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The narrow escape problem

▶ Domain Ωε with small doors:

Ωε = Ω \
N⋃

n=1

B
(
xn, r

ε
n

)
▶ Brownian particle:

dXt =
√
2 dWt

▶ Reflecting boundary Γε
N

▶ N exit doors Γε
D1

, . . .Γε
DN

Let τ := inf{t ⩾ 0, Xt ∈ Γε
D} where

Γε
D =

N⋃
n=1

Γε
Dn

Objective: Characterize first exist event (τ,Xτ ) in the limit ε → 0
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The narrow escape problem: motivation and references

Motivations from biology and chemistry:

▶ Escape of ions through small openings in cell membranes

▶ Early stages of viral infection

▶ Escape of diffusing molecules to active sites

Vast existing literature, but few rigorous results:

▶ D. Holcman and Z. Schuss. J. Stat. Phys., 2004

▶ O. Bénichou and R. Voituriez. Phys. Rev. Letters, 2008

▶ H. Ammari, K. Kalimeris, H. Kang, and H. Lee. J. Math. Pures Appl. (9), 2012

▶ D. Holcman and Z. Schuss. SIAM Rev., 2014

▶ X. Chen and A. Friedman. SIAM J. Math. Anal., 2011

Focus in the literature on the mean escape time starting from a point: Ex[τ ]
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Recalls on the exponential distribution

The exponential distribution Exp(λ) is the probability measure with density

fλ(x) =

{
λ e−λx if x ⩾ 0

0 if x < 0

Key properties of the exponential distribution

Suppose that Z1 ∼ Exp(λ1) and Z2 ∼ Exp(λ2) are independent. Then

▶ Let M := min{Z1, Z2}. Then M ∼ Exp(λ1 + λ2).

▶ Let

I =

{
1 if Z1 ⩽ Z2

2 if Z1 > Z2

Then P[I = i] = λi
λ1+λ2

for i ∈ {1, 2}
▶ The random variables I and M are independent
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Preliminary numerical experiments (1/3)

We simulate M = 105 Brownian paths started from X0 ∼ U(Ωε) until escape

▶ Size of exit doors rε1 = 0.1, rε2 = 0.05

▶ We record
(
τ, index(Xτ )

)
for each exit event

Observations:

▶ Escape time τ appears to follow an exponential distribution
▶ The index of the exit door appears to be independent of τ
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Preliminary numerical experiments (2/3)

Link with a partial differential equation

Let Tε := Ωε → R be defined as Tε(x) := Ex[τ ]. Then Tε satisfies
−∆Tε = 1 on Ωε

∂nTε = 0 on Γε
N

Tε = 0 on Γε
D

Sketch of proof. Assuming a smooth solution Tε exists, we have by Itô’s formula

dTε(Xt) = ∆Tε(Xt) dt+
√
2∇Tε(Xt) · dWt

Writing this equation in integral form and taking the expectation, we obtain

E
[
Tε(Xτ )− Tε(X0)

]
= −E[τ ] → Tε(x) = E[τ ]
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Preliminary numerical experiments (3/3)

Finite element simulation for mean exit time starting from x (here rε1 = 2rε2 = ε)
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The quasi-stationary distribution

▶ Goal: Rewrite the narrow escape problem as a spectral problem

▶ Motivation: For ε ≪ 1, particle reaches local equilibrium before leaving

Definition: quasi-stationary distribution1,2

The QSD νε is the probability measure with support Ωε such that

∀t ⩾ 0, X0 ∼ νε ⇒ Law(Xt | τ > t) = νε

Property (Yaglom limit): For any X0 ∈ Ωε and measurable A

lim
t→∞

P
[
Xt ∈ A | τ > t

]
= νε(A)

1S. Méléard and D. Villemonais. Probab. Surv., 2012.
2T. Lelièvre and G. Stoltz. Acta Numer., 2016, Section 6.3.1.
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Illustration of the Yaglom limit

Fokker-Planck equation:
∂tρε = ∆ρε on Ωε

∂nρε = 0 on Γε
N

ρε = 0 on Γε
D

gives evolution of Law(Xt | τ > t)

On the right, X0 ∼ N (0, 0.04)

Figure: Evolution of Law(Xt | τ > t)
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Fundamental properties of the QSD

Assume that X0 ∼ νε. Then

▶ The exit time τ is exponentially distributed ∼ Exp(λε)

Pνε [τ ⩾ s+ t] = Pνε [τ ⩾ s+ t | τ ⩾ s]Pνε [τ ⩾ s]

= Pνε [τ ⩾ t]Pνε [τ ⩾ s].

▶ The exit point Xτ is independent of the exit time τ

Pνε [Xτ ∈ A, τ ⩾ t] = Pνε [Xτ ∈ A | τ ⩾ t]Pνε [τ ⩾ t]

= Pνε [Xτ ∈ A]Pνε [τ ⩾ t]

Goal. Study λε and Pνε [Xτ ∈ Γε
Di

] for i ∈ {1, . . . , N} in the limit ε → 0
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Explicit formulas for mean exit time and exit point

Spectral characterization of the QSD

Consider the first eigenpair (uε, λε) of the eigenvalue problem
−∆uε = λεuε on Ωε

∂nuε = 0 on Γε
N

uε = 0 on Γε
D

Then the QSD is given by

νε =
uε(x) dx∫

Ωε
uε

(It can be shown that uε has a sign and λε > 0)

▶ The mean exit time satisfies Eνε [τ ] =
1
λε

▶ The distribution of the exit point satisfies

Pνε [Xτ ∈ Γε
Di
] = −

∫
Γε
Di

∂nuε dσ∫
ΓD

∂nuε dσ

→ The QSD distribution gives information on exit time and exit point
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Numerical illustration of the eigenfunctions

(a) First eigenfunction (b) Second eigenfunction (c) Third eigenfunction
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Appeal of QSD: from continuous state-space to discrete state-space

(a) Energetic barrier (well studied) (b) Entropic barrier (no full understanding)

Overdamped Langevin dynamics in external potential V :

dXt = −∇V (Xt) dt+
√

2β−1 dWt.

▶ For metastability of energetic origin, the QSD is useful to study exit events from the
basin of attraction of a local minimum. Arrhenius approximation when β ≫ 1:

λi ∝ e−β
(
Vsaddle−Vmin(i)

)
▶ Understanding the exit events enables to construct discrete state-space approximation
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Why we work in domain Ωε = Ω \
⋃
B(xi, ri)

The QSD νε is related to the first eigenpair of
−∆uε = λεuε in Ωε

∂nuε = 0 on Γε
N

uε = 0 on Γε
Di

The solution uε enjoys better regularity1 if there is an angle between Γε
N and Γε

D

▶ If angle between Γε
N and Γε

Di
is = π: ∂nνε ̸∈ L2(∂Ω)

▶ If angle between Γε
N and Γε

Di
is < π: ∂nνε ∈ L2(∂Ω)

Figure: Contour lines of νε for flat boundary.

1T. Jakab, I. Mitrea, and M. Mitrea. Indiana Univ. Math. J., 2009.
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Heuristic argument for 1 exit door

Goal: approximate the first eigenpair (λε, uε) of
−∆uε = λεuε on Ωε

∂nuε = 0 on Γε
N

uε = 0 on Γε
D

When ε → 0, it holds |Γε
D| → 0 so we expect λε → 0 and uε → cst. This motivates

looking for a solution of the form uε = 1 + vε, with
−∆vε = λε + λεvε on Ωε

∂nvε = 0 on Γε
N

vε = −1 on Γε
D

Taking formally the limit ε → 0, we find that vε/λε should converge to a function w
satisfying {

−∆w = 1 on Ω

∂nw = 0 on ∂Ω \ {x1}
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Construction of the function w for 1 exit door (1/2)

Let Λ: Rd → R denote the fundamental solution of the Laplacian :

Λ(x) ∝

{
− log(x) if d = 2

1
|x|d−2 if d ⩾ 3

Lemma (Construction of a quasimode)

If ∂Ω is smooth, there exists a smooth function of the form w(x) = −Λ(x−x1)
αΩ,d

+R(x)

defined on Ω such that {
−∆w = 1 on Ω

∂nw = 0 on ∂Ω \ {x1}

and the smooth remainder term R : Ω → R satisfies

R(x) =


O(1) if d = 2

O
(
− log |x− x1|

)
if d = 3

O
(
|x− x1|−(d−3)

)
if d ⩾ 4

The factor αΩ,d is given by, denoting by wd the surface of the unit sphere in Rd:

αΩ,d =
wd

2|Ω| ×

{
1 if d = 2

d− 2 if d ⩾ 3
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Construction of the function w for 1 exit door (2/3)

Sketch of proof. Consider the change of variables

Ψ: Ω ∩B(x1, δ) → R+ × Rd−1

that locally flattens the boundary ∂Ω and satisfies Ψ(x1) = 0

(a) Local change of coordinates (b) Smooth cutoff function

We use the ansatz w(x) = − ηL◦Λ◦Ψ(x)
αΩ,d

+ S(x) with w(x) = S(x) if x /∈ B(x1, δ)

▶ In the first term ηL ◦ Λ ◦ Ψ(x) equals Λ(x − x1) to leading order, in a neighborhood of x1

▶ By substitution we look for S satisfying{
−∆S = 1 − α

−1
Ω,d∆(ηL ◦ Λ ◦ Ψ) on Ω

∂nS = 0 on ∂Ω

⇝ This problem admits a unique mean-zero weak solution if RHS is mean-zero1

1J. Aramaki. Commun. Math. Anal., 2018.
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Construction of the function w for 1 exit door (3/3)

For convenience, let Λ̃ = ηL ◦ Λ ◦Ψ. Two steps are required to conclude the proof:

▶ To determine αΩ,d

▶ we first prove that ∆Λ̃ ∈ L1(Ω)
▶ then use Green’s theorem:∫

Ω

∆Λ̃ = lim
λ→0

∫
Ω\B(x1,λ)

∆Λ̃dΩ

= lim
λ→0

∫
∂Ω\B(x1,λ)

∂nΛ̃ dσ + lim
λ→0

∫
∂B(x1,λ)∩Ω

∂nΛ̃ dσ

= 0 +
(d− 2)wd

2

▶ To prove that S is a subsingular term, we use an integral representation of the
solution (layer potential techniques1). To leading order around x1, it holds that

S(x) = −
∫
Ω

Λ(x− y)∆S(y) dy

1H. Ammari, H. Kang, and H. Lee. American Mathematical Soc., 2009.
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Construction of the QSD for 1 exit door

Recall that

▶ It should hold that uε ≈ 1 + λεw for ε ≪ 1

▶ The Dirichlet boundary condition requires that uε = 0 on Γε
D.

▶ Close to x1, the function w(x) equals −Λ(x−x1)
αΩ,d

to leading order.

This motivates the approximation

λ̂ε =
αΩ,d

Λ(rε1)
= αΩ,d ×


−1

log(rε1)
if d = 2

(rε1)
d−2 if d ⩾ 3

The pair (λ̂ε, ûε), with ûε := 1 + λ̂εw, satisfies the initial problem with small residuals
−∆ûε = λ̂εûε − λ̂2

εw on Ωε

∂nuε = 0 on Γε
N

uε = λ̂εR on Γε
D
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Towards a rigorous error estimate for λ̂ε for 1 exit door

We take for granted1 that uε, ûε (normalized to be probability densities) satisfy

▶ ⟨uε, uε⟩ = |Ω|−
1
2 +O(λ̂ε)

▶ ⟨ûε, uε⟩ = |Ω|−
1
2 +O(λ̂ε)

By Green’s identity, we have

λε⟨ûε, uε⟩ = −⟨ûε,∆uε⟩
= −⟨∆ûε, uε⟩+ ⟨∂nûε, uε⟩Γε − ⟨ûε, ∂nuε⟩Γε

= λ̂ε⟨ûε, uε⟩ − λ̂2
ε⟨w, uε⟩+ 0− λ̂ε⟨R, ∂nuε⟩Γε

D

Therefore we deduce that∣∣∣λε − λ̂ε

∣∣∣ ⟨ûε, uε⟩ ⩽ O(λ̂2
ε) + λ̂ε∥R∥L∞(Γε

D)∥∂nuε∥L1(Γε
D)

The function ∂nuε is (up to renormalization) a probability density, so it has a sign and

∥∂nuε∥L1(Γε
D) =

∣∣∣⟨∂nuε, 1⟩L2(Γε
D)

∣∣∣ = ∣∣∣⟨∆uε, 1⟩
∣∣∣ = λε

∣∣∣⟨uε, 1⟩
∣∣∣

1T. Lelièvre, M. Rachid, and G. Stoltz. 2024.
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General result with N doors

We define

Ki
ε :=


− 1

log(rεi )
if d = 2

(rεi )
d−2 if d ⩾ 3

Kε := K1 + · · ·+KN

Theorem (Eigenvalue)

The mean exit time when X0 ∼ νε is given by Eνε [τ ] =
1
λε

, where

λε = αΩ,dKε +


O
(
K

2
ε

)
for d = 2

O
(
K

2
ε log

(
Kε

))
for d = 3

O
(
K

d−1
d−2
ε

)
for d ⩾ 4

Elements of proof. Construct wi as previously for each door and define

ûε = 1 +

N∑
i=1

λ̂ε
iwi

Fix λ̂ε
i by requiring that ûε = 0 on Γε

Di
and noting that ûε ≈ 1 + λ̂ε

iwi on Γε
Di
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Distribution of the exit doors

Theorem (Exit door distribution)

Assume that ∂Ω is smooth. Then for i ∈ {1, . . . , N}, it holds that

Pνε

[
Xτ ∈ Γε

Di

]
=

Ki
ε

Kε

+


O
(
Kε

)
for d = 2

O
(
Kε log

(
Kε

))
for d = 3

O
(
K

1
d−2
ε

)
for d > 3

Idea of proof

▶ Let νk
ε denote the QSD with only door i, with corresponding eigenvalue λi

ε

▶ For small ε, it holds that νε ≈ νi
ε in total variation

▶ By the properties of the QSD, it holds for all t > 0 that

Pνε

[
Xτ ∈ Γε

Di

]
=

Pνε

[
Xt∧τ ∈ Γε

Di

]
Pνε

[
Xt∧τ ∈ Γε

D

] ≈
Pνi

ε

[
Xt∧τ ∈ Γε

Di

]
Pνε

[
Xt∧τ ∈ Γε

D

]
⩽

1− e−λi
εt

1− e−λεt
−−−→
ε→0

Ki
ε

Kε
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Distribution of the exit door: idea of an analytic proof

Let ν!k
ε denote the QSD without door k, with density u!k

ε and eigenvalue λ!k
ε . Then

−⟨∂nuε, 1⟩Γε
Dk

≈ − 1

|Ω|
〈
∂nuε, u

!k
ε

〉
Γε
Dk

= − 1

|Ω|

(〈
∆uε, u

!k
ε

〉
Ωε

−
〈
uε,∆u!k

ε

〉
Ωε

)
= − 1

|Ω|

(〈
∆uε, u

!k
ε

〉
Ωε

−
〈
uε,∆u!k

ε

〉
Ωε

)
=

1

|Ω|

(
λε − λ!k

ε

) 〈
uε, u

!k
ε

〉
Ωε

≈ αΩ,dK
k
ε

|Ω|2
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Sampling the QSD: Fleming–Viot particle system

▶ Initialization: Sample M independent particles X1
0 , . . . , X

M
0 ∼ µ

▶ Evolution: Each particle evolves independently according to the dynamics

dXi
t =

√
2 dW i

t + Reflecting boundary condition

▶ Resampling: When a particle i reaches an absorbing state

▶ Pick particle j among remaining particles, uniformly at random
▶ Move particle i to position of particle j instantly

▶ Output: For M, t ≫ 1, the empirical measure approximates the QSD1,2

1

M

M∑
i=1

δXi
t

weak−−−−→
M→∞

Pµ[Xt ∈ · | τ > t]

1D. Villemonais. ESAIM Probab. Stat., 2014.
2L. Journel and P. Monmarché. Ann. Appl. Probab., 2025.
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Monte Carlo simulation of the narrow escape problem

Given X1
0 , . . . , X

M
0 output of Fleming–Viot, repeat the following steps:

1. Propose move by Euler–Maruyama discretization:

X̂n+1 = Xn +
√
2∆t ξn, ξn ∼ N (0, Id)

2. If X̂n+1 ∈ B(xi, r
ε
i ), register exit event for door i ∈ {1, . . . , N}. Done

3. Else if X̂n+1 /∈ Ω, reject move (reflecting boundary)

4. Else, set Xn+1 = X̂n+1

This approach is computationally expensive

▶ Time step should be small compared to (rεi )
2 for i ∈ {1, . . . , N}

▶ Mean exit time increases as ε → 0

Example: in dimension 3 with rεi ∝ ε, the mean exit time scales as 1
ε

⇝ Simulation cost of M exit events scales as Mε−3

Numerical illustration 30 / 33



A more efficient simulation method: walk-on-spheres

When far from the boundary, instead of Euler–Maruyama we use walk-on-spheres

▶ Compute radius rn = dist(Xn, ∂Ωε).

▶ Sample the exit point Xn+1 from B(Xn, rn), uniformly on ∂B(Xn, rn)

▶ Sample exit time ∆tn ∼ Trn , with Trn the law of first exit time from the ball

▶ Update time: tn+1 = tn +∆tn
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Measure of the exit time through the Finite Element Method (FEM)

Recall that Eνε [τ ] = λ−1
ε ≈ λ̂−1

ε with

λ̂ε = αΩ,dKε, αΩ,d :=
max{1, d− 2}wd

2|Ω|

We fit αΩ,3 based on data simple shapes:

Shape Ω αΩ,3 αΩ,3 (simu)
Sphere radius 1 1.500 1.46

Sphere radius 2 0.187 0.18

Cube 6.282 6.28

Cylinder 8.000 8.06
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Summary and perspectives

We presented new results on the asymptotic scaling of exit time and position

▶ We considered general domains and general dimension
▶ We used a spectral approach based on the quasi-stationary distribution

Perspectives:

▶ Obtain more precise asymptotics in ε
▶ Treat the case of “flat” boundaries
▶ Consider (kinetic) Langevin dynamics
▶ Study asymptotic scaling of exit event starting from a deterministic point

Exit time

Function Tε(x) := Ex[τ ] satisfies
−∆Tε = 1 on Ωε

∂nTε = 0 on Γε
N

Tε = 0 on Γε
D

Exit probability

Function Pε(x) := Px[Xτ ∈ Γε
Di

] satisfies
−∆Pε = 0 on Ωε

∂nPε = 0 on Γε
N

Pε = δij on Γε
Dj

Thank you for your attention!
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