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Introduction

Aims of computational statistical physics

numerical microscope

computation of average properties, static or dynamic

T+

T−

J

Fourier’s law:

J = −κ∇T

“Given the structure and the laws of interaction of the particles, what are the
macroscopic properties of the systems composed of these particles?”
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Transport coefficients

At the macroscopic level, transport coefficients relate an external forcing to an average
response expressed through some steady-state flux.

Examples:

The mobility relates an external force to a velocity;

The heat conductivity relates a temperature difference to a heat flux;

The shear viscosity relates a shear velocity to a shear stress.

They can be estimated from molecular simulation at the microscopic level.

Defined from nonequilibrium dynamics;

Three main classes of methods to calculate them.

Outline of this talk

Equilibrium vs nonequilibrium dynamics;

Definition and computation of the mobility;

Computation of other transport coefficients;

Error analysis.
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Part I: Definition and examples of nonequilibrium systems

Equilibrium vs nonequilibrium dynamics

Uniqueness of an invariant measure for nonequilibrium dynamics

Convergence to the invariant measure

Perturbation expansion of the invariant measure
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Equilibrium and nonequilibrium dynamics

Consider a general diffusion process of the form

dxt = b(xt) dt+ σ(xt) dWt,

and assume that it admits an invariant distribution µ.

Definition (Time-reversibility)

A stationary (x0 ∼ µ) stochastic process (xt) is time-reversible if its law is invariant
under time reversal: the law of the forward paths (xs)0⩽s⩽t coincides with the law of
the backward paths (xt−s)0⩽s⩽t.

Theorem

A stationary diffusion processes xt in Rd with generator L and invariant measure µ is
reversible if and only if L is self-adjoint in L2(µ).

In this lecture, equilibrium = reversible, possibly up to a one-to-one transformation
preserving the invariant measure.
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Paradigmatic examples of nonequilibrium dynamics

Overdamped Langevin dynamics perturbed by a constant force term

dqt = −∇V (qt) dt+ ηF +
√
2 dWt (NO)

Langevin dynamics perturbed by a constant force term

{
dqt =M−1pt dt,

dpt =
(
−∇V (qt) + ηF

)
dt− γM−1pt dt+

√
2γ dWt,

(NL)

In the rest of this section, we take M = Id for simplicity.

where

F ∈ Rd with |F | = 1 is a given direction

η ∈ R is the strength of the external forcing.

Is there an invariant probability measure?
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When η = 0, these dynamics are reversible

For overdamped Langevin dynamics

Lovd

∣∣∣
η=0

= −∇V · ∇+∆ = −∇∗∇, µ(dq) =
1

Z
e−V (q) dq.

where ∇∗ := (∇V −∇)·. For any f, g ∈ C∞
c (E), we have∫

E
(Lovdf)g dµ = −

∫
E
∇f · ∇g dµ =

∫
E
(Lovdg)f dµ.

For Langevin dynamics, µ(dq dp) = 1
Z
exp

(
−V (q)− |p|2

2

)
dq dp.

L
∣∣∣
η=0

= p · ∇q −∇V · ∇p + γ (−p · ∇p +∆p) = ∇∗
p∇q −∇∗

q∇p − γ∇∗
p∇p,

where ∇∗
q := (∇V −∇q)· and ∇∗

p = (p−∇p)· are the formal L2(µ) adjoints.∫
E
(Lf)g dµ =

∫
E
g
(
∇∗
p∇q −∇∗

q∇p

)
f − γ∇pf · ∇pg dµ

=

∫
E
−f

(
∇∗
p∇q −∇∗

q∇p

)
g − γ∇pf · ∇pg dµ

=

∫
E
(f ◦ S)

(
L(g ◦ S)

)
dµ Sf(q, p) := f(q,−p).
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Another example useful for thermal transport

Langevin dynamics with modified fluctuation

{
dqt = pt dt,

dpt = −∇V (qt) dt− γpt dt+
√

2γTη(q) dWt,

with non-negative temperature

Tη(q) = Tref + ηT̃ (q)

Typically, T̃ constant and positive on D+ ⊂ C, and constant and negative on D− ⊂ D.

Non-zero energy flux from D+ to D− expected in the steady-state

Simplified model of thermal transport (in 3D materials or atom chains)
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Worked example in dimension one

Consider the perturbed overdamped Langevin dynamics with qt ∈ T = R/2πZ

dqt = −V ′(qt) dt+ η dt+
√
2 dWt,

The associated Fokker–Planck equation reads

d

dq

((
dV

dq
− η

)
ρη +

dρη
dq

)
= 0.

The solution is unique and given by

ρη(q) ∝ e−V (q)

∫
T

eV (q+y)−ηy dy.

Example: ρη with V (q) = 1
2
(1−cos q).
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Nonequilibrium overdamped Langevin dynamics

In general, how can we prove existence of an invariant measure for

dqt = −∇V (qt) dt+ ηF +
√
2 dWt ?

If the state space is compact (e.g. Td), apply Doeblin’s theorem.

If not, use its generization, Harris’ theorem.

Fix t = 1 and denote by p : E × B(E) → [0, 1] the Markov transition kernel

p(x,A) := P [qt ∈ A | q0 = x] .

For an observable ϕ : E → R and a probability measure µ, we let

(Pϕ)(x) :=
∫
E
ϕ(y) p(x, dy), (P†µ)(A) :=

∫
E
p(x,A)µ(dx).

Note that P and P† are formally L2 adjoints:∫
E
(Pϕ) dµ =

∫
E
ϕ d(P†µ).
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Existence of an invariant measure for compact state space (1/2)

Let d(•, •) denote the total variation metric.

Theorem (Doeblin’s theorem)

If there exists α ∈ (0, 1) and a probability measure π such that

∀x ∈ E , p(x, •) ⩾ απ, (Minorization condition)

then ∃!µ∗ such that P†µ∗ = µ∗, and d(P†nµ, µ∗) ⩽ (1− α)nd(µ, µ∗).

Sketch of proof. Define the Markov transition kernel

p̃(x, •) := 1

1− α
p(x, •)− α

1− α
π(•),

Let F denote the set of measurable functions ϕ : E → [−1, 1]. We have

d(P†µ,P†ν) = sup
ϕ∈F

∫
E
ϕ(x)(P†µ− P†ν)(dx) = sup

ϕ∈F

∫
E
Pϕ(x)

(
µ− ν

)
(dx)

= (1− α) sup
ϕ∈F

∫
E
P̃ϕ(x)(µ− ν)(dx) ⩽ (1− α) d(µ, ν).

Conclude using Banach’s fixed point theorem.
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Existence of an invariant measure for compact state space (2/2)

Two simple corollaries:

Suppose that ϕ is uniformly bounded. Then∣∣Pnϕ(x)− ϕ
∣∣ = ∫

E
Pn(ϕ− ϕ) d(δx − µ∗) =

∫
E
(ϕ− ϕ) (P†nδx − P†nµ∗)(dq)

⩽
∥∥ϕ− ϕ

∥∥
L∞ (1− α)nd(δx, µ∗) ⩽ 2

∥∥ϕ− ϕ
∥∥
L∞ (1− α)n.

This shows that ∥∥Pnϕ(x)− ϕ
∥∥
L∞ ⩽ 2(1− α)n

∥∥ϕ− ϕ
∥∥
L∞ .

The Neumann series Id + P + P2 + · · · is convergent as a bounded operator on

L∞
∗ :=

{
ϕ ∈ L∞(E) :

∫
E
ϕdµ∗ = 0

}
.

Thus Id− P is invertible on L∞
∗ and

(Id− P)−1 = Id + P + P2 + · · ·
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Connection with the time-continuous setting

Consider the overdamped Langevin dynamics on Td:

dqt = −∇V (qt) dt+ ηF dt+
√
2 dWt, qt ∈ Td.

The minorization condition is satisfied. Indeed for t > 0

p(x,A) = E [qt ∈ A | q0 = x] =

∫
A

pt(x, y) dy pt = transition pdf

⩾

(
inf

(x,y)∈E2
pt(x, y)

)
λ(A) λ := Lebesgue measure.

The infimum is > 0 by parabolic regularity and Harnack’s inequality.

Decay of the semigroup: For t ∈ [0,∞) and φ ∈ L∞
∗ , it holds that

∥etLovd φ∥L∞ =
∥∥∥e(t−⌊t⌋)Lovd

(
e⌊t⌋Lovd φ

)∥∥∥
L∞

⩽
∥∥∥e⌊t⌋Lovd φ

∥∥∥
L∞

⩽ 2 eα e−αt∥φ∥L∞ .

Corollary: Lovd is invertible on L∞
∗ , and

L−1
ovd = −

∫ ∞

0

etLovd dt.
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Existence of an invariant measure for perturbed Langevin dynamics

Consider the paradigmatic dynamics

dqt = pt dt,

dpt = −∇V (qt) dt+ ηF dt− γpt dt+
√

2γ dWt,

where (qt, pt) = Td ×Rd and F ∈ Rd with |F | = 1 is a given direction.
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Figure: Marginals of the steady state solution of the Langevin dynamics with forcing
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Harris’ theorem [1]

Let p(x,A) denote a Markov transition kernel and let

(Pϕ)(x) :=
∫
E
ϕ(y) p(x,dy), (P†µ)(A) :=

∫
E
p(x,A)µ(dx).

Theorem (Harris’s theorem)

Suppose that the following conditions are satisfied:

There exists K : E → [1,∞) and constants a > 0 and b ⩾ 0 such that

∀x ∈ E , LK(x) ⩽ −aK(x) + b,

There exists a constant α ∈ (0, 1) and a probability measure π such that

inf
x∈C

p(x,dy) ⩾ απ(dy),

where C = {x ∈ R | K(x) ⩽ Kmax} for some Kmax ⩾ 1 + 2 b
a
.

Then ∃! µ∗ such that P†µ∗ = µ∗. Furthermore there is γ ∈ (0, 1) such that∥∥∥∥Pnϕ− ϕ

K

∥∥∥∥
L∞

⩽ Cγn
∥∥∥∥Pnϕ− ϕ

K

∥∥∥∥
L∞

, ϕ :=

∫
E
ϕ dµ∗.

[1] M. Hairer and J. Mattingly, Progr. Probab. (2011)
Equilibrium and nonequilibrium dynamics 16 / 58



Application to perturbed Langevin dynamics

For K : E → [1,∞), let

L∞
K :=

{
φ measureable :

∥∥∥φK∥∥∥
L∞

<∞
}

Theorem

Fix η > 0 and n ⩾ 2, and let Kn(q, p) := 1 + |p|n. There exists a unique invariant
probability measure, with a smooth density ψη(q, p) with respect to the Lebesgue
measure. Furthermore there exists C = C(n, η) > 0 and λ = λ(n, η) > 0 such that

∀ϕ ∈ L∞
Kn

(E),
∥∥∥∥etLn ϕ−

∫
E
ϕψη

∥∥∥∥
L∞

Kn

⩽ C e−λt
∥∥∥∥ϕ−

∫
E
ϕψη

∥∥∥∥
L∞

Kn

Idea of the proof. Show that the assumptions of Harris’ theorem are satisfied, in
particular that

LKn ⩽ −aKn(q, p) + b,

for a > 0 and b ⩾ 0.
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Perturbation expansion for η sufficiently small (1/3)

Consider the perturbed Langevin dynamics and write

Lη = L0 + ηL̃, L̃ = F · ∇p

It is expected that ψη = fηψ0 with ψ0(q, p) = Z−1 e−βH(q,p) and

fη = 1+ ηf1 +O(η2)

The invariance of ψη can be written as∫
E
(Lηφ)ψη = 0 =

∫
E
(Lηφ)fηψ0

Fokker-Planck equation on L2(ψ0)

L∗
ηfη = 0

Observe that L∗
η = L∗

0 + L̃∗ with

L∗
0 = −∇∗

p∇q +∇∗
q∇p − γ∇∗

p∇p, L̃∗• = ∇∗
p(F•)

Questions: Can the expansion for fη be made rigorous? What is f1?
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Perturbation expansion for η sufficiently small (2/3)

Formal asymptotics

Write fη = f0 + ηf1 + η2f2 + · · · and expand

L∗
ηfη = L∗

0f0

+ η
(
L̃∗f0 + L∗

0f1
)

+ η2
(
L̃∗f1 + L∗

0f2
)

+ η3
(
L̃∗f2 + L∗

0f3
)
+ · · ·

This suggests that fi+1 = −(L∗
0)

−1(L̃∗fi) and so

fη =

∞∑
i=0

(−η)i
(
(L∗

0)
−1L̃∗

)i
1 =

(
Id + η(L∗

0)
−1L̃∗

)−1

1.
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Elements of proof

Let Π0 denote the following projection operator

Π0f := f −
∫
E
f ψ0

The operator L−1
0 is a well defined bounded operator on L2

0(ψ0)
(Hypocoercivity + hypoelliptic regularization)

Since γ∥∇pφ∥2L2(ψ0)
= −⟨L0φ,φ⟩L2(ψ0)

, it follows that

∥L̃φ∥2L2(ψ0)
⩽ ∥∇pφ∥2L2(ψ0)

⩽
1

γ
∥L0φ∥L2(ψ0)

∥φ∥L2(ψ0)

Thus Π0L̃L−1
0 is bounded on L2

0(ψ0).

∥L̃L−1
0 φ∥2L2(ψ0)

⩽
β

γ
∥φ∥L2(ψ0)

∥L−1
0 φ∥L2(ψ0)

.

It follows that (L̃L−1
0 )∗Π0 = (L̃L−1

0 )∗ is also bounded on L2
0(ψ0)

Invariance of fη by L∗
η = L∗

0 + ηL̃∗

L∗
ηfη = L∗

0

(
1 + η(L̃L−1

0 )∗
)
fη = L∗

01 = 0

Prove that fη ⩾ 0.
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Perturbation expansion for η sufficiently small (3/3)

Power expansion of the invariant measure

Spectral radius r of the bounded operator (L̃L−1
0 )∗ ∈ B(L2

0(ψ0)):

r = lim
n→+∞

∥∥∥[(L̃L−1
0

)∗]n∥∥∥1/n

.

Then, for |η| < r−1, the unique invariant measure can be written as ψη = fηψ0,
where fη ∈ L2(ψ0) can be expanded as

fη =
(
1 + η(L̃L−1

0 )∗
)−1

1 =

(
1 +

+∞∑
n=1

(−η)n[(L̃L−1
0 )∗]n

)
1. (1)

Note that

∫
E
ψη = 1.

Equilibrium and nonequilibrium dynamics 21 / 58



Part II: Definition and calculation of the mobility

Definition through linear response

Green–Kubo reformulation

Link with effective diffusion
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Computation of transport coefficients

Three main classes of methods:

Non-equilibrium steady state techniques.

Calculations from the steady state of a system out of equilibrium.
Comprises bulk-driven and boundary-driven approaches.

Equilibrium techniques based on the Green–Kubo formula

ρ =

∫ ∞

0

Eµ
[
φ(xt)ϕ(x0)

]
dt.

We will derive this formula from linear response.

Transient methods.

System locally perturbed
Relaxation of this perturbation enables to calibrate macroscopic model.

We illustrate the first two for the simplest transport coefficient: the mobility.
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Linear response of nonequilibrium dynamics

Consider the nonequilibirium dynamics with V periodic:

dqt = pt dt,

dpt = −∇V (qt) dt+ ηF dt− γpt dt+
√

2γ dWt,

The force ηF induces a non-zero velocity in the direction F

Encoded by Eη(R) =

∫
E
Rψη with R(q, p) = FTp

Definition (Mobility)

The mobility in direction F is defined mathematically as

ρF = lim
η→0

Eη[R]−E0[R]

η
= lim
η→0

1

η
Eη[R]

We proved that ψη = fηψ0 with ψ0(q, p) = Z−1 e−βH(q,p) and

fη = 1+ ηf1 +O(η2), f1 = −(L∗
0)

−1L̃∗1.

Therefore

ρF =

∫
E
Rf1ψ0 = −

∫
E

(
L−1

0 R
)
(L̃∗1)ψ0
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Numerical results (1)
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Numerical results (2)
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Figure: Mobility as a function of γ [2]

[2] See J. Roussel and G. Stoltz, ESAIM: M2AN (2018)
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Reformulation as integrated correlation function

Define the conjugate response

S = L̃∗1 = ∇∗
p(F1) = FTp.

Green–Kubo formula

For any R ∈ L2
0(ψ0),

lim
η→0

Eη(R)

η
=

∫ +∞

0

E0

(
R(qt, pt)S(q0, p0)

)
dt,

where Eη is w.r.t. to ψη(q, p) dq dp, while E0 is w.r.t. initial conditions (q0, p0) ∼ ψ0

and over all realizations of the equilibrium dynamics.

For the mobility, it holds S(q, p) = R(q, p) = FTp and so

ρF = lim
η→0

Eη
(
FTp

)
η

=

∫ +∞

0

E0

((
FTpt

)(
FTp0

))
dt
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Elements of proof

• Proof based on the following equality on B
(
L2

0(ψ0)
)

−L−1
0 =

∫ +∞

0

etL0 dt.

• Then,

lim
η→0

Eη(R)

η
= −

∫
E
R
[
(L̃L−1

0 )∗1
]
ψ0 = −

∫
E
[L−1

0 R][L̃∗1]ψ0

=

∫ +∞

0

(∫
E

(
etL0R

)
S ψ0

)
dt

=

∫ +∞

0

E
(
R(qt, pt)S(q0, p0)

)
dt

• Note also that S has average 0 w.r.t. invariant measure since∫
X
S dπ =

∫
X
L̃∗1dπ =

∫
X
L̃1dπ = 0
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Connection with effective diffusion

It is possible to show a functional central limit theorem for the Langevin dynamics:

εq̃s/ε2 −−−→
ε→0

√
2DWs weakly on C([0,∞)), q̃t := q0 +

∫ t

0

ps ds ∈ Rd.

In particular, q̃t/
√
t −−−→
t→∞

N (0, 2D) weakly.

Figure: Histogram of qt/
√
t. The potential V (q) = − cos(q)/2 is illustrated in the background.
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Mathematical expression for the effective diffusion (dimension 1)

Expression of D in terms of the solution to a Poisson equation

Effective diffusion tensor given by D = ⟨ϕ, p⟩L2(µ) and ϕ is the solution to

−Lϕ = p, ϕ ∈ L2
0(µ).

Key idea of the proof: Apply Itô’s formula to ϕ

dϕ(qs, ps) = −ps ds+
√

2γ
∂ϕ

∂p
(qs, ps) dWs

and then rearrange:

ε(q̃t/ε2 − q̃0) = ε

∫ t/ε2

0

ps ds

= ε
(
ϕ(q0, p0)− ϕ(qt/ε2 , pt/ε2)

)︸ ︷︷ ︸
→0

+
√

2γε

∫ t/ε2

0

∂ϕ

∂p
(qs, ps) dWs︸ ︷︷ ︸

→
√
2DWt weakly by MCLT

.

In the multidimensional setting, DF =
〈
ϕF , F

Tp
〉
with −LϕF = FTp.

Einstein’s relation: we just showed DF = β−1ρF .
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Summary: numerical approaches for calculating the mobility

Linear response approach:

ρF = lim
η→0

1

η
Eη

[
FTp

]
.

where µη is the invariant distribution of the system with external forcing.

Einstein’s relation:

ρF = lim
t→∞

1

2t
Eµ

[∣∣FT(q̃t − q0)
∣∣2].

Deterministic method, e.g. Fourier/Hermite Galerkin, for the Poisson equation

−L0ϕF = FTp, ρF =
〈
ϕF , F

Tp
〉
.

Green–Kubo formula:

ρF =

∫ ∞

0

E0

(
(FTp0)(F

Tpt)
)
dt.
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Part III: Computation of other transport coefficients

Thermal conductivity

Shear viscosity
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Thermal transport in one-dimensional chain (1/3)

Consider a chain of N atoms with nearest-neighbor interactions

TL TRp1 p2 · · · pN−1 pN

r1 r2 rN−2 rN−1

j0 j1 j2 jN−2 jN−1jN−1 jN

Mathematical model:
drn = (pn+1 − pn) dt,

dp1 = v′(r1) dt− γp1dt+
√

2γ(T + η) dWL
t ,

dpn =
(
v′(rn)− v′(rn−1)

)
dt,

dpN = −v′(rN−1) dt− γpNdt+
√

2γ(T − η) dWR
t ,

The Hamiltonian of the system is the sum of the potential and kinetic energies:

H(r, p) = V (r) +

N∑
n=1

p2n
2
, V (r) =

N−1∑
n=1

v(rn).
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Thermal transport in one-dimensional chains (2/3)

When η = 0, invariant distribution given by

π(dr dp) = Z−1
β exp

(
−β

(
|p|2

2
+ V (r)

))
dr dp, β = T−1.

Generator of the dynamics:

Lη =

N−1∑
n=1

(pn+1 − pn)∂rn +
N∑
n=1

(
v′(rn)− v′(rn−1)

)
∂pn

− γp1∂p1 + γT∂2
p1 − γpN∂pN + γT∂2

pN + γη(∂2
p1 − ∂2

pN ).

The perturbation L̃ = γ(∂2
p1 − ∂2

pN ) is not bounded relatively to L0...

→ Existence/uniqueness of the invariant measure more difficult to prove[3]

[3] P. Carmona, Stoch. Proc. Appl. (2007)
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Thermal transport in one-dimensional chains (3/3)

• Response function: total energy current

Definition of the heat flux

J =
1

N − 1

N−1∑
n=1

jn, jn = −v′(rn)
pn + pn+1

2

• Motivation: Local conservation of the energy (in the bulk 2 ⩽ n ⩽ N − 1)

dεn
dt

= Lηεn = jn−1 − jn, εn =
p2n
2

+
1

2

(
v(rn−1) + v(rn)

)
• Definition of the thermal conductivity: linear response

κN = lim
η→0

(N − 1)

2η
Eη[J ].
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Shear viscosity in fluids (1/4)

Consider a fluid in D = (LxT× LyT)N subjected to a sinusoidal forcing

x

z

F

Suppose that the box contains N particles of mass m, each subjected to a force F .
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Shear viscosity in fluids (2/4)

Assume pairwise interactions

V (q) =
∑

1⩽ℓ<n⩽N

V(|qℓ − qn|).

• Add a smooth nongradient force in the x direction, depending on y

Langevin dynamics under flow

dqn =
pn
m

dt,

dpn,x = −∂qn,xV (qt) dt+ ηF (qn,y) dt− γ
pn,x
m

dt+

√
2γ

β
dWn,x

t ,

dpn,y = −∂qn,yV (qt) dt− γ
pn,y
m

dt+

√
2γ

β
dWn,y

t .

• Existence/uniqueness of a smooth invariant measure provided γ > 0

• The perturbation L̃ =

N∑
n=1

F (qn,y)∂pn,x is L0-bounded
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Shear viscosity in fluids (3/4)

• Linear response:

lim
η→0

Eη[L0h]

η
= − β

m

〈
h,

N∑
n=1

pn,xF (qn,y)

〉
L2(ψ0)

.

• Average longitudinal velocity ux(Y ) = lim
ε→0

lim
η→0

Eη [U
ε
x(Y, •)]
η

where

Uεx(Y, q, p) =
Ly
Nm

N∑
n=1

pn,x χε(qn,y − Y )

• Average off-diagonal stress σxy(Y ) = lim
ε→0

lim
η→0

Eη[...]

η
, where

... =
1

Lx

 N∑
n=1

pn,xpn,y
m

χε(qn,y − Y )−
∑

1⩽n<ℓ⩽N

V ′(|qn − qℓ|)
qn,x − qℓ,x
|qn − qℓ|

∫ qn,y

qℓ,y

χε(s− Y ) ds


• Local conservation of momentum[4]: replace h by Uεx

dσxy(Y )

dY
+ γρux(Y ) = ρF (Y ), ρ =

N

|D| .

[4] Irving and Kirkwood, J. Chem. Phys. 18 (1950)
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Shear viscosity in fluids (4/4)

• Definition σxy(Y ) := −ν(Y )u′
x(Y ), closure assumption ν(Y ) = ν > 0.

Velocity profile in Langevin dynamics under flow

−νu′′
x(Y ) + γρux(Y ) = ρF (Y )

Therefore, integrating against the test function e
2iπ y

Ly and rearranging, we have

ν = ρ

(
F1

U1
− γ

)(
Ly
2π

)2

,

where

U1 =
1

Ly

∫ Ly

0

ux(x) e
2iπ y

Ly dy, F1 =
1

Ly

∫ Ly

0

F (y) e
2iπ y

Ly dy.

The coefficient U1 can be rewritten as

U1 = lim
η→0

1

η
Eη

[
1

N

N∑
n=1

pn,x
m

exp

(
2iπ

qn,y
Ly

)]
.
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Numerical illustration

Figure: Numerical results from [5]

[5] See R. Joubaud and G. Stoltz, Multiscale Model. Simul. (2012)
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Numerical illustration
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Part IV: Error estimates on the estimation of transport coefficients

Reminders: strong order, weak order

Error analysis for the linear response method

Error analysis for the Green–Kubo method
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Reminder: Error estimates in Monte Carlo simulations

Consider the general SDE

dxt = b(xt) dt+ σ(xt) dWt

with invariant measure π.

• Discretization xn ≃ xn∆t, invariant measure π∆t. For instance,

xn+1 = xn +∆t b(xn) +
√
∆t σ(xn)Gn, Gn

i.i.d.∼ N (0, Id)

• Ergodicity of the numerical scheme with invariant measure π∆t

1

Niter

Niter∑
n=1

A(xn) −−−−−−−→
Niter→+∞

∫
X
A(x)π∆t(dx)

Error estimates for finite trajectory averages

ÂNiter =
1

Niter

Niter∑
n=1

A(xn) = Eπ(A) +
C

Niter∆t︸ ︷︷ ︸
bias

+C∆tα︸ ︷︷ ︸
bias

+
σA,∆t√
Niter∆t

G︸ ︷︷ ︸
statistical error
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Weak type expansions

• Numerical scheme = Markov chain characterized by evolution operator

P∆tφ(x) = E
(
φ
(
xn+1) ∣∣∣xn = x

)
where (xn) is an approximation of (xn∆t)

• Standard notions of error: fixed integration time T < +∞

Strong error:
sup

0⩽n⩽T/∆t
E|xn − xn∆t| ⩽ C∆tp

Weak error: for any φ,

sup
0⩽n⩽T/∆t

∣∣∣E [φ (xn)]−E [φ (xn∆t)]
∣∣∣ ⩽ C∆tp

∆t-expansion of the evolution operator

P∆tφ = φ+∆tA1φ+∆t2A2φ+ · · ·+∆tp+1Ap+1φ+∆tp+2rφ,∆t

Weak order p when Ak = Lk/k! for 1 ⩽ k ⩽ p.
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Elements of proof

Rewrite the weak error as a telescopic sum

E
[
φ(xN )

]
−E

[
φ(xN∆t)

]
= PN∆tφ(x0)− eN∆tL φ(x0)

=

N−1∑
n=0

(
PN−n
∆t en∆tL φ(x0)− P

N−(n+1)
∆t e(n+1)∆tL φ(x0)

)
=

N−1∑
n=0

P
N−(n+1)
∆t

(
P∆t − e∆tL

)
en∆tL φ(x0)

Since u(t, x) := etL φ(x) solves the backward Kolmogorov equation

∂tu = Lu, u(0, x) = φ.

we can write formally

e∆tL φ = Id +∆tLφ+
∆t2

2
L2φ+ · · ·
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Example: Euler-Maruyama, weak order 1

Consider the scheme

xn+1 = Φ∆t(x
n, Gn) = xn +∆t b(xn) +

√
∆t σ(xn)Gn

• Note that P∆tφ(x) = EG
[
φ
(
Φ∆t(x,G)

)]
• Technical tool: Taylor expansion

φ(x+ δ) = φ(x) + δT∇φ(x) + 1

2
δT∇2φ(x)δ +

1

6
D3φ(x) : δ⊗3 + . . .

• Replace δ with
√
∆t σ(x)G+∆t b(x) and gather in powers of ∆t

φ
(
Φ∆t(x,G)

)
= φ(x) +

√
∆t σ(x)G · ∇φ(x)

+ ∆t

(
σ(x)2

2
GT [

∇2φ(x)
]
G+ b(x) · ∇φ(x)

)
+ . . .

• Taking expectations w.r.t. G leads to

P∆tφ(x) = φ(x) + ∆t

(
σ(x)2

2
∆φ(x) + b(x) · ∇φ(x)

)
︸ ︷︷ ︸

=Lφ(x)

+O(∆t2)
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Error estimates on the invariant measure (equilibrium)

Error estimates on π∆t

Suppose that

For all smooth φ, the following expansion holds

P∆tφ = φ+∆tA1φ+∆t2A2φ+ · · ·+∆tp+1Ap+1φ+∆tp+2rφ,∆t

The probability measure π is invariant by Ak for 1 ⩽ k ⩽ p, namely∫
X
Akφdπ = 0

+ Technical assumptions usually satisfied

Then ∫
X
φdπ∆t =

∫
X
φ
(
1 + ∆tpfp+1

)
dπ +∆tp+1Rφ,∆t,

where gp+1 = A∗
p+11 and fp+1 = − (A∗

1)
−1 gp+1.

Error on invariant measure can be (much) smaller than the weak error
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Motivation of the result

We verify the error estimate for φ ∈ Ran(P∆t − Id).

• Idea: π∆t = π(1 + ∆tpfp+1 + . . . )

• by definition of π∆t ∫
X

[(
P∆t − Id

∆t

)
φ

]
dπ∆t = 0

• compare to first order correction to the invariant measure∫
X

[(
P∆t − Id

∆t

)
φ

]
(1 + ∆tpfp+1) dπ

= ∆tp
∫
X

(
Ap+1φ+ (A1φ)fp+1

)
dπ +O

(
∆tp+1)

= ∆tp
∫
X

(
gp+1 +A∗

1fp+1

)
φ dπ +O

(
∆tp+1)

Suggests fp+1 = − (A∗
1)

−1 gp+1
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Examples of splitting schemes for Langevin dynamics (1)

• Example: Langevin dynamics, discretized using a splitting strategy

A =M−1p · ∇q, Bη =
(
−∇V (q) + η F

)
· ∇p, C = −M−1p · ∇p +

1

β
∆p

• Note that Lη = A+Bη + γC

• Trotter splitting → weak order 1

PZYX∆t = e∆tZ e∆tY e∆tX = e∆tL +O(∆t2)

• Strang splitting → weak order 2

PZYXY Z∆t = e∆tZ/2 e∆tY/2 e∆tX e∆tY/2 e∆tZ/2 = e∆tL +O(∆t3)

• Other category: Geometric Langevin[6] algorithms, e.g. P
γC,A,Bη,A

∆t

→ weak order 1 but measure preserved at order 2 in ∆t

[6] N. Bou-Rabee and H. Owhadi, SIAM J. Numer. Anal. (2010)
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Examples of splitting schemes for Langevin dynamics (2)

• P
Bη,A,γC

∆t corresponds to



p̃n+1 = pn +
(
−∇V (qn) + ηF

)
∆t,

qn+1 = qn +∆tM−1p̃n+1,

pn+1 = α∆tp̃
n+1 +

√
1− α2

∆t

β
M Gn

where Gn are i.i.d. Gaussian and α∆t = exp(−γM−1∆t)

• P
γC,Bη,A,Bη,γC

∆t for



p̃n+1/2 = α∆t/2p
n +

√
1− α∆t

β
M Gn,

pn+1/2 = p̃n+1/2 +
∆t

2

(
−∇V (qn) + ηF

)
,

qn+1 = qn +∆tM−1pn+1/2,

p̃n+1 = pn+1/2 +
∆t

2

(
−∇V (qn+1) + ηF

)
,

pn+1 = α∆t/2p̃
n+1 +

√
1− α∆t

β
M Gn+1/2
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Error estimates on linear response (1/3)

Aim: For observable R, approximate

α = lim
η→0

Eη[R]

η

Estimator of linear response (up to time discretization):

Âη,t =
1

ηt

∫ t

0

R(qηs , p
η
s) ds

a.s.−−−−→
t→+∞

αη :=
1

η

∫
E
Rfη dµ = α+O(η)

Contributions to the error

Statistical error with asymptotic variance O(η−2)

Bias O(η) due to η ̸= 0

Bias from finite integration time

Timestep discretization bias
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Error estimates on linear response (2/3)

• Statistical error dictated by Central Limit Theorem:

√
t
(
Âη,t − αη

)
law−−−−→

t→+∞
N

(
0,
σ2
R,η

η2

)
, σ2

R,η = σ2
R,0 +O(η)

so Âη,t = αη +OP

(
1

η
√
t

)
→ requires long simulation times t ∼ η−2

• Finite time integration bias:
∣∣∣E(

Âη,t
)
− αη

∣∣∣ ⩽ K

ηt

Bias due to t < +∞ is O
(

1

ηt

)
→ typically smaller than statistical error

• Key equality for the proofs: introduce −
(
L+ ηL̃

)
Rη = R−

∫
E
Rfη dµ

Âη,t −
1

η

∫
E
Rfη dµ =

Rη(q
η
0 , p

η
0)− Rη(q

η
t , p

η
t )

ηt
+

√
2γ

ηt
√
β

∫ t

0

∇pRη(q
η
s , p

η
s)
TdWs
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Error estimates on linear response (3/3)

Finite integration time bias and timestep bias

There exist functions f0,1, fα,0 and fα,1 such that∫
E
R dµη,∆t =

∫
E
R
(
1 + ηf0,1 +∆tαfα,0 + η∆tαfα,1

)
dµ+ rψ,η,∆t,

where the remainder is compatible with linear response

|rψ,η,∆t| ⩽ K(η2 +∆tα+1), |rψ,η,∆t − rψ,0,∆t| ⩽ Kη(η +∆tα+1)

• Corollary: error estimates on the numerically computed mobility

ρF,∆t = lim
η→0

1

η

(∫
E
FTp µη,∆t(dq dp)−

∫
E
FTp µ0,∆t(dq dp)

)
= ρF +∆tα

∫
E
FTp fα,1 dµ+∆tα+1r∆t
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Numerical results
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order 2

Scaling of the mobility for the first order scheme P
A,Bη,γC

∆t and the second order

scheme P
γC,Bη,A,Bη,γC

∆t .
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Error estimates on the Green–Kubo formula (1/3)

Aim: For observable R, approximate

α =

∫ +∞

0

E0

(
R(qt, pt)S(q0, p0)

)
dt

“Natural” estimator (up to time discretization)

ÂK,T =
1

K

K∑
k=1

∫ T

0

R(qkt , p
k
t )S(q

k
0 , p

k
0) dt

• Contributions to the error:

Truncature of time (exponential convergence of etL)

The statistical error increases linearly with T .

Timestep bias and quadrature formula
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Error estimates on the Green–Kubo formula (2/3)

• Truncation bias: small due to generic exponential decay of correlations∣∣∣E(
ÂK,T

)
− α

∣∣∣ ⩽ C e−κT

• Statistical error: large, increases with the integration time

∀T ⩾ 1, Var
(
ÂK,T

)
⩽ C

T

K

• Time discretization and quadrature bias: if

uniform-in-∆t convergence

error on the invariant measure of order ∆ta

P∆t = Id +∆tL+∆t2L2 + · · ·+∆taLa + . . .

Then for R,S with average 0 w.r.t. µ,∫ +∞

0

E
(
R(Xt)S(X0)

)
dt = ∆t

+∞∑
n=0

E∆t

(
R̃∆t (X

n)S
(
X0))+O(∆ta)

with
R̃∆t =

(
Id + ∆t L2L−1 + · · ·+∆ta−1LaL−1

)
R− µ∆t(. . . )
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Error estimates on Green-Kubo formulas (3/3)

• For methods of weak order 1, Riemman sum (ϕ, φ average 0 w.r.t. π)∫ +∞

0

E
(
ϕ(xt)φ(x0)

)
dt = ∆t

+∞∑
n=0

E∆t

(
Π∆tϕ (x

n)φ
(
x0

))
+O(∆t)

where Π∆tϕ = ϕ−
∫
X
ϕdπ∆t

• For methods of weak order 2, trapezoidal rule∫ +∞

0

E
(
ϕ(xt)φ(x0)

)
dt =

∆t

2
E∆t

(
Π∆tϕ

(
x0

)
φ
(
x0

))
+∆t

+∞∑
n=1

E∆t

(
Π∆tϕ (x

n)φ
(
x0

))
+O(∆t2)
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Summary

• Definition and examples of nonequilibrium systems

Convergence to invariant measure

Perturbation expansion of invariant measure

• Definition and computation of transport coefficients

Mobility, heat conductivity, shear viscosity

Linear response theory

Relationship with Green-Kubo formulas

• Elements of numerical analysis

estimation of biases due to timestep discretization

(largely) open issue: variance reduction
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