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Introduction

Aims of computational statistical physics

m numerical microscope

m computation of average properties, static or dynamic

Fourier’s law:

J=—-sVT

“Given the structure and the laws of interaction of the particles, what are the
macroscopic properties of the systems composed of these particles?”
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Transport coefficients

At the macroscopic level, transport coefficients relate an external forcing to an average
response expressed through some steady-state flux.

Examples:
m The mobility relates an external force to a velocity;

m The heat conductivity relates a temperature difference to a heat flux;
m The shear viscosity relates a shear velocity to a shear stress.

They can be estimated from molecular simulation at the microscopic level.

m Defined from nonequilibrium dynamics;
®m Three main classes of methods to calculate them.

Outline of this talk

m Equilibrium vs nonequilibrium dynamics;

m Definition and computation of the mobility;
m Computation of other transport coefficients;
m Error analysis.
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Introduction

Part I: Definition and examples of nonequilibrium systems

Equilibrium vs nonequilibrium dynamics

m Uniqueness of an invariant measure for nonequilibrium dynamics

Convergence to the invariant measure

Perturbation expansion of the invariant measure

o



Equilibrium and nonequilibrium dynamics

Consider a general diffusion process of the form
dIEt = b(l}t) dt -+ 0'($t) th,

and assume that it admits an invariant distribution wu.

Definition (Time-reversibility)

A stationary (zo ~ p) stochastic process (z) is time-reversible if its law is invariant
under time reversal: the law of the forward paths (xs)o<s<t coincides with the law of
the backward paths (zi—s)o<s<t-

Theorem

A stationary diffusion processes x; in R with generator £ and invariant measure p is
reversible if and only if L is self-adjoint in L*(p).

In this lecture, equilibrium = reversible, possibly up to a one-to-one transformation
preserving the invariant measure.

Equilibrium and nonequilibrium dynamics 6 /58



Paradigmatic examples of nonequilibrium dynamics

Overdamped Langevin dynamics perturbed by a constant force term

dg: = —VV(q:) dt + nF + V2 dW, (NO)

Langevin dynamics perturbed by a constant force term

d(It = M_lpt dt,

dpe = (=VV(qe) + nF) dt — yM " 'py dt + /2y dWA,
In the rest of this section, we take M = Id for simplicity.
where

m F € R? with |F| = 1 is a given direction
m 7 € R is the strength of the external forcing.

Is there an invariant probability measure?
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When 1 = 0, these dynamics are reversible

m For overdamped Langevin dynamics

1
Lowa| =-VV.V+A=-V'V, pdg)=_e V@) gq.

n=0

where V* := (VV — V). For any f,g € C(E), we have
/(Eovdf)g d[L = _/ vf N VQ d)u’ = /(Eovdg)f d’LL
£ £ £
m For Langevin dynamics, p(dgdp) = + exp (—V(q) — %) dgdp.

L :p-Vq—VV-Vp+'y(—p-Vp+Ap):V;VQ—VZVP—’VV;V;;,

n=0

where V} := (VV — V,)- and V}; = (p — V,)- are the formal L*(u) adjoints.

/E(ﬁf)g dp =

g (V;vq - V;Vp) f=aVpf-Vpgdu
—f(VpVe=ViVy) g =V - Vegdu

(foS)(L(geS))du  Sf(gp) = f(g,—p).

Il
—
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Another example useful for thermal transport

Langevin dynamics with modified fluctuation

dg: = p: dt,
dp: = —VV(qu) dt — yp: dt + /27T, (q) AW,

with non-negative temperature
Ty (q) = Tret + 17T (q)
Typically, T constant and positive on D4+ C C, and constant and negative on D_ C D.

m Non-zero energy flux from D, to D_ expected in the steady-state

m Simplified model of thermal transport (in 3D materials or atom chains)
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Worked example in dimension one

Consider the perturbed overdamped Langevin dynamics with ¢: € T = R/27Z
dgr = —V'(q:) dt + ndt +V2dW;,

The associated Fokker—Planck equation reads

d [/av dpn)
dq((dq n>p”+dq)_0'

Steady state p, with forcing

0.25

The solution is unique and given by

pn(q) (Xe*V(q)/ eV aty)—ny dy. 0.20
T

Example: p, with V(q) = 3(1—cosq).

0.10
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Nonequilibrium overdamped Langevin dynamics

In general, how can we prove existence of an invariant measure for

dgr = —VV(g) dt +nF +V2dW, ?

m If the state space is compact (e.g. Td), apply Doeblin’s theorem.

m If not, use its generization, Harris’ theorem.

Fix t = 1 and denote by p: £ x B(£) — [0, 1] the Markov transition kernel
p(z, A):=Plg € Alqo = a].

For an observable ¢: £ — R and a probability measure p, we let

/ s p(e.dy),  (PTu)(A) = / p(, A) p(dz).

Note that P and P' are formally L? adjoints:

/g (Pé) dy = /g HA(PTp)
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Existence of an invariant measure for compact state space (1/2)

Let d(e, ) denote the total variation metric.

Theorem (Doeblin's theorem)
If there exists o € (0,1) and a probability measure w such that
Vz € €&, p(x,*) > am, (Minorization condition)

then 3! pu. such that Pl = pw, and d(PT" p, pa) < (1 — @)"d(p, i)

Sketch of proof. Define the Markov transition kernel

! p($, )_ “

m(*),

Let F denote the set of measurable functions ¢: £ — [—1,1]. We have

5(457 ) =

11—« 11—«

t T T
P10 = sy [P P)0) = [P )0
1—asup/7>¢ —0)(dz) < (1 — a) d(u, v).
PEF

Conclude using Banach’s fixed point theorem.
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Existence of an invariant measure for compact state space (2/2)

Two simple corollaries:

m Suppose that ¢ is uniformly bounded. Then

[P"¢(x) — | = /S P (¢ =) d(de — p) = [ (6= ) (P8, — P pa)(dg)

I
<l =8| poe (1= )"0, 1) < 2|6 = G| oo (1 — )"

This shows that
1P ¢(@) = ] oo <200 = )" (|6 = 3| e -
m The Neumann series Id + P + P? + - - - is convergent as a bounded operator on
LY = {(]3 e L>(&): /gq&d,u* = O}.
Thus Id — P is invertible on L$° and

Id-—P) ' =1d+P+P>+---
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Connection with the time-continuous setting

Consider the overdamped Langevin dynamics on T

dg: = —=VV(q)dt + nF dt + V2dw,, gt € T,
m The minorization condition is satisfied. Indeed for t > 0

p(z,A)=E[q € A|qo =1z] = / pe(z,y) dy p¢ = transition pdf
A

Vv

( inf  pe(x, y)) A(A) A := Lebesgue measure.
(z,y)€E?

The infimum is > 0 by parabolic regularity and Harnack’s inequality.

m Decay of the semigroup: For ¢t € [0,00) and ¢ € L, it holds that
[etCovd || oo = Heufm).covd (emaovd ¢)

oo

a —at

< Hemcovd “’Hmo < 2e%e g Loe.

m Corollary: L4 is invertible on L3°, and

o0 L
—1 t
Lol = —/ etbovd dt.
0
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Existence of an invariant measure for perturbed Langevin dynamics

Consider the paradigmatic dynamics
dqt = Pt dt,
dp: = —=VV(q) dt + nF dt — ype dt + /2y dW4,

where (¢¢,pt) = T¢ x R? and F € R? with |F| =1 is a given direction.

Steady state with forcing

Steady state with forcing
0.250 1.0

0.225 0.8

0.200
0.6
0.175

0.4

3 2 10 1 2 3 —4 -2 0 2 4
Position Velocity

Figure: Marginals of the steady state solution of the Langevin dynamics with forcing
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Harris' theorem (!

Let p(z, A) denote a Markov transition kernel and let

/ oW p(edy),  (PTu)(4) = / p(, A) p(dz).

£
Theorem (Harris's theorem)

Suppose that the following conditions are satisfied:
m There exists K: € — [1,00) and constants a > 0 and b > 0 such that

Vz € &, LK(z) < —aK(z) + b,
m There exists a constant o € (0,1) and a probability measure © such that

inf p(z, dy) > an(dy),

where C = {z € R|K(z) < Kmax} for some Kmax > 1+22.
Then 3! p. such that Pt . = p.. Furthermore there is y € (0,1) such that

HL‘j’_6 Pré=¢ $::/¢du*.
Loo7 [

< n
K <Oy K

oo

[1] M. Hairer and J. Mattingly, Progr. Probab. (2011)
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Application to perturbed Langevin dynamics

For K: & — [1,00), let
oo . P
Ly = {go measureable : H—H < oo}
Kllpeo

Theorem

Fizn >0 andn > 2, and let Kn(q,p) := 1+ |p|™. There exists a unique invariant
probability measure, with a smooth density v, (q, p) with respect to the Lebesgue
measure. Furthermore there ezists C = C(n,n) > 0 and A = A(n,n) > 0 such that

et‘"¢—/5¢wn as—/gwn

Idea of the proof. Show that the assumptions of Harris’ theorem are satisfied, in
particular that

Vo € L, (£), <Ce ™

Lo

o
n Licn

LK, < —aKn(g,p) + b,

for a > 0 and b > 0.
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Perturbation expansion for 7 sufficiently small (1/3)

Consider the perturbed Langevin dynamics and write

Ly=Lo+nL, L=F-V,

It is expected that 1, = f,0 with 1o(q,p) = Z7* e PH(@P) 5nd
fo=14nf1+ 00

The invariance of 1), can be written as

Llwwwmzozéummnw

Fokker-Planck equation on L2 ()

Lyfa=0
Observe that £ = £ + L* with

Ly =—-ViVe+ ViV, — ViV,  L'e=V;(Fe)

Questions: Can the expansion for f, be made rigorous? What is fi 7
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Perturbation expansion for 1 sufficiently small (2/3)

Formal asymptotics
Write f, = fo +nfi +n*f2 + - and expand
L5, fn = Lfo

+n (£ + £3h1)

+0” (£ + Lif2)

+0° (L2 + L5fs) + -+
This suggests that fi11 = —(£§) " (£*f;) and so

—1

i i(_n)i((ﬁg)_li*)il = (+n(e) ' £7) 1,

Equilibrium and nonequilibrium dynamics 19 /58



Elements of proof

Let ITp denote the following projection operator
s =1~ [ fuo
£

m The operator Ly 1 is a well defined bounded operator on LE (o)
(Hypocoercivity + hypoelliptic regularization)

m Since 'y||Vp(,0H2Lz(wo) = —(Low, ) L2(y), it follows that

||E<PH2L2(¢O) < ||Vp90||i2(¢0> < %HEMPHL%%)||90||L2(¢0)
Thus HOZLgl is bounded on L (1)0).
1225 ol 0se) < Zlellzacon 1£5 " Pl2con
m It follows that (£L51)*Ily = (£L51)* is also bounded on LZ(v0)

m Invariance of f, by £, = L5 + nL*
Lty =5 (L+n(ZLg ")) fo = £51 =0
m Prove that f;, > 0.

Equilibrium and nonequilibrium dynamics 20/ 58



Perturbation expansion for 1 sufficiently small (3/3)

Power expansion of the invariant measure
Spectral radius r of the bounded operator (Zﬁal)* € B(L3(vo)):

o=t e ]

Then, for || < r~', the unique invariant measure can be written as 1, = f;%0,
where f, € L*(1)0) can be expanded as

nyl/n

o= (1 + 77(2/30—1)*)_ (1 SIS Z "L >1. (1)

Note that /1/),, =1.
£
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Part II: Definition and calculation of the mobility

m Definition through linear response
m Green—Kubo reformulation

m Link with effective diffusion

Computation of transport coefficients



Computation of transport coefficients

Three main classes of methods:

m Non-equilibrium steady state techniques.

m Calculations from the steady state of a system out of equilibrium.
m Comprises bulk-driven and boundary-driven approaches.

m Equilibrium techniques based on the Green—Kubo formula

o= [ Bulpt@ioto)] a

We will derive this formula from linear response.

m Transient methods.

m System locally perturbed
= Relaxation of this perturbation enables to calibrate macroscopic model.

We illustrate the first two for the simplest transport coefficient: the mobility.
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Linear response of nonequilibrium dynamics

Consider the nonequilibirium dynamics with V' periodic:
dqt = Pt dt,
dp: = =VV(q) dt + nF dt — ype dt + /2y dWr,

m The force nF' induces a non-zero velocity in the direction F'

m Encoded by E,(R) = / Rp, with R(q,p) = F'p
£

Definition (Mobility)
The mobility in direction F' is defined mathematically as

pr = lim E,)[R] — Eo[R] = lim lEn[R]
n—0 n n—017n

We proved that i, = fyvo with ¥o(g,p) = 71 e BH(aP) 54
fr=14nh +00%),  f1=—(L5) L1
Therefore

pr = [ Rivo =~ [ (€3 R) (1) wn
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Numerical results (1)

fitted linear responsé
0.04 o

0.03 ) 1

average velocity
o
o
N

o

o

=
T

0 0.1 0.2 0.3 0.4 0.5
forcing strength
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Numerical results (2)

1e+3
1e+2

1e+1

Mobility
>
+
(@]

1e-1
1e-2

1e-3

1001 001 01 vy 1 10 100

Figure: Mobility as a function of ~ [2]

[2] See J. Roussel and G. Stoltz, ESAIM: M2AN (2018)
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Reformulation as integrated correlation function

Define the conjugate response
S=L"1=V,(F1)=F'p.

Green—Kubo formula

For any R € L3(v),

lim L"(R)

n—0 n

- /0+oo Eo (R(q“pt)S(QO,po))dt’

where E,, is w.r.t. to 1, (q, p) dgdp, while Eq is w.r.t. initial conditions (go, po) ~ %o
and over all realizations of the equilibrium dynamics.

For the mobility, it holds S(q,p) = R(q,p) = F"p and so

pr = lim LFTP) = /0+°° EO((FTPt)(FTPO)) dt

n—0 n
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Elements of proof

e Proof based on the following equality on B (Lg(wo))

+o0 -
—Lyt = / e"to dt.
0

e Then,

lim En(F) =
n—0 n

- [R[@Ees ] v = - [ 165 RIE 1) b0

_ /Om </8 (¢ R) s¢0> dt

- /O+Oo E(R(Qt,pt)S(qoypO)) dt

e Note also that S has average 0 w.r.t. invariant measure since

/SdW:/Z*ldW:/ZldTr:()
x X X
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Connection with effective diffusion

It is possible to show a functional central limit theorem for the Langevin dynamics:
t
€qs/e2 5 V2D W weakly on C([0, 00)), Gt = qo +/ psds € R
E—r 0

In particular, §;/v/t P N(0,2D) weakly.

B Histogram of position process

0.6 == Exact diffusion
0.5

0.4

0.3

0.2

0.1

0.0 )

Figure: Histogram of g /+/t. The potential V(q) = — cos(q)/2 is illustrated in the background.
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Mathematical expression for the effective diffusion (dimension 1)

Expression of D in terms of the solution to a Poisson equation

Effective diffusion tensor given by D = (¢, p) L2(w) and ¢ is the solution to

—Lé=p,  ¢E€LF(p).

Key idea of the proof: Apply It6’s formula to qS

d¢(q37ps = —psds + \/ ‘ZS>ps dWs

and then rearrange:
t/e?
5(qt/52 - qO) = 8/ psds
0

t/e?
= (p(qo,p0) — B(q-2,peye2)) + \/56/0 %ﬁ(qs,ps) aw; .

—0

—V2DW; weakly by MCLT

In the multidimensional setting, Dr = <¢p, FTp> with —Lor = F'p.

Einstein’s relation: we just showed Dp = Bilpp.

Computation of transport coefficients 30 /58



Summary: numerical approaches for calculating the mobility

m Linear response approach:
~ lim 1E [FTp]
PF = 7m0 1) n p|-
where p, is the invariant distribution of the system with external forcing.

m Einstein’s relation: 1
. T/~ 2
pr = lim 5 Bu[|FT @ - o)l

m Deterministic method, e.g. Fourier/Hermite Galerkin, for the Poisson equation
—Logr =F'p,  pr= <¢F7FTP>~

m Green—Kubo formula:

pr = /Ooo Eo((F"po)(F p:)) dt.
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Part III: Computation of other transport coefficients

® Thermal conductivity

m Shear viscosity

Computation of transport coefficients



Thermal transport in one-dimensional chain (1/3)

Con31der a chain of N atoms w1th nearest-neighbor mteractlons

Mathematical model:

drp = (pr+1 — pn) dt,

dpy =0'(r1) dt — yprdt + /29(T + 1) AW,
dp, = (v'(rn) — v'(rnfl)) dt,

dpy = —'(rv-1) dt — ypndt + /27(T — 1) AW,

The Hamiltonian of the system is the sum of the potential and kinetic energies:

H(r,p) = V(r)+ Z p" V(r) = Z_ v(r).
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Thermal transport in one-dimensional chains (2/3)

® When 1 = 0, invariant distribution given by

m(drdp) = Z[;l exp (7/3’ (g + V(r))) dr dp, B=T"".

m Generator of the dynamics:

N-1 N
= > (usr = )0, + Z(«/w) — V(1)) Oy,
n=1
—Yp10p, + T, — YPNOpy + 10, +1(05, — 03 ).

The perturbation £ = v(93, — 95,,) is not bounded relatively to Lo...

— Existence/uniqueness of the invariant measure more difficult to prove[?’]

[3] P. Carmona, Stoch. Proc. Appl. (2007)
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Thermal transport in one-dimensional chains (3/3)

e Response function: total energy current

Definition of the heat flux

1 = Pn +p
_ c s / n n+1
J= 51 ; dny dn == () T

e Motivation: Local conservation of the energy (in the bulk 2 <n < N —1)

den . . _ a1
T Lnen = jn—-1— jn, En =7 + i(U(Tn—l) + U(Tn))

e Definition of the thermal conductivity: linear response

rn = lim Mﬂ,p].

n— 2n
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Shear viscosity in fluids (1/4)

Consider a fluid in D = (L, T X LyT)N subjected to a sinusoidal forcing

z

Suppose that the box contains N particles of mass m, each subjected to a force F.
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Shear viscosity in fluids (2/4)

Assume pairwise interactions

Vi)=Y V(a—qnl)

1<l<n<N
e Add a smooth nongradient force in the x direction, depending on y
Langevin dynamics under flow

dgn = B~ at,
m

n,xr 2 n,xr
dpn,z = _OQW,wV(qt) dt 4+ 1nF(qn,y) dt — rY]D = dt + A/ % dWw,™,

m

2 2 .
Apn,y = —0q,, V(gs) dt — w% dt + 4 /% AW,

e Existence/uniqueness of a smooth invariant measure provided v > 0

N
e The perturbation £ = ZF(qn,y)apmm is Lo-bounded

n=1
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Shear viscosity in fluids (3/4)

e Linear response:

- EylCoh] _ <
lim ——— = —— Z PraF (gn,y) .
e L2 (o)

E, [Us(Y,
e Average longitudinal velocity uz(Y) = lim lim Ey [Uz (Y, 2)] where
e—0n—0 n
&
Uz(Y.q,p) = 570 D Pz Xe(@ny = Y)
n=1
e Average off—diagonal stress oy (Y) = lim lim M, where
e—0n—0 n
Dn, zpn, n,z — qe, Y
Z UXe(ny = Y) =Y V' (lgn — al) o |m xa(S—Y)ds
1<n<€<N T

e Local conservation of momentum!®: replace h by Ug

dowy(Y) _ N
qy T Pua(Y) =pE(Y), D

I
Il

[4] Irving and Kirkwood, J. Chem. Phys. 18 (1950)
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Shear viscosity in fluids (4/4)

e Definition 04y (Y) := —v(Y)u,(Y), closure assumption v(Y) = v > 0.
Velocity profile in Langevin dynamics under flow

—vu(Y) +vpus(Y) = pF(Y)
im .
Therefore, integrating against the test function ¢”" Ty and rearranging, we have

Lo (P N (L
7p U1 ’Y 271' ?

1 [ty 2im AL 1 [ty 2im AL
U = —/ ug(z)e  Lv dy, F=— F(y)e™ Lv dy.
Ly Jo Ly Jo

where

The coefficient U; can be rewritten as

1 & D q
n,r . n,y
N; m &P (2WL>]'

Y

U1 = lim lE»,,
n—0mn
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Numerical illustration

value value

Figure: Numerical results from (5]

[5] See R. Joubaud and G. Stoltz, Multiscale Model. Simul. (2012)
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Numerical illustration
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Part IV: Error estimates on the estimation of transport coefficients

m Reminders: strong order, weak order
m Error analysis for the linear response method

m Error analysis for the Green—Kubo method

Computation of transport coefficients
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Reminder: Error estimates in Monte Carlo simulations

Consider the general SDE
dxt = b(xt) dt + O'(:Et) th

with invariant measure 7.

e Discretization 2" ~ T,a¢, invariant measure ma¢. For instance,

2™ = 2" 4 Atb(z”) + VAto(z")G",  G™ R A(0,1d)

e Ergodicity of the numerical scheme with invariant measure wa+
Niter

1
Niter

A(z™) ——— | A(z) ma(d)
el Niger—+o00 X

Error estimates for finite trajectory averages

Niger

~ 1 n C @ OA,At
An., = E A =E.(A)+ — +CAL —
Niger Niter (l’ ) ( ) + NiterAt +R/—/+ NiterAt
n=1 N—— bias ———
bias statistical error
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Weak type expansions

e Numerical scheme = Markov chain characterized by evolution operator
Parp(z) = E(SO (mn+1) " = 90)

where (z") is an approximation of (xna¢)

e Standard notions of error: fixed integration time 7" < 400

m Strong error:

sup  E|z" — zpa| < CAY
0<n<T/At

m Weak error: for any ¢,

sup  [Blp (@)~ Blp(asn)]| < CAP

0<n<T/ At

At-expansion of the evolution operator

Parp=p+ At A1p+ At2A2<p —+ -+ Athrl.Aerup + AthrQT%At

Weak order p when Ay = Ek/k! for 1 <k < p.
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Elements of proof

m Rewrite the weak error as a telescopic sum

E[po(z")] — E[p(znar)] = PAsp(zo) — eV o(x0)

N-—1
_ Z (Pivt_n QAL ol(ao) — Pi\lt—(rH—l) e(ntDALL @(xo))

3
(=}

z

Pi\ft—(TH-l) (PAt _ eAt[,) enAtﬁ 80(1‘0)

3
I
<}

m Since u(t, z) := e'“ p(x) solves the backward Kolmogorov equation
Oru = Lu, u(0,z) = .
we can write formally

AtL At
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Example: Euler-Maruyama, weak order 1

Consider the scheme
2" = dar(z”,G") = 2" + Atb(z") + VAto(z") G™

e Note that Patp(xz) = Eg [@(‘I)At(fﬂv G))]

e Technical tool: Taylor expansion . .
p(+8) = p(z) + 8" Ve(z) + §5Tv2<ﬂ($)5 + ED?’QO(Z’) 0% 4L

e Replace § with VAto(z) G + Atb(z) and gather in powers of At
¢(Pai(z, G)) = p(z) + VAto(z) G - Vo(x)

+ At <"<;’) G [V2¢(z)] G + b(z) - w(:c)) T

e Taking expectations w.r.t. G leads to

Parp(z) = o(x) + At (%m)QAcp(:c) + b(z) - Vgo(m)) +0O(At%)

=Lp(z)
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Error estimates on the invariant measure (equilibrium)

Error estimates on ma¢

Suppose that

m For all smooth ¢, the following expansion holds
Parp=p+ At A1p + AtQ.Az(p + -+ Atp+1Ap+1g0 + Atp+27zp,m

m The probability measure 7 is invariant by Ay for 1 < k < p, namely

/ Arpdr =0
EY
m + Technical assumptions usually satisfied
Then
/ pdmrar = / go(l + Atpfp+1)d7r + AtpHR%At,
x x
where g, 11 = Api11 and fpy1 = — (AD) ' gpia.

Error on invariant measure can be (much) smaller than the weak error
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Motivation of the result

We verify the error estimate for ¢ € Ran(Pas¢ — Id).

o Idea: mar =7(1+ AtP fpr1 +...)

(25 o

e compare to first order correction to the invariant measure

/X K&de) @] (14 A fp41)dm

= Atp/ (Ap+1<,0 + (AlSD)prrl) dr + O (APH)
X

e by definition of wa;

= Atp/ (gp+1 + ATprrl)‘PdW +0 (Athrl)
x

Suggests fpr1 = — (A7) gpt1
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Examples of splitting schemes for Langevin dynamics (1)

e Example: Langevin dynamics, discretized using a splitting strategy

. _ 1
A=M"p-v, Bn:(—VV(q)+nF)~vp, C=-M lp-vp+BA,,

e Note that £, = A+ B, +~C
e Trotter splitting — weak order 1

PftYX — eAtZ eAtY eAtX — eAt[, + O(AtQ)

e Strang splitting — weak order 2
PAZtYXYZ _ eAtZ/z eAtY/2 eAtX eAtY/2 eAtZ/Q — eAtE + O(At?’)

e Other category: Geometric Langevin!® algorithms, e.g. PXS’A’B"’A

— weak order 1 but measure preserved at order 2 in At

[6] N. Bou-Rabee and H. Owhadi, STAM J. Numer. Anal. (2010)
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Examples of splitting schemes for Langevin dynamics (2)

FH = p" 4 (= VV(g") +0F)At,
BTI! ~C qn+1 — qn +AtM715n+l,

corresponds to
2
pn+ _ OéAt;Eﬂ+1 + 1- aAtMGn
V B

where G™ are i.i.d. Gaussian and aa; = exp(—yM 1 At)

o Py

l1-«a
Y2 = anyop™ + 5 o e

n+1/2 :i)’n-‘rl/Q +

p - VV(g")+ nF),

> (
P’YC ,By,A,By,C for qn+1 —g" +AtM_1p”+1/2,

7" — VV(¢"tY) +nF ),

11—«
ptl = aAt/2I7n+1 + | 5 At pramt1/2
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Error estimates on linear response (1/3)

Aim: For observable R, approximate

a = lim E,[R]

n—0 n

Estimator of linear response (up to time discretization):

t

~

0t

=t ), R(qs,ps)ds—mn.— /ngnd,u:a—l—O(n)

Contributions to the error

m Statistical error with asymptotic variance O(n~?)
m Bias O(n) due ton # 0
m Bias from finite integration time

m Timestep discretization bias
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Error estimates on linear response (2/3)

e Statistical error dictated by Central Limit Theorem:

2
-~ law g
Vi (AW - an) N (0, 7’;’”) . Ohy=0Rko+O(M)

~ 1
so Ayt = an + Op (—) — requires long simulation times t ~ ™2

't

< K

e Finite time integration bias: ‘E (Xn,t) ]
n

1
Bias due to t < 400 is O (7) — typically smaller than statistical error
n

e Key equality for the proofs: introduce — ([, + 172) Xy =R — / Rfydu
£

Pn (49, pg) — Pn(ai s pf
nt

1 1 ) V2y ! T
A,—*/Rf dp = + /V% q,pd)" AWy
YA B Jo )
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Error estimates on linear response (3/3)

Finite integration time bias and timestep bias

There exist functions fo,1, fa,0 and fo,1 such that

/ Rdpn.at = / R(l + nfo1 + At fa,0 + nAtafa,l)dH + T m, Aty
£ £

where the remainder is compatible with linear response

Iry.madl < K(n? + AT, ry.mat — ry.o.atl < Kn(n+ At

e Corollary: error estimates on the numerically computed mobility
o1 T T
pr.ac=lm —( [ F'punai(dgdp) — [ F'ppo,ai(dgdp)
n=0m \Je £

= pr + At™ / Fp fordp+ At ra,
E

Computation of transport coefficients 53 / 58



Numerical results

0.075 | /

mobility

0.07

order{ ——
order2 ——

0 0.025 0.05 0.075 0.1
time step

Scaling of the mobility for the first order scheme PX;B"’WC and the second order
"/CanvAana’VC
scheme P,, .
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Error estimates on the Green—Kubo formula (1/3)

Aim: For observable R, approximate

+oo
o= / Eo (R(qt,pt)s(qo,po)) dt
0
“Natural” estimator (up to time discretization)

)

K T
~ 1 E k k k
AKT:?kil/O R(qtypt)s(q07p0)dt

e Contributions to the error:

m Truncature of time (exponential convergence of e'“)
m The statistical error increases linearly with 7.

m Timestep bias and quadrature formula

55 /58
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Error estimates on the Green—Kubo formula (2/3)

e Truncation bias: small due to generic exponential decay of correlations

‘E (ZK,T) — oz’ <Ce T

e Statistical error: large, increases with the integration time

VI'>1,  Var (ZK,T) < C’%

e Time discretization and quadrature bias: if

® uniform-in-At¢ convergence
m error on the invariant measure of order At®
mPar=Td+ AL+ AL+ 4+ At L + ...

Then for R, S with average 0 w.r.t. p,

+o00 +o0 _
/ E(R(Xt)S(XO))dt = At Ea (Rm (X™) 8 (XO)) + O(AtY)
with 0 n=0
Rai = (Id FALL L 4 At”’lLaﬁ’l)R N
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Error estimates on Green-Kubo formulas (3/3)

e For methods of weak order 1, Riemman sum (¢, ¢ average 0 w.r.t. )

+oo 400
/O E(qﬁ(wt)w(mo))dt =AtY Ear (acg (z") ¢ (2°)) + O(AL)
where ITap = ¢ — / o dmas -

e For methods of weak order 2, trapezoidal rule

/+°<> E(d)(xt)ap(xo))dt = %Em (HAth (:EO) %) (mo))
0
“+oo

+ ALY Ear (Marg (") ¢ (2°)) + O(AL?)

n=1
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Summary

e Definition and examples of nonequilibrium systems

m Convergence to invariant measure

m Perturbation expansion of invariant measure

e Definition and computation of transport coefficients

m Mobility, heat conductivity, shear viscosity
m Linear response theory

m Relationship with Green-Kubo formulas

e Elements of numerical analysis

m estimation of biases due to timestep discretization

m (largely) open issue: variance reduction
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