

Mathematical Analysis of the Narrow Escape Problem

Ulm Applied Analysis Seminar

Urbain Vaes
urbain.vaes@inria.fr

MATERIALS – Inria Paris & CERMICS – École des Ponts ParisTech

June 2025

Collaborators and reference

Louis Carillo

Tony Lelièvre

Thomas Normand

Gabriel Stoltz

References:

- ▶ T. Lelièvre, M. Rachid, and G. Stoltz. 2024
A spectral approach to the narrow escape problem in the disk
- ▶ Preprints in preparation on extensions: general domains, general dimension, more precise asymptotics

Outline

The narrow escape problem

The quasi-stationary distribution approach

Mathematical results

Numerical illustration

The narrow escape problem

- Domain Ω_ε with small doors:

$$\Omega_\varepsilon = \Omega \setminus \bigcup_{n=1}^N \overline{B}(x_n, r_n^\varepsilon)$$

- Brownian particle:

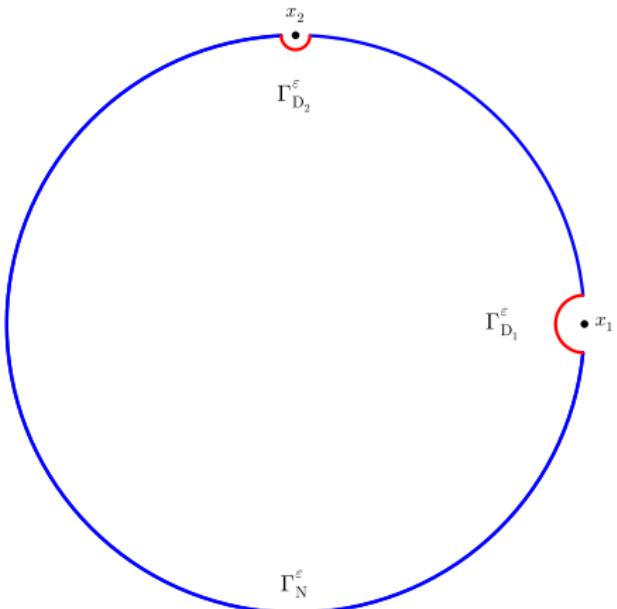
$$dX_t = \sqrt{2} dW_t$$

- Reflecting boundary Γ_N^ε
- N exit doors $\Gamma_{D_1}^\varepsilon, \dots, \Gamma_{D_N}^\varepsilon$

Let $\tau := \inf\{t \geq 0, X_t \in \Gamma_D^\varepsilon\}$ where

$$\Gamma_D^\varepsilon = \bigcup_{n=1}^N \Gamma_{D_n}^\varepsilon$$

Objective: Characterize **first exit event** (τ, X_τ) in the limit $\varepsilon \rightarrow 0$



Motivations from biology and chemistry:

- ▶ Escape of ions through small openings in cell membranes
- ▶ Early stages of viral infection
- ▶ Escape of diffusing molecules to active sites

Vast existing literature, but few rigorous results:

- ▶ D. Holcman and Z. Schuss. *J. Stat. Phys.*, 2004
- ▶ O. Bénichou and R. Voituriez. *Phys. Rev. Letters*, 2008
- ▶ H. Ammari, K. Kalimeris, H. Kang, and H. Lee. *J. Math. Pures Appl.* (9), 2012
- ▶ D. Holcman and Z. Schuss. *SIAM Rev.*, 2014
- ▶ X. Chen and A. Friedman. *SIAM J. Math. Anal.*, 2011

Focus in the literature on the mean escape time starting from a point: $E_x[\tau]$

The exponential distribution $\text{Exp}(\lambda)$ is the probability measure with density

$$f_\lambda(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Key properties of the exponential distribution

Suppose that $Z_1 \sim \text{Exp}(\lambda_1)$ and $Z_2 \sim \text{Exp}(\lambda_2)$ are independent. Then

- ▶ Let $M := \min\{Z_1, Z_2\}$. Then $M \sim \text{Exp}(\lambda_1 + \lambda_2)$.
- ▶ Let

$$I = \begin{cases} 1 & \text{if } Z_1 \leq Z_2 \\ 2 & \text{if } Z_1 > Z_2 \end{cases}$$

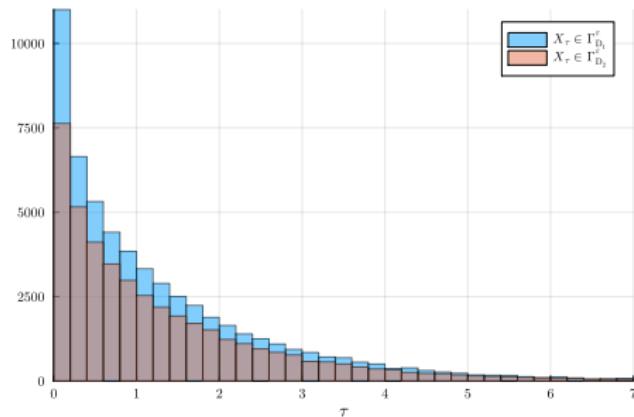
Then $\mathbf{P}[I = i] = \frac{\lambda_i}{\lambda_1 + \lambda_2}$ for $i \in \{1, 2\}$

- ▶ The random variables I and M are independent

Preliminary numerical experiments (1/3)

We simulate $M = 10^5$ Brownian paths started from $X_0 \sim \mathcal{U}(\Omega_\varepsilon)$ until escape

- ▶ Size of exit doors $r_1^\varepsilon = 0.1$, $r_2^\varepsilon = 0.05$
- ▶ We record $(\tau, \text{index}(X_\tau))$ for each exit event



Observations:

- ▶ Escape time τ appears to follow an **exponential distribution**
- ▶ The index of the exit door appears to be **independent of τ**

Link with a partial differential equation

Let $T_\varepsilon := \Omega_\varepsilon \rightarrow \mathbf{R}$ be defined as $T_\varepsilon(x) := \mathbf{E}_x[\tau]$. Then T_ε satisfies

$$\begin{cases} -\Delta T_\varepsilon = 1 & \text{on } \Omega_\varepsilon \\ \partial_n T_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ T_\varepsilon = 0 & \text{on } \Gamma_D^\varepsilon \end{cases}$$

Sketch of proof. Assuming a smooth solution T_ε exists, we have by Itô's formula

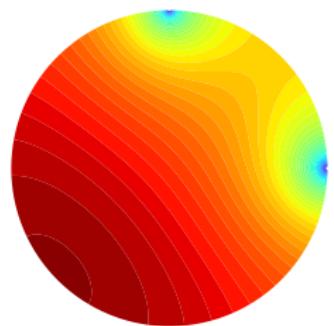
$$dT_\varepsilon(X_t) = \Delta T_\varepsilon(X_t) dt + \sqrt{2} \nabla T_\varepsilon(X_t) \cdot dW_t$$

Writing this equation in integral form and taking the expectation, we obtain

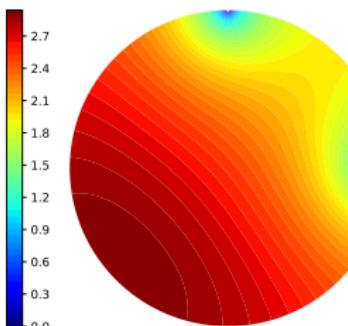
$$\mathbf{E}\left[T_\varepsilon(X_\tau) - T_\varepsilon(X_0)\right] = -\mathbf{E}[\tau] \quad \rightarrow \quad T_\varepsilon(x) = \mathbf{E}[\tau]$$

Preliminary numerical experiments (3/3)

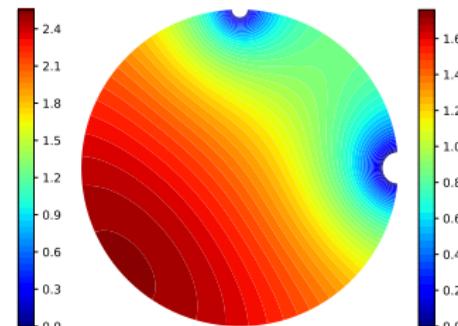
Finite element simulation for mean exit time starting from x (here $r_1^\varepsilon = 2r_2^\varepsilon = \varepsilon$)



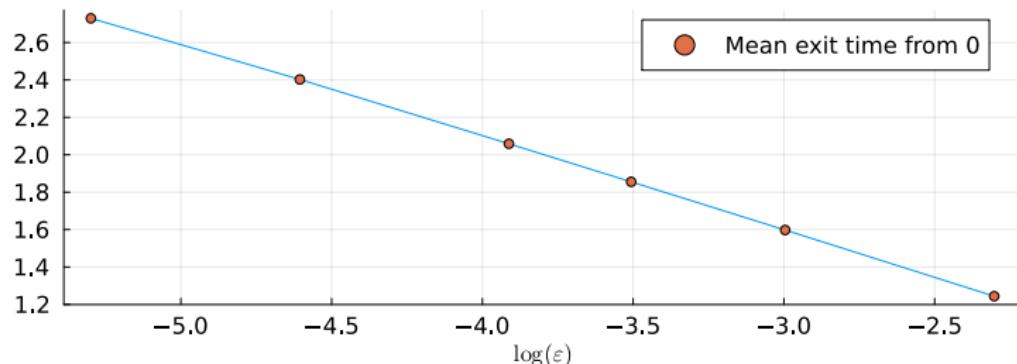
(a) $\varepsilon = 0.01$



(b) $\varepsilon = 0.02$



(c) $\varepsilon = 0.1$



Outline

The narrow escape problem

The quasi-stationary distribution approach

Mathematical results

Numerical illustration

The quasi-stationary distribution

- ▶ **Goal:** Rewrite the narrow escape problem as a spectral problem
- ▶ **Motivation:** For $\varepsilon \ll 1$, particle reaches local equilibrium before leaving

Definition: quasi-stationary distribution^{1,2}

The QSD ν_ε is the probability measure with support Ω_ε such that

$$\forall t \geq 0, \quad X_0 \sim \nu_\varepsilon \quad \Rightarrow \quad \text{Law}(X_t \mid \tau > t) = \nu_\varepsilon$$

Property (Yaglom limit): For any $X_0 \in \Omega_\varepsilon$ and measurable A

$$\lim_{t \rightarrow \infty} \mathbf{P}[X_t \in A \mid \tau > t] = \nu_\varepsilon(A)$$

¹S. Méléard and D. Villemonais. *Probab. Surv.*, 2012.

²T. Lelièvre and G. Stoltz. *Acta Numer.*, 2016, Section 6.3.1.

Illustration of the Yaglom limit

Fokker-Planck equation:

$$\begin{cases} \partial_t \rho_\varepsilon = \Delta \rho_\varepsilon & \text{on } \Omega_\varepsilon \\ \partial_n \rho_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ \rho_\varepsilon = 0 & \text{on } \Gamma_D^\varepsilon \end{cases}$$

gives evolution of $\mathcal{L}aw(X_t \mid \tau > t)$

On the right, $X_0 \sim \mathcal{N}(0, 0.04)$

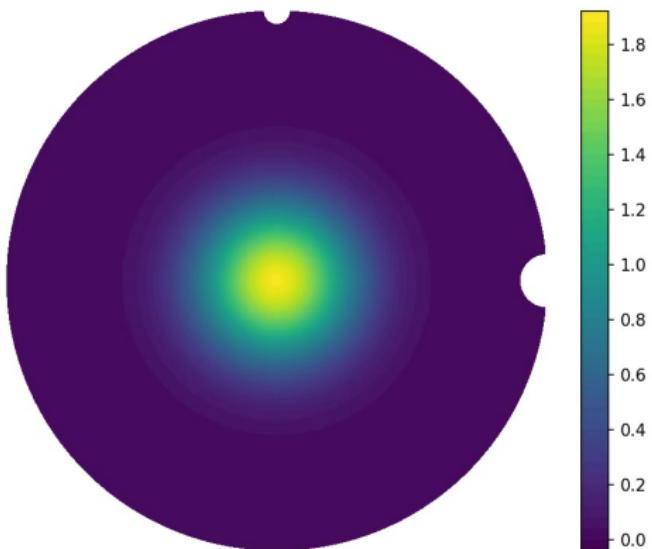


Figure: Evolution of $\mathcal{L}aw(X_t \mid \tau > t)$

Assume that $X_0 \sim \nu_\varepsilon$. Then

- ▶ The exit time τ is **exponentially distributed** $\sim \text{Exp}(\lambda_\varepsilon)$

$$\begin{aligned}\mathbf{P}_{\nu_\varepsilon}[\tau \geq s+t] &= \mathbf{P}_{\nu_\varepsilon}[\tau \geq s+t \mid \tau \geq s] \mathbf{P}_{\nu_\varepsilon}[\tau \geq s] \\ &= \mathbf{P}_{\nu_\varepsilon}[\tau \geq t] \mathbf{P}_{\nu_\varepsilon}[\tau \geq s].\end{aligned}$$

- ▶ The exit point X_τ is **independent** of the exit time τ

$$\begin{aligned}\mathbf{P}_{\nu_\varepsilon}[X_\tau \in A, \tau \geq t] &= \mathbf{P}_{\nu_\varepsilon}[X_\tau \in A \mid \tau \geq t] \mathbf{P}_{\nu_\varepsilon}[\tau \geq t] \\ &= \mathbf{P}_{\nu_\varepsilon}[X_\tau \in A] \mathbf{P}_{\nu_\varepsilon}[\tau \geq t]\end{aligned}$$

Goal. Study λ_ε and $\mathbf{P}_{\nu_\varepsilon}[X_\tau \in \Gamma_{D_i}^\varepsilon]$ for $i \in \{1, \dots, N\}$ in the limit $\varepsilon \rightarrow 0$

Spectral characterization of the QSD

Consider the first eigenpair $(u_\varepsilon, \lambda_\varepsilon)$ of the eigenvalue problem

$$\begin{cases} -\Delta u_\varepsilon = \lambda_\varepsilon u_\varepsilon & \text{on } \Omega_\varepsilon \\ \partial_n u_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ u_\varepsilon = 0 & \text{on } \Gamma_D^\varepsilon \end{cases}$$

Then the QSD is given by

$$\nu_\varepsilon = \frac{u_\varepsilon(x) \, dx}{\int_{\Omega_\varepsilon} u_\varepsilon}$$

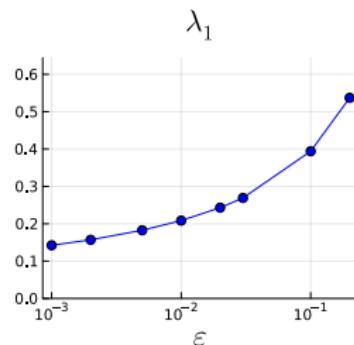
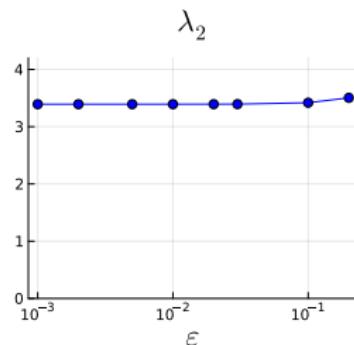
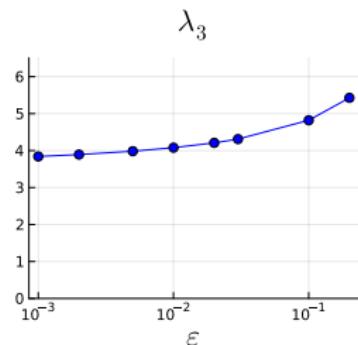
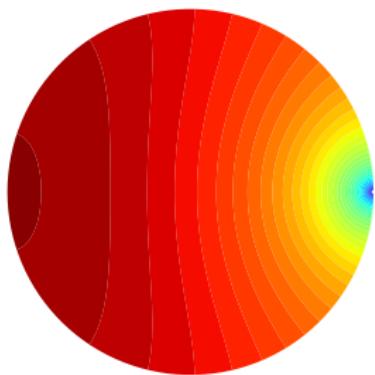
(It can be shown that u_ε has a sign and $\lambda_\varepsilon > 0$)

- ▶ The mean exit time satisfies $\mathbf{E}_{\nu_\varepsilon}[\tau] = \frac{1}{\lambda_\varepsilon}$
- ▶ The distribution of the exit point satisfies

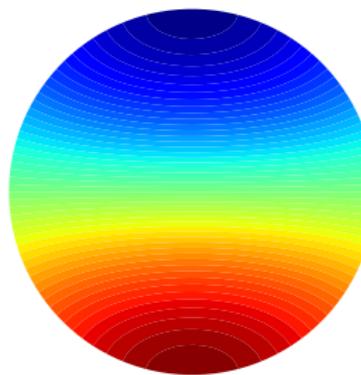
$$\mathbf{P}_{\nu_\varepsilon}[X_\tau \in \Gamma_{D_i}^\varepsilon] = -\frac{\int_{\Gamma_{D_i}^\varepsilon} \partial_n u_\varepsilon \, d\sigma}{\int_{\Gamma_D} \partial_n u_\varepsilon \, d\sigma}$$

→ The QSD distribution gives information on exit time **and exit point**

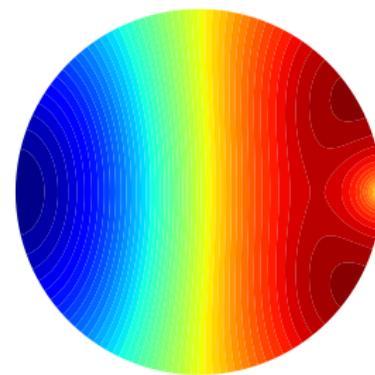
Numerical illustration of the eigenfunctions



(a) First eigenfunction

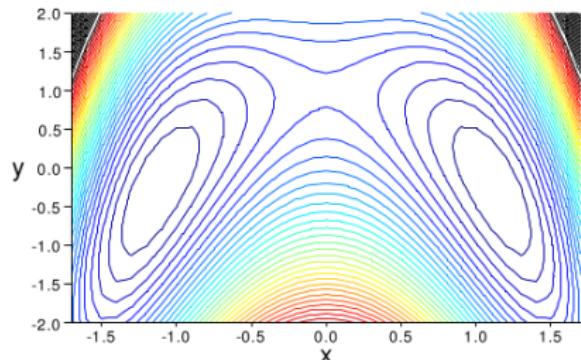


(b) Second eigenfunction

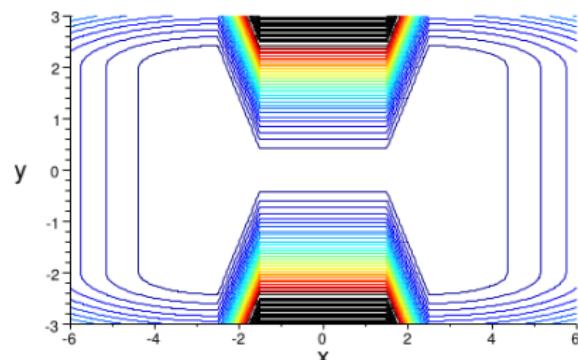


(c) Third eigenfunction

Appeal of QSD: from continuous state-space to discrete state-space



(a) Energetic barrier (well studied)



(b) Entropic barrier (no full understanding)

Overdamped Langevin dynamics in external potential V :

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\beta^{-1}} dW_t.$$

- ▶ For metastability of energetic origin, the QSD is useful to study exit events from the basin of attraction of a local minimum. **Arrhenius approximation** when $\beta \gg 1$:

$$\lambda_i \propto e^{-\beta(V_{\text{saddle}} - V_{\text{min}(i)})}$$

- ▶ Understanding the exit events enables to construct discrete state-space approximation

Why we work in domain $\Omega_\varepsilon = \Omega \setminus \bigcup \overline{B}(x_i, r_i)$

The QSD ν_ε is related to the first eigenpair of

$$\begin{cases} -\Delta u_\varepsilon = \lambda_\varepsilon u_\varepsilon & \text{in } \Omega_\varepsilon \\ \partial_n u_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ u_\varepsilon = 0 & \text{on } \Gamma_{D_i}^\varepsilon \end{cases}$$

The solution u_ε enjoys better regularity¹ if there is an angle between Γ_N^ε and $\Gamma_{D_i}^\varepsilon$

- If angle between Γ_N^ε and $\Gamma_{D_i}^\varepsilon$ is $= \pi$: $\partial_n \nu_\varepsilon \notin L^2(\partial\Omega)$
- If angle between Γ_N^ε and $\Gamma_{D_i}^\varepsilon$ is $< \pi$: $\partial_n \nu_\varepsilon \in L^2(\partial\Omega)$

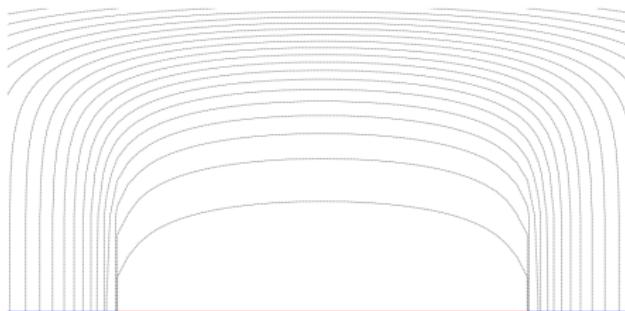


Figure: Contour lines of ν_ε for flat boundary.

¹T. Jakab, I. Mitrea, and M. Mitrea. Indiana Univ. Math. J., 2009.

Outline

The narrow escape problem

The quasi-stationary distribution approach

Mathematical results

Numerical illustration

Heuristic argument for 1 exit door

Goal: approximate the first eigenpair $(\lambda_\varepsilon, u_\varepsilon)$ of

$$\begin{cases} -\Delta u_\varepsilon = \lambda_\varepsilon u_\varepsilon & \text{on } \Omega_\varepsilon \\ \partial_n u_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ u_\varepsilon = 0 & \text{on } \Gamma_D^\varepsilon \end{cases}$$

When $\varepsilon \rightarrow 0$, it holds $|\Gamma_D^\varepsilon| \rightarrow 0$ so we expect $\lambda_\varepsilon \rightarrow 0$ and $u_\varepsilon \rightarrow \text{cst}$. This motivates looking for a solution of the form $u_\varepsilon = 1 + v_\varepsilon$, with

$$\begin{cases} -\Delta v_\varepsilon = \lambda_\varepsilon + \lambda_\varepsilon v_\varepsilon & \text{on } \Omega_\varepsilon \\ \partial_n v_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ v_\varepsilon = -1 & \text{on } \Gamma_D^\varepsilon \end{cases}$$

Taking formally the limit $\varepsilon \rightarrow 0$, we find that $v_\varepsilon/\lambda_\varepsilon$ should converge to a function w satisfying

$$\begin{cases} -\Delta w = 1 & \text{on } \Omega \\ \partial_n w = 0 & \text{on } \partial\Omega \setminus \{x_1\} \end{cases}$$

Construction of the function w for 1 exit door (1/2)

Let $\Lambda: \mathbf{R}^d \rightarrow \mathbf{R}$ denote the fundamental solution of the Laplacian :

$$\Lambda(x) \propto \begin{cases} -\log(x) & \text{if } d = 2 \\ \frac{1}{|x|^{d-2}} & \text{if } d \geq 3 \end{cases}$$

Lemma (Construction of a quasimode)

If $\partial\Omega$ is smooth, there exists a smooth function of the form $w(x) = -\frac{\Lambda(x-x_1)}{\alpha_{\Omega,d}} + R(x)$ defined on Ω such that

$$\begin{cases} -\Delta w = 1 & \text{on } \Omega \\ \partial_n w = 0 & \text{on } \partial\Omega \setminus \{x_1\} \end{cases}$$

and the smooth remainder term $R: \Omega \rightarrow \mathbf{R}$ satisfies

$$R(x) = \begin{cases} \mathcal{O}(1) & \text{if } d = 2 \\ \mathcal{O}(-\log|x-x_1|) & \text{if } d = 3 \\ \mathcal{O}(|x-x_1|^{-(d-3)}) & \text{if } d \geq 4 \end{cases}$$

The factor $\alpha_{\Omega,d}$ is given by, denoting by w_d the surface of the unit sphere in \mathbf{R}^d :

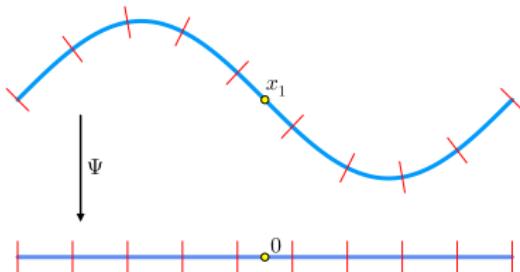
$$\alpha_{\Omega,d} = \frac{w_d}{2|\Omega|} \times \begin{cases} 1 & \text{if } d = 2 \\ d-2 & \text{if } d \geq 3 \end{cases}$$

Construction of the function w for 1 exit door (2/3)

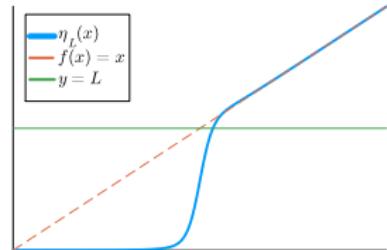
Sketch of proof. Consider the change of variables

$$\Psi: \Omega \cap B(x_1, \delta) \rightarrow \mathbb{R}^+ \times \mathbb{R}^{d-1}$$

that locally flattens the boundary $\partial\Omega$ and satisfies $\Psi(x_1) = 0$



(a) Local change of coordinates



(b) Smooth cutoff function

We use the ansatz $w(x) = -\frac{\eta_L \circ \Lambda \circ \Psi(x)}{\alpha_{\Omega, d}} + S(x)$ with $w(x) = S(x)$ if $x \notin B(x_1, \delta)$

- ▶ In the first term $\eta_L \circ \Lambda \circ \Psi(x)$ equals $\Lambda(x - x_1)$ to leading order, in a neighborhood of x_1
- ▶ By substitution we look for S satisfying

$$\begin{cases} -\Delta S = 1 - \alpha_{\Omega, d}^{-1} \Delta(\eta_L \circ \Lambda \circ \Psi) & \text{on } \Omega \\ \partial_n S = 0 & \text{on } \partial\Omega \end{cases}$$

⇝ This problem admits a unique mean-zero weak solution if RHS is mean-zero¹

¹J. Aramaki. Commun. Math. Anal., 2018.

For convenience, let $\tilde{\Lambda} = \eta_L \circ \Lambda \circ \Psi$. Two steps are required to conclude the proof:

► **To determine $\alpha_{\Omega,d}$**

- we first prove that $\Delta \tilde{\Lambda} \in L^1(\Omega)$
- then use [Green's theorem](#):

$$\begin{aligned} \int_{\Omega} \Delta \tilde{\Lambda} &= \lim_{\lambda \rightarrow 0} \int_{\Omega \setminus B(x_1, \lambda)} \Delta \tilde{\Lambda} \, d\Omega \\ &= \lim_{\lambda \rightarrow 0} \int_{\partial \Omega \setminus B(x_1, \lambda)} \partial_n \tilde{\Lambda} \, d\sigma + \lim_{\lambda \rightarrow 0} \int_{\partial B(x_1, \lambda) \cap \Omega} \partial_n \tilde{\Lambda} \, d\sigma \\ &= 0 + \frac{(d-2)w_d}{2} \end{aligned}$$

► **To prove that S is a [subsingular term](#)**, we use an integral representation of the solution (layer potential techniques¹). To leading order around x_1 , it holds that

$$S(x) = - \int_{\Omega} \Lambda(x-y) \Delta S(y) \, dy$$

¹[H. Ammari, H. Kang, and H. Lee](#). American Mathematical Soc., 2009.

Construction of the QSD for 1 exit door

Recall that

- ▶ It should hold that $u_\varepsilon \approx 1 + \lambda_\varepsilon w$ for $\varepsilon \ll 1$
- ▶ The Dirichlet boundary condition requires that $u_\varepsilon = 0$ on Γ_D^ε .
- ▶ Close to x_1 , the function $w(x)$ equals $-\frac{\Lambda(x-x_1)}{\alpha_{\Omega,d}}$ to leading order.

This motivates the approximation

$$\hat{\lambda}_\varepsilon = \frac{\alpha_{\Omega,d}}{\Lambda(r_1^\varepsilon)} = \alpha_{\Omega,d} \times \begin{cases} \frac{-1}{\log(r_1^\varepsilon)} & \text{if } d = 2 \\ (r_1^\varepsilon)^{d-2} & \text{if } d \geq 3 \end{cases}$$

The pair $(\hat{\lambda}_\varepsilon, \hat{u}_\varepsilon)$, with $\hat{u}_\varepsilon := 1 + \hat{\lambda}_\varepsilon w$, satisfies the initial problem with **small residuals**

$$\begin{cases} -\Delta \hat{u}_\varepsilon = \hat{\lambda}_\varepsilon \hat{u}_\varepsilon - \hat{\lambda}_\varepsilon^2 w & \text{on } \Omega_\varepsilon \\ \partial_n u_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ u_\varepsilon = \hat{\lambda}_\varepsilon R & \text{on } \Gamma_D^\varepsilon \end{cases}$$

Towards a rigorous error estimate for $\widehat{\lambda}_\varepsilon$ for 1 exit door

We take for granted¹ that $u_\varepsilon, \widehat{u}_\varepsilon$ (normalized to be probability densities) satisfy

- ▶ $\langle u_\varepsilon, u_\varepsilon \rangle = |\Omega|^{-\frac{1}{2}} + \mathcal{O}(\widehat{\lambda}_\varepsilon)$
- ▶ $\langle \widehat{u}_\varepsilon, u_\varepsilon \rangle = |\Omega|^{-\frac{1}{2}} + \mathcal{O}(\widehat{\lambda}_\varepsilon)$

By [Green's identity](#), we have

$$\begin{aligned}\lambda_\varepsilon \langle \widehat{u}_\varepsilon, u_\varepsilon \rangle &= -\langle \widehat{u}_\varepsilon, \Delta u_\varepsilon \rangle \\ &= -\langle \Delta \widehat{u}_\varepsilon, u_\varepsilon \rangle + \langle \partial_n \widehat{u}_\varepsilon, u_\varepsilon \rangle_{\Gamma^\varepsilon} - \langle \widehat{u}_\varepsilon, \partial_n u_\varepsilon \rangle_{\Gamma^\varepsilon} \\ &= \widehat{\lambda}_\varepsilon \langle \widehat{u}_\varepsilon, u_\varepsilon \rangle - \widehat{\lambda}_\varepsilon^2 \langle w, u_\varepsilon \rangle + 0 - \widehat{\lambda}_\varepsilon \langle R, \partial_n u_\varepsilon \rangle_{\Gamma_D^\varepsilon}\end{aligned}$$

Therefore we deduce that

$$\left| \lambda_\varepsilon - \widehat{\lambda}_\varepsilon \right| \langle \widehat{u}_\varepsilon, u_\varepsilon \rangle \leq \mathcal{O}(\widehat{\lambda}_\varepsilon^2) + \widehat{\lambda}_\varepsilon \|R\|_{L^\infty(\Gamma_D^\varepsilon)} \|\partial_n u_\varepsilon\|_{L^1(\Gamma_D^\varepsilon)}$$

The function $\partial_n u_\varepsilon$ is (up to renormalization) a probability density, so it has a sign and

$$\|\partial_n u_\varepsilon\|_{L^1(\Gamma_D^\varepsilon)} = \left| \langle \partial_n u_\varepsilon, 1 \rangle_{L^2(\Gamma_D^\varepsilon)} \right| = \left| \langle \Delta u_\varepsilon, 1 \rangle \right| = \lambda_\varepsilon \left| \langle u_\varepsilon, 1 \rangle \right|$$

¹T. Lelièvre, M. Rachid, and G. Stoltz. 2024.

General result with N doors

We define

$$K_\varepsilon^i := \begin{cases} -\frac{1}{\log(r_i^\varepsilon)} & \text{if } d = 2 \\ (r_i^\varepsilon)^{d-2} & \text{if } d \geq 3 \end{cases} \quad \overline{K}_\varepsilon := K_1 + \cdots + K_N$$

Theorem (Eigenvalue)

The mean exit time when $X_0 \sim \nu_\varepsilon$ is given by $\mathbf{E}_{\nu_\varepsilon}[\tau] = \frac{1}{\lambda_\varepsilon}$, where

$$\lambda_\varepsilon = \alpha_{\Omega, d} \overline{K}_\varepsilon + \begin{cases} \mathcal{O}\left(\overline{K}_\varepsilon^2\right) & \text{for } d = 2 \\ \mathcal{O}\left(\overline{K}_\varepsilon^2 \log(\overline{K}_\varepsilon)\right) & \text{for } d = 3 \\ \mathcal{O}\left(\overline{K}_\varepsilon^{\frac{d-1}{d-2}}\right) & \text{for } d \geq 4 \end{cases}$$

Elements of proof. Construct w_i as previously for each door and define

$$\widehat{u}_\varepsilon = 1 + \sum_{i=1}^N \widehat{\lambda}_i^\varepsilon w_i$$

Fix $\widehat{\lambda}_i^\varepsilon$ by requiring that $\widehat{u}_\varepsilon = 0$ on $\Gamma_{D_i}^\varepsilon$ and noting that $\widehat{u}_\varepsilon \approx 1 + \widehat{\lambda}_i^\varepsilon w_i$ on $\Gamma_{D_i}^\varepsilon$

Distribution of the exit doors

Theorem (Exit door distribution)

Assume that $\partial\Omega$ is smooth. Then for $i \in \{1, \dots, N\}$, it holds that

$$\mathbf{P}_{\nu_\varepsilon}[X_\tau \in \Gamma_{D_i}^\varepsilon] = \frac{K_\varepsilon^i}{\overline{K}_\varepsilon} + \begin{cases} \mathcal{O}\left(\overline{K}_\varepsilon\right) & \text{for } d = 2 \\ \mathcal{O}\left(\overline{K}_\varepsilon \log(\overline{K}_\varepsilon)\right) & \text{for } d = 3 \\ \mathcal{O}\left(\overline{K}_\varepsilon^{\frac{1}{d-2}}\right) & \text{for } d > 3 \end{cases}$$

Idea of proof

- ▶ Let ν_ε^k denote the QSD with only door i , with corresponding eigenvalue λ_ε^i
- ▶ For small ε , it holds that $\nu_\varepsilon \approx \nu_\varepsilon^i$ in total variation
- ▶ By the properties of the QSD, it holds for all $t > 0$ that

$$\begin{aligned} \mathbf{P}_{\nu_\varepsilon}[X_\tau \in \Gamma_{D_i}^\varepsilon] &= \frac{\mathbf{P}_{\nu_\varepsilon}[X_{t \wedge \tau} \in \Gamma_{D_i}^\varepsilon]}{\mathbf{P}_{\nu_\varepsilon}[X_{t \wedge \tau} \in \Gamma_D^\varepsilon]} \approx \frac{\mathbf{P}_{\nu_\varepsilon^i}[X_{t \wedge \tau} \in \Gamma_{D_i}^\varepsilon]}{\mathbf{P}_{\nu_\varepsilon}[X_{t \wedge \tau} \in \Gamma_D^\varepsilon]} \\ &\leqslant \frac{1 - e^{-\lambda_\varepsilon^i t}}{1 - e^{-\lambda_\varepsilon t}} \xrightarrow{\varepsilon \rightarrow 0} \frac{K_\varepsilon^i}{\overline{K}_\varepsilon} \end{aligned}$$

Distribution of the exit door: idea of an analytic proof

Let $\nu_\varepsilon^{!k}$ denote the QSD **without door k** , with density $u_\varepsilon^{!k}$ and eigenvalue $\lambda_\varepsilon^{!k}$. Then

$$\begin{aligned} -\langle \partial_n u_\varepsilon, 1 \rangle_{\Gamma_{D_k}^\varepsilon} &\approx -\frac{1}{|\Omega|} \langle \partial_n u_\varepsilon, u_\varepsilon^{!k} \rangle_{\Gamma_{D_k}^\varepsilon} \\ &= -\frac{1}{|\Omega|} \left(\langle \Delta u_\varepsilon, u_\varepsilon^{!k} \rangle_{\Omega_\varepsilon} - \langle u_\varepsilon, \Delta u_\varepsilon^{!k} \rangle_{\Omega_\varepsilon} \right) \\ &= -\frac{1}{|\Omega|} \left(\langle \Delta u_\varepsilon, u_\varepsilon^{!k} \rangle_{\Omega_\varepsilon} - \langle u_\varepsilon, \Delta u_\varepsilon^{!k} \rangle_{\Omega_\varepsilon} \right) \\ &= \frac{1}{|\Omega|} \left(\lambda_\varepsilon - \lambda_\varepsilon^{!k} \right) \langle u_\varepsilon, u_\varepsilon^{!k} \rangle_{\Omega_\varepsilon} \approx \frac{\alpha_{\Omega, d} K_\varepsilon^k}{|\Omega|^2} \end{aligned}$$

Outline

The narrow escape problem

The quasi-stationary distribution approach

Mathematical results

Numerical illustration

- ▶ **Initialization:** Sample M independent particles $X_0^1, \dots, X_0^M \sim \mu$
- ▶ **Evolution:** Each particle evolves independently according to the dynamics

$$dX_t^i = \sqrt{2} dW_t^i \quad + \quad \text{Reflecting boundary condition}$$

- ▶ **Resampling:** When a particle i reaches an absorbing state
 - ▶ Pick particle j among remaining particles, uniformly at random
 - ▶ Move particle i to position of particle j instantly
- ▶ **Output:** For $M, t \gg 1$, the empirical measure approximates the QSD^{1,2}

$$\frac{1}{M} \sum_{i=1}^M \delta_{X_t^i} \xrightarrow[M \rightarrow \infty]{\text{weak}} \mathbf{P}_\mu[X_t \in \cdot \mid \tau > t]$$

¹D. Villemonais. *ESAIM Probab. Stat.*, 2014.

²L. Journel and P. Monmarché. *Ann. Appl. Probab.*, 2025.

Monte Carlo simulation of the narrow escape problem

Given X_0^1, \dots, X_0^M output of Fleming–Viot, repeat the following steps:

1. Propose move by Euler–Maruyama discretization:

$$\hat{X}_{n+1} = X_n + \sqrt{2\Delta t} \xi_n, \quad \xi_n \sim \mathcal{N}(0, \mathbf{I}_d)$$

2. If $\hat{X}_{n+1} \in B(x_i, r_i^\varepsilon)$, register exit event for door $i \in \{1, \dots, N\}$. **Done**
3. Else if $\hat{X}_{n+1} \notin \Omega$, reject move (reflecting boundary)
4. Else, set $X_{n+1} = \hat{X}_{n+1}$

This approach is **computationally expensive**

- ▶ Time step should be small compared to $(r_i^\varepsilon)^2$ for $i \in \{1, \dots, N\}$
- ▶ Mean exit time increases as $\varepsilon \rightarrow 0$

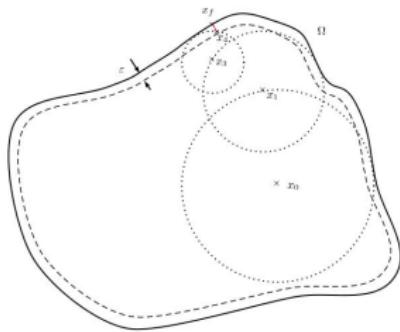
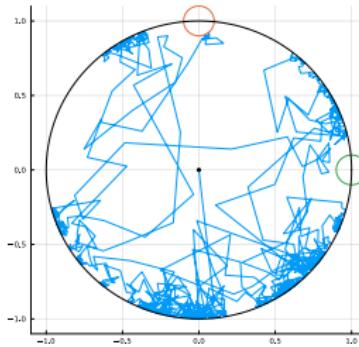
Example: in dimension 3 with $r_i^\varepsilon \propto \varepsilon$, the mean exit time scales as $\frac{1}{\varepsilon}$

↪ Simulation cost of M exit events scales as $M\varepsilon^{-3}$

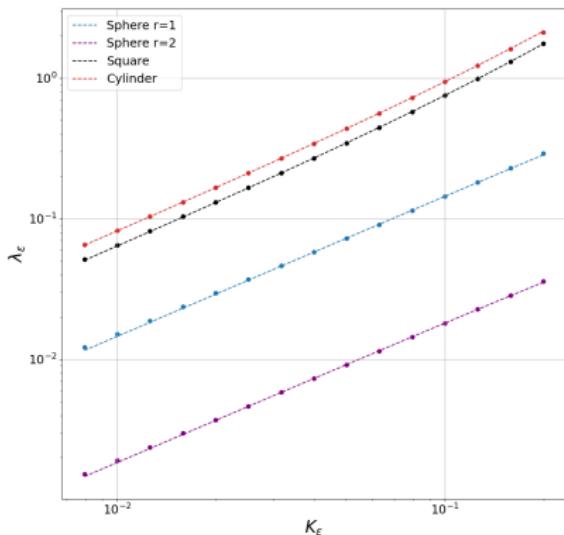
A more efficient simulation method: walk-on-spheres

When far from the boundary, instead of **Euler–Maruyama** we use **walk-on-spheres**

- ▶ Compute radius $r_n = \text{dist}(X_n, \partial\Omega_\varepsilon)$.
- ▶ Sample the exit point X_{n+1} from $B(X_n, r_n)$, uniformly on $\partial B(X_n, r_n)$
- ▶ Sample exit time $\Delta t_n \sim \mathcal{T}_{r_n}$, with \mathcal{T}_{r_n} the law of first exit time from the ball
- ▶ Update time: $t_{n+1} = t_n + \Delta t_n$



Measure of the exit time through the Finite Element Method (FEM)



Recall that $\mathbf{E}_{\nu_\varepsilon}[\tau] = \lambda_\varepsilon^{-1} \approx \hat{\lambda}_\varepsilon^{-1}$ with

$$\hat{\lambda}_\varepsilon = \alpha_{\Omega,d} \bar{K}_\varepsilon, \quad \alpha_{\Omega,d} := \frac{\max\{1, d-2\} w_d}{2|\Omega|}$$

We fit $\alpha_{\Omega,3}$ based on data simple shapes:

Shape Ω	$\alpha_{\Omega,3}$	$\alpha_{\Omega,3}$ (simu)
Sphere radius 1	1.500	1.46
Sphere radius 2	0.187	0.18
Cube	6.282	6.28
Cylinder	8.000	8.06

Summary and perspectives

We presented new results on the asymptotic scaling of exit time and position

- ▶ We considered general domains and general dimension
- ▶ We used a spectral approach based on the quasi-stationary distribution

Perspectives:

- ▶ Obtain more precise asymptotics in ε
- ▶ Treat the case of “flat” boundaries
- ▶ Consider (kinetic) Langevin dynamics
- ▶ Study asymptotic scaling of exit event starting from a deterministic point

Exit time

Function $T_\varepsilon(x) := \mathbf{E}_x[\tau]$ satisfies

$$\begin{cases} -\Delta T_\varepsilon = 1 & \text{on } \Omega_\varepsilon \\ \partial_n T_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ T_\varepsilon = 0 & \text{on } \Gamma_D^\varepsilon \end{cases}$$

Exit probability

Function $P_\varepsilon(x) := \mathbf{P}_x[X_\tau \in \Gamma_{D_i}^\varepsilon]$ satisfies

$$\begin{cases} -\Delta P_\varepsilon = 0 & \text{on } \Omega_\varepsilon \\ \partial_n P_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ P_\varepsilon = \delta_{ij} & \text{on } \Gamma_{D_j}^\varepsilon \end{cases}$$

Thank you for your attention!

Summary and perspectives

We presented new results on the asymptotic scaling of exit time and position

- ▶ We considered general domains and general dimension
- ▶ We used a spectral approach based on the quasi-stationary distribution

Perspectives:

- ▶ Obtain more precise asymptotics in ε
- ▶ Treat the case of “flat” boundaries
- ▶ Consider (kinetic) Langevin dynamics
- ▶ Study asymptotic scaling of exit event starting from a deterministic point

Exit time

Function $T_\varepsilon(x) := \mathbf{E}_x[\tau]$ satisfies

$$\begin{cases} -\Delta T_\varepsilon = 1 & \text{on } \Omega_\varepsilon \\ \partial_n T_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ T_\varepsilon = 0 & \text{on } \Gamma_D^\varepsilon \end{cases}$$

Exit probability

Function $P_\varepsilon(x) := \mathbf{P}_x[X_\tau \in \Gamma_{D_i}^\varepsilon]$ satisfies

$$\begin{cases} -\Delta P_\varepsilon = 0 & \text{on } \Omega_\varepsilon \\ \partial_n P_\varepsilon = 0 & \text{on } \Gamma_N^\varepsilon \\ P_\varepsilon = \delta_{ij} & \text{on } \Gamma_{D_j}^\varepsilon \end{cases}$$

Thank you for your attention!