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The narrow escape problem

» Domain Q. with small doors: z

Q. =Q\ LAJ E(azmri)

n=1

» Brownian particle:
dX, = V2dW,

» Reflecting boundary T'%

> N exit doors I'p,,...T'H,
Let 7 := inf{t > 0, X; € '} where
N
s =JrI5,
n=1
Objective: Characterize first exist event (7, X;) in the limit e — 0
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The narrow escape problem: motivation and references

Motivations from biology and chemistry:

» Escape of ions through small openings in cell membranes
» Early stages of viral infection

» Escape of diffusing molecules to active sites

Vast existing literature, but few rigorous results:

D. Holcman and Z. Schuss. J. Stat. Phys., 2004

O. Bénichou and R. Voituriez. Phys. Rev. Letters, 2008

H. Ammari, K. Kalimeris, H. Kang, and H. Lee. J. Math. Pures Appl. (9), 2012
D. Holecman and Z. Schuss. SIAM Rev., 2014

X. Chen and A. Friedman. SIAM J. Math. Anal., 2011
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Focus in the literature on the mean escape time starting from a point: E;[7]

The narrow escape problem



Recalls on the exponential distribution

The exponential distribution Exp(\) is the probability measure with density

fa(@) = Ae N ifz>0
M0 if 2 < 0

Key properties of the exponential distribution

Suppose that Z; ~ Exp(A1) and Z> ~ Exp()2) are independent. Then
> Let M = min{Zl,Zg}. Then M ~ EXp()q =+ )\2)

> Let
I 1 if Z1 < Zs
T2 2> 2,

Then P[I =] = 55 +>\ for i € {1,2}

» The random variables I and M are independent
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Preliminary numerical experiments (1/3)

We simulate M = 10° Brownian paths started from Xo ~ U(Q.) until escape

» Size of exit doors r{ = 0.1, 5 = 0.05
» We record (T, index(XT)) for each exit event

10000

7500 [

5000 F

2500 |

Observations:

» Escape time 7 appears to follow an exponential distribution
» The index of the exit door appears to be independent of 7
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Preliminary numerical experiments (2/3)

Link with a partial differential equation
Let 7. := Q. — R be defined as T.(z) := E;[7]. Then 7. satisfies

—AT. =1 on Q.
T =0 only
T.=0 onIp

Sketch of proof. Assuming a smooth solution T exists, we have by Itd's formula
dT.(X:) = AT (Xy) dt + V2VTL(Xy) - AW

Writing this equation in integral form and taking the expectation, we obtain

E[TE(XT) - TE(XO)] - E[f] = T.(z)=E[]
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rical experiments (3/3)

Finite element simulation for mean exit time starting from x (here r{ = 2r5 = ¢)
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The quasi-stationary distribution

» Goal: Rewrite the narrow escape problem as a spectral problem

» Motivation: For ¢ < 1, particle reaches local equilibrium before leaving
Definition: quasi-stationary distribution?:?
The QSD v, is the probability measure with support 2. such that

vt > 0, Xo~ve = Law(Xe|7>t) =ve

Property (Yaglom limit): For any X, € Q. and measurable A

tli}rgoP[Xt €AlT >t] =v.(A)

15 Méléard and D. Villemonais. Probab. Surv., 2012.
2T, Lelidvre and G. Stoltz. Acta Numer., 2016, Section 6.3.1.
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[llustration of the Yaglom limit

Fokker-Planck equation:

Otpe = Ap:  on Q. e
Onpe =0 on Ty He
pe=0 onTf e
1:2
gives evolution of Law(X, | T > t)
1.0
0.8
On the right, Xo ~ A(0,0.04) 0s
0.4
0.2
0.0

Figure: Evolution of Law(X¢ |1 > t)
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Fundamental properties of the QSD

Assume that Xy ~ v.. Then

» The exit time 7 is exponentially distributed ~ Exp()\:)

PVE[T>S+t]:PV£[
:PVE[

» The exit point X, is independent of the exit time 7

P, (X, €A 7>t=P,[X,€cA|r>t]|P,.[r>1
= PVE [XT € A] Pl’s [T 2 t]

Goal. Study A\ and P,_[X; € T'f ] fori e {1,..., N} in the limite — 0
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Explicit formulas for mean exit time and exit point

Spectral characterization of the QSD
Consider the first eigenpair (ue, Ac) of the eigenvalue problem
—Aus = A\cue  on Qe
Onue =0 onTg

ue =0 onTp

Then the QSD is given by
_ uc(z)de

T fQE Ue

(It can be shown that u. has a sign and A. > 0)

» The mean exit time satisfies E,_[7] = %
€

» The distribution of the exit point satisfies
fFS Onte do

P, [X,elp]=—"+—"+———
5[ S Dl] fFD 8nU5 do

— The QSD distribution gives information on exit time and exit point
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Numerical illustration of the eigenfunctions
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(a) First eigenfunction (b) Second eigenfunction (c) Third eigenfunction
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Appeal of QSD: from continuous state-space to discrete state-space

(a) Energetic barrier (well studied) (b) Entropic barrier (no full understanding)

Overdamped Langevin dynamics in external potential V:
dXt = —VV(Xt) dt —+ \/ Zﬂ_l th

» For metastability of energetic origin, the QSD is useful to study exit events from the
basin of attraction of a local minimum. Arrhenius approximation when 3 > 1:
i o e—ﬂ(Vsaddle—Vmin(i))

» Understanding the exit events enables to construct discrete state-space approximation
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Why we work in domain Q. = Q\ | B(z;, ;)

The QSD v, is related to the first eigenpair of

—AUue = AeUe in Q¢
Onue =0 on I'yy
U =0 on I'p,

The solution ue enjoys better regularity® if there is an angle between I'S, and I'§

> If angle between I'y and I, is = w1 Opve & L?(09)
> If angle between I'y and ', is < m: Onve € L?(09)

Figure: Contour lines of v, for flat boundary.

1T, Jakab, I. Mitrea, and M. Mitrea. Indiana Univ. Math. J., 2009.
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Heuristic argument for 1 exit door

Goal: approximate the first eigenpair (A, ue) of

—Aue = Aee on Q.
Opue =0 on I'y
ue =0 on I'p
When £ — 0, it holds |[I'5| — 0 so we expect A\ — 0 and u. — cst. This motivates
looking for a solution of the form u. = 1 + v, with
—Ave = e + Aeve on Q.
Onpve =0 on I'y
ve = —1 on I'p
Taking formally the limit &€ — 0, we find that v /A should converge to a function w

satisfying
{Aw =1 on €

Onw =0 on OQ\ {z1}
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Construction of the function w for 1 exit door (1/2)

Let A: R? — R denote the fundamental solution of the Laplacian :

—log(x) ifd=2
A@”X{zﬁ2 ifd>3

Lemma (Construction of a quasimode)

If OS) is smooth, there exists a smooth function of the form w(z) = —2=%1) | R(z)

aQ.d
defined on ) such that
—Aw=1 on )

Onw =0 on 0\ {z1}
and the smooth remainder term R: Q) — R satisfies
O(1) ifd=2
R(z) = { O(—log|z — z1]) ifd=3
O(|x—m1|_(d_3)) ifd>4

The factor a4 is given by, denoting by wq the surface of the unit sphere in R*:

we  [1 ifd=2
QQ,d = e
N TTeY d—2 ifd>3
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Construction of the function w for 1 exit door (2/3)

Sketch of proof. Consider the change of variables
U: QN B(x1,8) - RT x RY!
that locally flattens the boundary 99 and satisfies U(z1) = 0

fem) ()
— f(z) ==
—uy=1L

(a) Local change of coordinates

(b) Smooth cutoff function
We use the ansatz w(z) = —%;f(m) + S(z) with w(z) = S(z) if z ¢ B(z1,9)

P In the first term 1y o A o ¥(x) equals A(xz — x1) to leading order, in a neighborhood of z1
» By substitution we look for S satisfying

—AS=1-oagYA(nLoAo W)
9,8 =0

on

on 90
~~ This problem admits a unique mean-zero weak solution if RHS is mean-zero!

1), Aramaki. Commun. Math. Anal., 2018.
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Construction of the function w for 1 exit door (3/3)

For convenience, let A = nr, o A o U. Two steps are required to conclude the proof:

»> To determine aq g

> we first prove that AA € L'(9)
» then use Green's theorem:

/ AA = lim AAdQ
Q A0 Jo\B(w1,0)
= lim O, do + lim OnA do
A=0 Joa\ B(x1,)) A=0 JoB(z1,2)NQ
-2
S Gt L 5 Jwa

» To prove that S is a subsingular term, we use an integral representation of the
solution (layer potential techniques®). To leading order around 1, it holds that

S() = — / Az — y) AS(y) dy

1H. Ammari, H. Kang, and H. Lee. American Mathematical Soc., 2009.
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Construction of the QSD for 1 exit door

Recall that

» It should hold that u. ~ 1+ A.w fore € 1
» The Dirichlet boundary condition requires that u. = 0 on I'f,.

» Close to x1, the function w(z) equals fAfTﬂ;l) to leading order.

This motivates the approximation

e = nd =aqd X sl

A(rf)

()42 ifd>3

The pair (A-, @.), with Gz := 1 + A.w, satisfies the initial problem with small residuals

— AU, = Xaﬁg - ng on Q.
Onue =0 on I'y

Ue = XsR on I'p
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Towards a rigorous error estimate for \. for 1 exit door

We take for granted® that wuc, . (normalized to be probability densities) satisfy

By Green's identity, we have
Ae(Ue, ue) = —(Ue, Aug)
= — (AU, uc) + (Onle, ue)re — (Ue, Ontic)Te
= Ne (e, ue) — A2(w, ue) + 0 — Xe(R, Onue)re,
Therefore we deduce that

Ae = Ae| (@ie, ue) < OOD) + A | Rl oo rs) | Ontie | 1 0,

The function d,u. is (up to renormalization) a probability density, so it has a sign and

(e, )|

||8"u5HL1(F5D) = ‘<anUe, 1>L2(FIE)) = ‘<AU5, 1>‘ = A

1T, Leliévre, M. Rachid, and G. Stoltz. 2024.
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General result with NV doors

We define

Theorem (Eigenvalue)

The mean exit time when X ~ v, is given by E,_[1] = )‘—15 where

O(Fi) ford =2
Ae = aq.K- + O(Fi 1og(K)) ford = 3
O(F,%) ford > 4

Elements of proof. Construct w; as previously for each door and define
N
Ue =1+ Z )\fwl
i=1
Fix /):f by requiring that . = 0 on I', and noting that %, ~ 1 —|—/):§wi on I'p,
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Distribution of the exit doors

Theorem (Exit door distribution)
Assume that OS2 is smooth. Then fori € {1,..., N}, it holds that

O(Fe) ford =2
P, .[X.eTp,] = % 4 (’)(F‘S log(?s)) ford =3
o(ﬁ;ﬁ) for d > 3

Idea of proof
> Let /" denote the QSD with only door i, with corresponding eigenvalue \.
» For small ¢, it holds that v. = 1/; in total variation
» By the properties of the QSD, it holds for all ¢ > 0 that
P, | Xinr €Th, P, | Xinr €Tp,
b, e 5] = Bl €TB) P [Xo €T5)
i P, [Xinr €T P, [Xinr €T

—)\* 3
1—e et K

~Y —
1—e At 0 [,

26 / 33

Mathematical results



Distribution of the exit door: idea of an analytic proof

Let * denote the QSD without door k, with density u'* and eigenvalue \'*. Then
—(Ontie, g, & — |Q|< e, )FE
_ |Q| (<Aus, Y, — <ua,Au!Ek>Qs)
-7 (<Aua,u€ Yo, — <u5,Au!€k>QE)

Q|
1 1k \k - Oéﬂ,dl(éC
:@(Asz ><u5,u5 >QEN Q2
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Sampling the QSD: Fleming—Viot particle system

> Initialization: Sample M independent particles X4, ..., XM ~ i

» Evolution: Each particle evolves independently according to the dynamics

dX; =v24dw;} + Reflecting boundary condition
» Resampling: When a particle i reaches an absorbing state
» Pick particle j among remaining particles, uniformly at random

» Move particle ¢ to position of particle j instantly

> Output: For M,t > 1, the empirical measure approximates the QSD?*2
1M
weak
i=1

ID. Villemonais. ESAIM Probab. Stat., 2014.
2L, Journel and P. Monmarché. Ann. Appl. Probab., 2025.
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Monte Carlo simulation of the narrow escape problem

Given X¢,..., X3 output of Fleming—Viot, repeat the following steps:
1. Propose move by Euler—Maruyama discretization:
Xot1 = Xn + V20160, &~ N(0,14)

2. If )A(nﬂ € B(zi,ri), register exit event for door i € {1,..., N}. Done
3. Else if Xny1 € €, reject move (reflecting boundary)

~

4. Else, set Xp41 = Xnt1

This approach is computationally expensive

> Time step should be small compared to (r§)? for i € {1,...,N}

» Mean exit time increases as ¢ — 0

Example: in dimension 3 with 7§ o €, the mean exit time scales as é

~ Simulation cost of M exit events scales as Me >
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A more efficient simulation method: walk-on-spheres

When far from the boundary, instead of Euler—Maruyama we use walk-on-spheres
» Compute radius 7, = dist(X, 98.).
» Sample the exit point X,,11 from B(X,,ry), uniformly on dB(X,,75)
» Sample exit time At,, ~ T, with 7, the law of first exit time from the ball

» Update time: t,41 = tn + Aty

Numerical illustration 31 /33



Measure of the exit time through the Finite Element Method (FEM)

----- Square
0| e Cylinder

rrrrr Sphere r=1
----- Sphere r=2

Ke

Numerical illustration

Recall that E,_[r] = A-! ~ AZ! with

Ae = OéQ,ng, aQ,d =

max{1,d — 2}wq

29|

We fit aq,3 based on data simple shapes:

Shape Q aqs | aqs (simu)
Sphere radius 1 | 1.500 1.46
Sphere radius 2 | 0.187 0.18

Cube 6.282 6.28

Cylinder 8.000 8.06
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Summary and perspectives

We presented new results on the asymptotic scaling of exit time and position

» We considered general domains and general dimension
» We used a spectral approach based on the quasi-stationary distribution

Perspectives:

» Obtain more precise asymptotics in €

> Treat the case of “flat” boundaries

» Consider (kinetic) Langevin dynamics

> Study asymptotic scaling of exit event starting from a deterministic point

Exit time Exit probability
Function T (z) := E.[7] satisfies Function P.(z) := P.[X, € '] satisfies
—AT. =1 onQ. —AP. =0 on Q.
0T =0 onTy OP.=0 onT%
TE =0 on FED 2= (Sij on FSDJ
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Thank you for your attention!
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