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Goals of computational statistical physics

• Computation of macroscopic properties from Newtonians atomistic models:

Static properties, such as

the heat capacity and
the equations of state P = P (ρ, T ).

Dynamical properties, such as transport
coefficients:

the viscosity;
the thermal conductivity;
the mobility of ions in solution. 0 200 400 600 800 1000
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• ‘+’: molecular simulation;

• Solid line: experimental measurements[1].

• Numerical microscope: used in physics, biology, chemistry.

[1] https://webbook.nist.gov/chemistry/fluid/
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Some background material on the Langevin equation

Consider the (one-particle) Langevin equation{
dqt = pt dt,

dpt = −∇V (qt) dt−γpt dt+
√

2γβ−1 dWt,
(q0,p0) ∼ µ,

where γ is the friction, V is a periodic potential, and β = 1
kBT

.

The invariant probability measure is

µ(q,p) =
1

Z
e−βH(q,p) =

1

Z
e
−β

(
V (q)+

|p|2
2

)
, on Td ×Rd.

The generator of the associated Markov semigroup(
eLt φ

)
(q,p) = E

(
φ(qt,pt)

∣∣(q0,p0) = (q,p)
)

is the following operator:

L = (p · ∇q −∇V (q) · ∇p) + γ
(
−p∇p + β−1∆p

)
=: Lham + γ LFD.

We denote by ∥·∥ and ⟨·, ·⟩ the norm and inner product of L2(µ), and

L2
0(µ) =

{
φ ∈ L2(µ) : ⟨φ, 1⟩ = Eµφ = 0

}
.
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Definition of the mobility

Consider Langevin dynamics with additional forcing in a direction e:{
dqt = pt dt,

dpt = −∇V (qt) dt+ ηedt− γpt dt+
√

2γβ−1 dWt.

This dynamics admits a unique invariant probability distribution µη ∈ P(Td ×Rd).

Definition (Mobility)

The mobility in direction e is defined mathematically as

Me = lim
η→0

1

η
Eµη [e

Tp]

≈ factor relating the mean momentum to the strength of the inducing force.

There is a symmetric mobility tensor M such that Me = eTMe.

Einstein’s relation: D = β−1M, with D the effective diffusion coefficient.
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Effective diffusion

It is possible to show a functional central limit theorem for the Langevin dynamics:

εq̃s/ε2 −−−→
ε→0

√
2DWs weakly on C([0,∞)), q̃t := q0 +

∫ t

0

ps ds ∈ Rd.

In particular, q̃t/
√
t −−−→

t→∞
N (0, 2D) weakly.

Figure: Histogram of qt/
√
t. The potential V (q) = − cos(q)/2 is illustrated in the background.
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Mathematical expression for the effective diffusion (dimension 1)

Expression of D in terms of the solution to a Poisson equation

The effective diffusion coefficient is given by where D = ⟨ϕ, p⟩ and ϕ is the solution to

−Lϕ = p, ϕ ∈ L2
0(µ) :=

{
u ∈ L2(µ) : ⟨u, 1⟩ = 0

}
.

Key idea of the proof: Apply Itô’s formula to ϕ

dϕ(qs, ps) = −ps ds+
√

2γβ−1
∂ϕ

∂p
(qs, ps) dWs

and then rearrange:

ε(q̃t/ε2 − q̃0) = ε

∫ t/ε2

0

ps ds

= ε
(
ϕ(q0, p0)− ϕ(qt/ε2 , pt/ε2)

)︸ ︷︷ ︸
→0

+
√

2γβ−1ε

∫ t/ε2

0

∂ϕ

∂p
(qs, ps) dWs︸ ︷︷ ︸

→
√
2DWt weakly by MCLT

.

In the multidimensional setting, De =
〈
ϕe, e

Tp
〉
with −Lϕe = eTp
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Langevin dynamics: underdamped and overdamped regimes[2]

Figure: Langevin dynamics with friction γ = 0.1 (left) and γ = 10 (right)

The underdamped limit as γ → 0 is well understood in dimension 1 but not in the
multi-dimensional setting. In dimension 1, it holds that

ϕ = −L−1p = γ−1ϕund +O(γ−1/2).

Overdamped limit: as γ →∞, the rescaled process t 7→ qγt converges weakly to the
solution of the overdamped Langevin equation:

q̇ = −∇V (q) +
√

2β−1 Ẇ.

[2] M. Hairer and G. A. Pavliotis. From ballistic to diffusive behavior in periodic potentials. J. Stat.
Phys., 2008.
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Scaling of the effective diffusion coefficient for Langevin dynamics[3]

In dimension 1, limγ→0 γD
γ = Dund := ⟨ϕund, p⟩ and limγ→∞ γDγ = Dovd.

[3] G. A. Pavliotis and A. Vogiannou. Diffusive transport in periodic potentials: underdamped
dynamics. Fluct. Noise Lett., 2008.
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Open question: surface diffusion when γ ≪ 1[4]

Applications:

integrated circuits;

catalysis.

In dimension > 1, it does not hold that γDγ
e −−−→

γ→0
Dund when V is non-separable, e.g.

V (q) = −1

2

(
cos(q1) + cos(q2)

)
− δ cos(q1) cos(q2)

Open question: behavior of the effective diffusion coefficient when γ ≪ 1?

Dγ
e = lim

t→∞

E
[∣∣eTqt

∣∣2]
2t

∼ γ−σ, σ =???

[4] Source of the video: https://en.wikipedia.org/wiki/Surface_diffusion
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Brief literature review

Open question:

How does Dγ
e behave when γ ≪ 1 and d = 2?

Various answers are given in the literature:

Dγ
e ∝ γ−1/2 for specific potentials[5];

Dγ
e ∝ γ−1/3 for specific potentials[6];

Dγ
e ∝ γ−σ with σ depending on the potential[7].

Difficulty with γ ≪ 1:

Deterministic methods for the Poisson equation −Lϕe = eTp are ill-conditioned.

Probabilistic methods are very slow to converge.

[5] L. Y. Chen, M. R. Baldan, and S. C. Ying. Surface diffusion in the low-friction limit: Occurrence
of long jumps. Phys. Rev. B, 1996.

[6] O. M. Braun and R. Ferrando. Role of long jumps in surface diffusion. Phys. Rev. E, 2002.
[7] J. Roussel. Theoretical and Numerical Analysis of Non-Reversible Dynamics in Computational

Statistical Physics. PhD thesis, Université Paris-Est, 2018.
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Numerical approaches for calculating the effective diffusion coefficient

Linear response approach:

De = lim
η→0

1

βη
Eµη (eTp).

where µη is the invariant distribution of the system with external forcing.

Einstein’s relation:

De = lim
t→∞

1

2t
Eµ

[∣∣eT(q̃t − q0)
∣∣2].

Deterministic method, e.g. Fourier/Hermite Galerkin, for the Poisson equation

−Lϕe = eTp, De = ⟨ϕe, p⟩ .

Green–Kubo formula: Since −L−1 =
∫∞
0

etL dt,

De =

∫
−L−1(eTp) (eTp) dµ =

∫ ∞

0

∫
etL(eTp)(eTp) dµ dt

=

∫ ∞

0

Eµ

(
(eTp0)(e

Tpt)
)
dt.
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Estimation of the effective diffusion coefficient from Einstein’s relation

Consider the following estimator of the effective diffusion coefficient De:

u(T ) =

∣∣eT(q̃T − q̃0)
∣∣2

2T
, (q0,p0) ∼ µ.

Bias of this estimator:

E
[
u(T )

]
= De −

∫ ∞

0

〈
etL(eTp), eTp

〉
min

{
1,
t

T

}
dt.

Using the decay estimate for the semigroup[8]∥∥∥etL∥∥∥
B(L2

0(µ))
≤ L e−ℓmin{γ,γ−1}t,

we deduce

|E[u(T )]−De| ≤
Cmax{γ2, γ−2}

T
.

[8] J. Roussel and G. Stoltz. Spectral methods for Langevin dynamics and associated error estimates.
ESAIM: Math. Model. Numer. Anal., 2018.

Mobility estimation for Langevin dynamics using control variates – Efficient mobility estimation 15 / 45



Variance of the estimator u(T ) for large T

For T ≫ 1, it holds approximately that

eT(q̃T − q̃0)√
2T

∼ N (0, De) ⇝
u(T )

De
=

∣∣eT(q̃T − q̃0)
∣∣2

2DeT
∼ χ2(1).

Therefore, we deduce
lim

T→∞
V
[
u(T )

]
= 2D2

e.

The relative standard deviation (asymptotically as T →∞) is therefore

lim
T→∞

√
V
[
u(T )

]
E
[
u(T )

] =
√
2 ⇝ independent of γ.

Scaling of the mean square error when using J realizations

Assuming an asymptotic scaling as γ−σ of De, we have

∀γ ∈ (0, 1),
MSE

D2
e
≤ C

γ4−2σT 2
+

2

J
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Variance reduction using control variates

Let ϕe denote the solution to the Poisson equation,

−Lϕe(q,p) = eTp, ϕe ∈ L2
0(µ)

By Itô’s formula, we obtain

ϕe(qT ,pT )− ϕe(q0,p0) = −
∫ T

0

eTpt dt+
√

2γβ−1

∫ T

0

∇pϕe(qt,pt) · dWt.

Therefore if ψe denote an approximation of ϕe, then

eT(q̃T − q̃0) =

∫ T

0

eTpt dt

≈ −ψe(qT ,pT ) + ψe(q0,p0) +
√

2γβ−1

∫ T

0

∇pψe(qt,pt) · dWt =: ξT .

which suggests the improved estimator

v(T ) =

∣∣eT(q̃T − q̃0)
∣∣2

2T
−
(
|ξT |2

2T
− lim

T→∞
E

[
|ξT |2

2T

])
.
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Properties of the improved estimator

Smaller bias if −Lψe ≈ eTp:∣∣E[v(T )]−Dγ
e

∣∣ ≤ Lmax{γ2, γ−2}
Tℓ2

∥∥∥eTp+ Lψe

∥∥∥(β−1/2 + ∥Lψe∥
)
.

Smaller variance:

V
[
v(T )

]
≤ C

(
T−1∥ϕe − ψe∥L4(µ)

2 + γ∥∇pϕe −∇pψe∥L4(µ)
2
)

×
(
T−1 ∥ϕe + ψe∥2L4(µ) + γ ∥∇pϕe +∇pψe∥2L4(µ)

)
.

Construction of ψe in the one-dimensional setting. We consider two approaches:

Approximate the solution to the Poisson equation by a Galerkin method.

Use asymptotic result for the Poisson equation:

γϕ
L2(µ)−−−−→
γ→0

ϕund,

which suggests letting ψ = ϕund/γ.
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Construction of the approximate solution ψe in dimension 2

We consider the potential

V (q) = −1

2

(
cos(q1) + cos(q2)

)
− δ cos(q1) cos(q2).

For this potential, D is isotropic ⇝ sufficient to consider e = (1, 0),

D(1,0) =
〈
ϕ(1,0), p1

〉
, −Lϕ(1,0)(q,p) = p1.

If δ = 0, then the solution is ϕ(1,0)(q,p) = ϕ1D(q1, p1), where ϕ1D solves

−L1Dϕ1D(q, p) = p, V1D(q) =
1

2
cos(q).

We take ψ(1,0)(q,p) = ψ1D(q1, p1), where ψ1D ≈ ϕ1D.
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Numerical experiments for the one-dimensional case (1/2)
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Numerical experiments for the one-dimensional case (2/2)
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Figure: Evolution of the sample mean and standard deviation, estimated from J = 5000 realizations for γ = 10−3.
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Performance of the control variates approach in dimension 2
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Variance reduction is possible if |δ| /γ ≪ 1;

Control variates are not very useful as γ → 0 and δ is fixed. . .
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Scaling of the mobility in dimension 2
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Summary of part I and perspectives for future work

In this part, we presented

a variance reduction approach for efficiently estimating the mobility;

numerical results showing that the scaling of the mobility is not universal.

Perspectives for future work:

Use alternative methods (PINNs, Gaussian processes) to solve the Poisson equation;

Study and improve variance reduction approaches for other transport coefficients.
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Part II: Optimal importance sampling for overdamped Langevin dynamics
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The sampling problem

Objective of the sampling problem

Calculate averages of the form

µ(f) :=

∫
Td

f dµ, µ :=
e−V

Z
, Z :=

∫
Td

e−V .

Often in applications:

The dimension d is large;

The normalization constant Z is unknown;

We cannot generate i.i.d. samples from µ.

Markov chain Monte Carlo (MCMC) approach:

I := µ(f) ≈ µT (f) :=
1

T

∫ T

0

f(Yt) dt

for a Markov process (Yt)t≥0 that is ergodic with respect to µ.

Example: overdamped Langevin dynamics

dYt = −∇V (Yt) dt+
√
2 dWt, Y0 = y0.
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Importance sampling in the MCMC context

If (Xt)t≥0 is a Markov process ergodic with respect to

µU =
e−V −U

ZU
, ZU =

∫
Td

e−V −U ,

then I = µ(f) may be approximated by

µT
U (f) :=

1

T

∫ T

0

(f eU )(Xt) dt

1

T

∫ T

0

(eU )(Xt) dt

.

Markov process: overdamped Langevin dynamics

dXt = −∇(V + U)(Xt) dt+
√
2 dWt, X0 = x0.

Asymptotic variance: Under appropriate conditions, it holds that
√
T
(
µT
U (f)− I

) Law−−−−→
T→∞

N
(
0, σ2

f [U ]
)
.

Objective

Find U such that the asymptotic variance σ2
f [U ] is minimized.
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Background: importance sampling in the i.i.d. setting (1/2)

Given i.i.d. samples {X1, X2, . . . } from µU , we define

µN
U (f) :=

∑N
n=1(f e

U )(Xn)∑N
n=1(e

U )(Xn)
= I +

1
N

∑N
n=1

(
(f − I) eU

)
(Xn)

1
N

∑N
n=1(e

U )(Xn)
,

Numerator: by the central limit theorem,

1√
N

N∑
n=1

(
(f − I) eU

)
(Xn)

Law−−−−→
N→∞

N
(
0,

∫
Td

∣∣∣(f − I) eU ∣∣∣2 dµU

)

Denominator: by the strong law of large numbers,

1

N

N∑
n=1

(
eU
)
(Xn)

a.s.−−−−→
N→∞

Z

ZU
.

Therefore, by Slutsky’s theorem,

√
N
(
µN
U (f)− I

) Law−−−−→
T→∞

N
(
0, s2f [U ]

)
, s2f [U ] :=

Z2
U

Z2

∫
Tn

∣∣(f − I) eU ∣∣2 dµU .
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Background: importance sampling in the i.i.d. setting (2/2)

By the Cauchy–Schwarz inequality, it holds that

s2f [U ] ≥ Z2
U

Z2

(∫
Td

|f − I| eU dµU

)2

=
1

Z2

(∫
Td

|f − I| e−V

)2

,

with equality when |f − I| eU is constant.

Optimal importance distribution

The optimal µU in the i.i.d. setting is

µU ∝ |f − I| e−V

Objectives:

Is there a counterpart of this formula in the MCMC setting?

If not, can we approximate the optimal distribution numerically?
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Formula for the asymptotic variance

Let LU denote the generator of the Markov semigroup associated to the modified potential;

LU = −∇(V + U) · ∇+∆.

Limit theorem

Under appropriate conditions, it holds that

√
T
(
µT
U (f)− I

) Law−−−−→
T→∞

N
(
0, σ2

f [U ]
)
.

The asymptotic variance is given by

σ2
f [U ] =

2Z2
U

Z2

∫
Td

ϕU (f − I) eU dµU ,

where ϕU is the unique solution in H1(µU ) ∩ L2
0(µU ) to

−LUϕU = (f − I) eU .

Main ideas of the proof: central limit theorem for martingales, Slutsky’s theorem.
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Explicit optimal U in dimension 1

In dimension one, it holds that

σ2
f [U ] ≥ 2

Z2
inf
A∈R

(∫
T

∣∣F (x) +A
∣∣dx)2

. (1)

where

F (x) :=

∫ x

0

(
f(ξ)− I

)
e−V (ξ) dξ.

This inequality (1) is an equality for

U(x) = U∗(x) = −V (x)− ln |F (x) +A∗|,

where A∗ is the constant achieving the infimum in (1).

The potential U∗ is generally singular: impractical for numerics. . .

The lower bound in (1) can be approached by a smooth U .

Optimal importance sampling for overdamped Langevin dynamics – Minimizing the asymptotic variance for one observable 34 / 45



Example (1/2)

Assume that V = 0 and f(x) = cos(x).

⇝ The optimal potential “divides” the domain into two parts.
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Example (2/2)

Assume that V (x) = 5 cos(2x) and f(x) = sin(x). The target measure is multimodal.

Variance reduction by a factor > 1000!
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Finding the optimal U in the multidimensional setting

Proposition (Functional derivative of the asymptotic variance)

Let ϕU denote the solution to

− LUϕU = (f − I) eU . (2)

Under appropriate conditions, it holds for all δU ∈ C∞(Td) that

1

2
dσ2

f [U ] · δU := lim
ε→0

1

ε

(
σ2
f [U + εδU ]− σ2

f [U ]
)

=
Z2

U

Z2

∫
Td

δU

(
|∇ϕU |2 −

∫
Td

|∇ϕU |2 dµU

)
dµU . (3)

Steepest descent approach:

Solve the Poisson equation (2) numerically;

Construct an ascent direction G for σ2
f using (3), e.g. δU = |∇ϕU |2;

Perform a step in this direction: U ← U − ηG;

Repeat until convergence.
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No smooth minimizers

Corollary (No smooth minimizer)

Unless f is constant, there is no perturbation potential U ∈ C∞(Tn) that is a critical
point of σ2

f [U ].

Proof. Assume by contradiction that U∗ is smooth critical point. Then

0 =
1

2
dσ2

f [U∗] · δU =
Z2

U

Z2

∫
Td

δU

(
|∇ϕU∗ |

2 −
∫
Td

|∇ϕU∗ |
2 dµU∗

)
dµU∗ ,

for all δU ∈ C∞(Td).

Therefore, it must hold that |∇ϕU∗ |2 = C is constant.

Since ϕU∗ is a smooth function, there is x ∈ Td such that ∇ϕU∗(x) = 0.

Consequently C = 0 and so ∇ϕU∗ = 0: contradiction because then LU∗ϕU∗ = 0.

⇝ The optimal perturbation potential is not convenient in practice. . .
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Example (1/3)

Assume that V = 0 and f(x) = sin(x1) + sin(x2).
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Figure: Optimal total potential (left) together with the solution to the associated Poisson equation (right).

⇝ The domain is again divided into subdomains that suffice for estimating I.
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Example (2/3): multimodal target e−V

Assume that V (x) = 2 cos(x1)− cos(x2) and f(x) = sin(x1).
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Variance reduction by a factor ≈ 6!
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Example (2/3): A more complicated example

In this case we consider that

V (x) = exp

(
cos(x1) sin(x2) +

1

5
cos(3x1)

)
, f(x) = sin

(
x1 + cos(x2)

)3
.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0.5

1

1.5

2

2.5

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure: Unperturbed potential V (left) and optimal potential V + U (right).
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Alternative: minimizing the expected variance over a class of observables

Assume that the observables are well described by a Gaussian random field

f =

J∑
j=1

√
λjujfj , uj ∼ N (0, 1), λj ∈ (0,∞).

Question: can we find U such that σ2[U ] := E
(
σ2
f [U ]

)
is minimized?

It holds that

σ2[U ] =
J∑

j=1

λjσ
2
fj .

The functional derivative of σ2[U ] is given by

1

2
dσ2[U ] · δU =

Z2
U

Z2

∫
Td

(
δU −

∫
Td

δU dµU

)( J∑
j=1

λj |∇ϕj |2
)

dµU .

The steepest descent approach can be employed in this case too!
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Example

Here V (x) = 2 cos(2x1)− cos(x2) and f ∼ N
(
0, (∆ + I)−1

)
.

Figure: Potential V (left) and optimal potential V + U (right).

Variance reduction in this case: 20%
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Summary of part II and perspectives for future work

In this part,

We studied an importance sampling approach for the overdamped Langevin dynamics.

We proposed an approach for calculating the optimal perturbation potential.

Perspectives:

Solving the Poisson equation accurately is not possible in high dimension.

Application to high-dimensional systems:

U(x) = U
(
ξ(x)

)
, ξ reaction coordinate.

Thank you for your attention!
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The underdamped limit in dimension 1

As γ → 0, the Hamiltonian of the rescaled process{
qγ(t) = q(t/γ),

pγ(t) = p(t/γ),

converges weakly to a diffusion process on a graph.
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Connection with the asymptotic variance of MCMC estimators

Ergodic theorem[9]: for an observable φ ∈ L1(µ),

φ̂t =
1

t

∫ t

0

φ(qs,ps) ds
a.s.−−−→
t→∞

Eµφ.

Central limit theorem[10]: If the following Poisson equation has a solution ϕ ∈ L2(µ),

−Lϕ = φ−Eµφ,

then a central limit theorem holds:
√
t
(
φ̂t −Eµφ

) Law−−−→
t→∞

N (0, σ2
φ), σ2

φ = ⟨ϕ, φ−Eµφ⟩ .

Connection with effective diffusion: Apply this result with φ(q,p) = eTp.

[9] W. Kliemann. Recurrence and invariant measures for degenerate diffusions. Ann. Probab., 1987.
[10] R. N. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm

for Markov processes. Z. Wahrsch. Verw. Gebiete, 1982.
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