J} \langle G(u^{(j)}) - G(u), G(u) - y \rangle_{\Gamma} (u^{(j)} - u) - C(\Xi) \Sigma^{-1} (u - m) + \sqrt{2} \dot{W},$$

$$u^{(j)} = u + \sigma \xi^{(j)}, \qquad \qquad j = 1, \dots, J,$$

$$\dot{\xi}^{(j)} = -\frac{1}{\delta^2} \xi^{(j)} + \sqrt{\frac{2}{\delta^2}} \dot{W}^{(j)}, \qquad \qquad \xi^{(j)}(0) \sim \mathcal{N}(0, I_d), \qquad \qquad j = 1, \dots, J,$$

where

$$C(\Xi) = \frac{1}{J} \sum_{k=1}^{J} \xi^{(k)} \otimes \xi^{(k)},$$

u ∈ R^d: distinguished particle, provides useful information for sampling;
(u⁽¹⁾,...,u^(J)): collection of "explorers" useful for gradient approximation;
σ: radius of exploration around the distinguished particle u;

► δ^2 : correlation time of the Ornstein–Uhlenbeck processes $\xi^{(j)}$.

$$\mathbf{E}_{X \sim \rho^y} \varphi(X) \approx \frac{1}{T} \int_0^T \varphi(u(t)) \, \mathrm{d}t, \qquad \rho^y : \text{Bayesian posterior}.$$

A multiscale derivative-free methodology

A multiscale approach: motivation

When σ is small, it holds with good accuracy that

$$\mathcal{G}(u^{(k)}) - \mathcal{G}(u) \approx \nabla \mathcal{G}(u)(u^{(k)} - u).$$

 \rightarrow the equation for u reduces to

$$\dot{u} = -\frac{1}{J} \sum_{k=1}^{J} \left(\xi^{(k)} \otimes \xi^{(k)} \right) \nabla \Phi(u) - C(\Xi) \Sigma^{-1} u + \sqrt{2} \dot{W}$$
$$= -C(\Xi) \nabla \Phi_R(u) + \sqrt{2} \dot{W}.$$

C(Ξ) ∇Φ_R(u) can be viewed as a projection of ∇Φ_R(u) on Span{ξ⁽¹⁾,...,ξ^(J)}.
Many-particle limit: if J ≫ 1, then

$$C(\Xi) = \frac{1}{J} \sum_{k=1}^{J} \xi^{(k)} \otimes \xi^{(k)} \approx I_d.$$

• Averaging limit: if $\delta \ll 1$, then u(t) can be well approximated by the solution to

 $\dot{u} = -\nabla \Phi_R(u) + \sqrt{2}\dot{W}.$ (Overdamped Langevin dynamics)

Simplified setting: $u \in \mathbf{R}$, quadratic $\Phi_R(u) = \frac{1}{2}ku^2$, one explorer (J = 1):

$$\begin{split} \dot{u} &= -k\xi^2 u + \sqrt{2}\, \dot{W}^u, \\ \dot{\xi} &= -\frac{1}{\delta^2}\,\xi + \sqrt{\frac{2}{\delta^2}}\, \dot{W}^\xi \end{split}$$

Over a small time interval $\delta^2 \ll \Delta t \ll 1$,

$$\frac{1}{\Delta t} \int_{t}^{t+\Delta t} k\xi(s)^{2} u(s) \,\mathrm{d}s \approx ku(t) \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \xi(s)^{2} \,\mathrm{d}s$$
$$\approx ku(t) \int_{\mathbf{R}} \xi^{2} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^{2}}{2}}\right) \,\mathrm{d}\xi = ku(t),$$

by ergodicity of the fast process ξ .

 \rightarrow When $\delta \ll 1$, the slow process u(t) solves approximately

$$\dot{u} = -ku + \sqrt{2} \, \dot{W}^u.$$

A multiscale derivative-free methodology

Let ϑ denote the solution to

$$\dot{\vartheta} = -\nabla \Phi_R(\vartheta) + \sqrt{2}\dot{W}.$$

Using standard tools from multiscale analysis¹, it is possible to prove

Theorem (Pathwise convergence to an overdamped Langevin dynamics)

Let p > 1 and assume that $\mathcal{G} \in C^2(\mathbf{T}^d, \mathbf{R}^K)$. Then for any T > 0, there exists a constant C = C(T, J) such that

$$\mathbf{E}\left(\sup_{0\leq t\leq T}\left|u_{t}-\vartheta_{t}\right|^{p}\right)\leq C(\delta^{p}+\sigma^{p}).$$

Future research directions:

- Generalization to unbounded domains;
- Convergence of the law in the longtime limit.

¹G. A. Pavliotis and A. M. Stuart. Multiscale methods. Texts in Applied Mathematics. Springer, New York, 2008. Averaging and homogenization.

Discretization in time

To discretize the multiscale system in time, we use

- the Euler–Maruyama method for u;
- the exact solution of the OU process for $\xi^{(j)}$;

$$\hat{u}_{n+1} = \hat{u}_n - \frac{1}{J\sigma} \sum_{j=1}^{J} \langle \mathcal{G}(\hat{u}_n + \sigma \hat{\xi}_n^{(j)}) - \mathcal{G}(\hat{u}_n), \mathcal{G}(\hat{u}_n) - y \rangle_{\Gamma} \hat{\xi}_n^{(j)} \Delta - C(\hat{\Xi}_n) \Sigma^{-1} (\hat{u}_n - m) \Delta + \sqrt{2\Delta} x_n, \qquad x_n \sim \mathcal{N}(0, 1), \hat{\xi}_{n+1}^{(j)} = e^{-\frac{\Delta}{\delta^2}} \hat{\xi}_n^{(j)} + \sqrt{1 - e^{-\frac{2\Delta}{\delta^2}}} x_n^{(j)}, \qquad x_n^{(j)} \sim \mathcal{N}(0, 1), \qquad j = 1, \dots, J.$$

Theorem

Assume that $\mathcal{G} \in C^2(\mathbf{T}^d)$. Then there exists C = C(T, J) such that

$$\sup_{0 \le n \le \lfloor T/\Delta \rfloor} \mathbf{E} \left| \hat{u}_n - \vartheta_{n\Delta} \right|^2 \le C \left(\Delta + \sigma^2 + \log(1 + \delta^{-1}) \, \delta^2 \right).$$

Importance of preconditioning

Simplified setting:

• Φ_R is quadratic:

$$\Phi_R = \frac{1}{2} |u|_C^2, \qquad C \succ 0.$$

• Explicit Euler for $\dot{u} = -\nabla \Phi_R(u) = -C^{-1}u$:

$$u_{n+1} = (I - \Delta t C^{-1})u_n$$

Stability requires $\Delta t < \lambda_{\min}(C)$! When $\Delta t = \frac{1}{2}\lambda_{\min}(C)$,

$$|u_n| \le \left| 1 - \frac{1}{2} \frac{\lambda_{\min}(C)}{\lambda_{\max}(C)} \right|^n |u_0|.$$

- Slow convergence when $\lambda_{\min}(C) \ll \lambda_{\max}(C)!$
- Need for preconditioning:

 $\dot{u} = -K \nabla \Phi_R(u),$ Optimal preconditioner: $K = C = \operatorname{Cov}\left(\frac{1}{2} e^{-\Phi_R(u)}\right)$

Improving convergence of the multiscale method with preconditioning

The method can be preconditioned with an appropriate matrix $K \succ 0$.

$$\dot{u} = -\frac{1}{J\sigma^2} \sum_{j=1}^{J} \langle \mathcal{G}(u^{(j)}) - \mathcal{G}(u), \mathcal{G}(u) - y \rangle_{\Gamma} (u^{(j)} - u) - C_K(\Xi) \Sigma^{-1} u + \sqrt{2K} \dot{W}$$
$$u^{(j)} = u + \sigma \sqrt{K} \xi^{(j)}, \qquad \qquad j = 1, \dots, J,$$
$$\dot{\xi}^{(j)} = -\frac{1}{\delta^2} \xi^{(j)} + \sqrt{\frac{2}{\delta^2}} \dot{W}^{(j)}, \qquad \xi^{(j)}(0) \sim \mathcal{N}(0, I_d), \qquad \qquad j = 1, \dots, J,$$

where $C_K(\Xi) := \sqrt{K} C(\Xi) \sqrt{K}$.

Formal justification: For small σ ,

$$\dot{u} \approx -C_K(\Xi)\nabla\Phi_R + \sqrt{2K}\,\dot{W},$$

which, in the limit $\delta \rightarrow 0$, converges to

$$\dot{u} \approx -K\nabla\Phi_R + \sqrt{2K}\,\dot{W}.$$

In practice, we set $K \approx \operatorname{Cov}\left(\frac{1}{Z} e^{-\Phi_R(u)}\right)$ approximated by ensemble Kalman sampling.

Example 1: effect of preconditioning

Here we use the multiscale method to find the minimizer of

$$\Phi(u) = \frac{1}{2} \left(|u_1 - 1|^2 + k^2 |u_2 - 1|^2 + k^4 |u_3 - 1|^2 \right), \qquad k = 5.$$

Figure: Error between the iterates and the MAP estimator, without (left) and with (right) preconditioning.

Example 2: two-dimensional elliptic BVP - MAP estimation

Inference of the conductivity in a plate

Find u(x) from 100 noisy measurements of the temperature T(x) where

 $-\nabla \cdot (e^{u(x)} \nabla T(x)) = \operatorname{cst} \quad x \in D = [0, 1]^2, + \text{homogeneous Dirichlet BC.}$

Model: $u(x) \sim \mathcal{N}(0, \mathcal{C})$ with $\mathcal{C} = (-\Delta + \tau^2 \mathcal{I})^{-\alpha}$:

 $\mathsf{KL} \text{ expansion}: \quad u(x) = \sum u_i \sqrt{\lambda_i} \varphi_i(x), \qquad u_i \sim \mathcal{N}(0,1), \qquad \mathcal{C} \varphi_i = \lambda_i \varphi_i.$

Example 2: two-dimensional elliptic boundary value problem - Sampling

Approximate posterior from 10,000 iterations of the multiscale method:

In this presentation, we presented a novel method for sampling and optimization which

- is derivative-free and based on a system of interacting particles;
- is provably refineable over finite time intervals;
- can be preconditioned using information from EnKF methods for efficiency.

Many interesting questions remain open:

- Uniform-in-time weak error estimate;
- Estimate on invariant measure of multiscale system;
- Adaptive σ for computational efficiency;
- Alternative (e.g. semi-implicit) time discretizations.

Thank you for your attention!