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Motivating example: Bayesian inverse problems

Paradigmatic inverse problem

Find an unknown parameter θ ∈ U from data y ∈ Rm where

y = G(θ) + η,

▶ G is the forward operator;

▶ η is observational noise.

Two difficulties1 associated with this problem are the following:

▶ Because of the noise, it might be that y /∈ Ran(G);
▶ The problem might be underdetermined.

Additionally, in many PDE applications,

▶ G is expensive to evaluate;

▶ The derivatives of G are difficult to calculate;

▶ θ is a function → infinite dimension.

1M. Dashti and A. M. Stuart. In Handbook of uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.
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Example: inference of the thermal conductivity in a plate

Unknown parameter:

Thermal conductivity θ(x)

(true)

MAP estimator:

(reconstructed)

Solution:

Temperature field T (x)

Mathematical model:

−∇ ·
(
θ(x)∇T (x)

)
= f(x), x ∈ Ω,

T (x) = 0, x ∈ ∂Ω.

Forwa
rd proble

m

Data:

��
��	

�

Noisy temperature measurements:

y =
(
T (x1), . . . , T (xm)

)
+ η.

Inverse problem
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Probabilistic approach for solving “y = G(θ) + η”1

Bayesian approach to inverse problems

Modeling step:

▶ Probability distribution on parameter: θ ∼ π, encoding our prior knowledge;

▶ Probability distribution for noise: η ∼ ν.

An application of Bayes’ theorem gives the posterior distribution:

ρy(θ) ∝ π(θ) ν
(
y − G(θ)

)
= prior× likelihood.

(In infinite dimension, use Radon–Nikodym derivative.)

In the Gaussian case where π = N (m,Σ) and ν = N (0,Γ),

ρy(θ) ∝ exp

(
−
(
1

2
|y − G(θ)|2Γ +

1

2
|θ −m|2Σ

))
=: exp

(
−F(θ)

)
.

where |x|A :=
√
xTA−1x.

Two approaches for extracting information:

▶ Find the maximizer of ρy(θ) (maximum a posteriori estimation);
▶ Sample the posterior distribution ρy(θ).

1A. M. Stuart. Acta Numer., 2010.
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Brief review of the recent literature on interacting particle methods

▶ 1994: Ensemble Kalman filter1 (6,611 citations);

▶ 1995: Particle swarm optimization2 (90,668 citations);

▶ 2006: Sequential Monte Carlo samplers3 (2,255 citations);

▶ 2010: Affine-invariant many-particle MCMC4 (3,505 citations);

▶ 2013: Ensemble Kalman inversion5 (473 citations);

▶ 2016: Stein variational gradient descent6 (1,285 citations);

▶ 2017: Consensus-based optimization7 (185 citations);

▶ 2020: Ensemble Kalman sampling8 (233 citations);

Often parallelizable, and some can be studied through mean-field equations.

1G. Evensen. Journal of Geophysical Research: Oceans, 1994.
2J. Kennedy and R. Eberhart. In Proceedings of ICNN’95-international conference on neural networks. ieee, 1995.
3P. Del Moral, A. Doucet, and A. Jasra. J. R. Stat. Soc. Ser. B Stat. Methodol., 2006.
4J. Goodman and J. Weare. Commun. Appl. Math. Comput. Sci., 2010.
5M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Inverse Problems, 2013.
6Q. Liu and D. Wang. In Advances In Neural Information Processing Systems, 2016.
7R. Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.
8A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. SIAM J. Appl. Dyn. Syst., 2020.
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Consensus-based optimization (CBO)1,2

Global optimization problem:

Find x ∈ argmin
Rd

F (F : Rd → R)

CBO interacting particle system

dXj
t = −

(
Xj

t −Mβ

(
µJ
t

))
dt+

√
2σ
∣∣∣Xj

t −Mβ

(
µJ
t

)∣∣∣ dW j
t , j = 1, . . . , J,

▶ β is “inverse temperature” parameter.

▶ µJ
t is empirical measure µJ

t = 1
J

∑J
j=1 δXj

t
.

▶ Mβ : P(Rd) → Rd is weighted mean operator:

Mβ(µ) =

∫
x e−βF(x) µ(dx)∫
e−βF(x) µ(dx)

, Mβ

(
µJ
t

)
=

∑J
j=1 X

j
t exp

(
−βF(Xj

t )
)∑J

j=1 exp
(
−βF(Xj

t )
) .

1R. Pinnau, C. Totzeck, O. Tse, and S. Martin. Math. Models Methods Appl. Sci., 2017.
2J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.
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Typical evolution of CBO dynamics

Particle evolution
t = 0.0
t = 1.0
t = 2.0
t = 3.0

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

Objective value

Figure: Ensemble evolution for the Ackley function
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Video illustration
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Numerical implementation1

Software library in Python (lead T. Roith) and Julia (lead R. Bailo):

▶ Offers high-performance implementation of the method;
▶ Implements a number of extensions (different noises, mini-batching, sampling, . . . )
▶ Provides general interface that can accommodate extensions.

1R. Bailo, A. Barbaro, S. N. Gomes, K. Riedl, T. Roith, C. Totzeck, and U. Vaes. Journal of Open Source Software,
2024.
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Consensus-based sampling (CBS)1

Sampling problem:

Generate samples from distribution π ∝ e−F (F : Rd → R)

CBS interacting particle system

dXj
t = −

(
Xj

t −Mβ

(
µJ
t

))
dt+

√
2(1 + β) Cβ(µJ

t ) dW
j
t , j = 1, . . . , J,

▶ β is “inverse temperature” parameter.

▶ µJ
t is empirical measure µJ

t = 1
J

∑J
j=1 δXj

t
.

▶ Cβ : P(Rd) → Rd×d is weighted covariance operator:

Cβ(µ) =

∫
(x⊗ x) e−βF(x) µ(dx)∫

e−βF(x) µ(dx)
−Mβ(µ)⊗Mβ(µ).

1J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.

Motivation 12 / 40



Illustration
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Mean field limits

Taking formally J → ∞ in the interacting particle systems leads to

CBO mean field limitdXt = −
(
Xt −Mβ(ρt)

)
dt+

√
2σ
∣∣∣Xt −Mβ(ρt)

∣∣∣dW t,

ρt = Law(Xt).

CBS mean field limitdXt = −
(
Xt −Mβ(ρt)

)
dt+

√
2(1 + β)Cβ(ρt) dW t,

ρt = Law(Xt).

▶ Nonlinear Markov processes in Rd: future depends on Xt and its distribution;

▶ Associated Fokker–Planck equations are nonlinear and nonlocal.
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Notation: Wasserstein distances1

Wasserstein distance in Rd (here | · | is always the Euclidean norm)

For µ, ν ∈ Pp(R
d), Wp(µ, ν) = inf

γ∈Π(µ,ν)

(
E(X,Y )∼γ |X − Y |p

) 1
p

Here Π(µ, ν) = {γ ∈ P(Rd ×Rd) : projx♯ γ = µ, projy♯ γ = ν}.

1L.-P. Chaintron and A. Diez. Kinet. Relat. Models, 2022.
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Convergence results in mean field law for CBO and CBS

Recall W2 : P2(R
d)× P2(R

d) → R denotes the Wasserstein-2 metric.

Convergence of mean field CBO1,2

Under mild conditions including existence of a unique minimizer x∗, there exists λ > 0
and xβ ∈ Rd such that

∀t ⩾ 0, W2(ρt, δxβ ) ≲W2(ρ0, δxβ ) e
−λt, x∗ = argmin

Rd

F .

Furthermore xβ → x∗ in the limit β → ∞.

Convergence of mean field CBS3

If π ∝ e−F is Gaussian and ρ0 is Gaussian, then

∀t ⩾ 0, W2(ρt, π) ⩽ C e
−
(

β
1+β

)
t
.

1J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. Mathematical Models and Methods in Applied Sciences, 2018.
2M. Fornasier, T. Klock, and K. Riedl. SIAM J. Optim., 2024.
3J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.
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Key characteristics of consensus based optimization

▶ Derivative-free, making them versatile and widely applicable:

▶ Can be easily implemented in parallel;

▶ (For the sampling variant) Affine invariant: convergence rate independent of target;

▶ Theoretical guarantees for the mean field equations.

Question: how to obtain convergence guarantees in the finite-size setting?
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Additional notation: Wasserstein distances1

Wasserstein distance in RdJ

For fJ , gJ ∈ P(RdJ), Wp

(
fJ , gJ

)
= inf

γ∈Π
(
fJ ,gJ

)
(
E(X,Y)∼γ

1

J

J∑
j=1

∣∣Xj − Y j
∣∣p) 1

p

▶ With this normalization, Wp

(
µ⊗J , ν⊗J

)
= Wp(µ, ν).

▶ For associated empirical measures, E
[
Wp

(
µJ
f , µ

J
g

)p]
⩽Wp

(
fJ , gJ

)p
.

In our setting,

▶ fJ , f
J ∈ P(RdJ) are joint laws

▶ µJ , µJ are empirical measures, with laws in ∈ P
(
P(Rd)

)
µJ =

1

J

J∑
j=1

δXj , µJ =
1

J

J∑
j=1

δ
X

j .

1L.-P. Chaintron and A. Diez. Kinet. Relat. Models, 2022.
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Convergence for the interacting particle systems

Let fJ
t = Law

(
X1

t , . . . , X
J
t

)
. By the triangle inequality,

W2

(
fJ
t , ν

⊗J
)
⩽W2

(
fJ
t , ρ

⊗J
t

)
︸ ︷︷ ︸
→0 as J→∞???

+W2(ρt, ν)︸ ︷︷ ︸
⩽C e−λt

, ν =

{
δxβ for CBO,

e−F for CBS.

Pre-existing mean field results for CBO (i.i.d. initial condition and fixed t)

▶ 1Based on a compactness argument, it was shown that

µJ
t

Law−−−−→
J→∞

ρt, (no rate), µJ
t :=

1

J

J∑
j=1

δ
X

j
t
.

▶ 2For all ε > 0 and t ⩾ 0, there is Cε > 0 such that for all J there is Ωε ⊂ Ω satisfying

P[Ω \ Ωε] ⩽ ε and E
[
W2

(
fJ
t , ρ

⊗J
t

) ∣∣∣Ωε

]
⩽ CεJ

− 1
2 , Cε −−−→

ε→0
∞.

Our goal: obtain an estimate of the form supt⩾0 Wp

(
fJ
t , ρ

⊗J
t

)
⩽ CJ− 1

2 .

1H. Huang and J. Qiu. Math. Methods Appl. Sci., 2022.
2M. Fornasier, T. Klock, and K. Riedl. SIAM J. Optim., 2024.
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Introduction of synchronous coupling

Toy example (with M(µ) the usual mean under µ)

Interacting particle system:

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ e−t dW j

t , Xj
0 = xj

0
i.i.d.∼ ρ0 j = 1, . . . , J.

Mean field limit: dXt = −
(
Xt −M(ρt)

)
dt+ e−t dW t,

ρt = Law(Xt).

Synchronous coupling

We couple to the particle system J copies of the mean field dynamics:

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ e−t dW j

t , Xj
0 = xj

0, j = 1, . . . , J,

dX
j
t = −

(
X

j
t −M(ρt)

)
dt+ e−t dW j

t , X
j
0 = xj

0, j = 1, . . . , J,

with the same initial condition and driving Browian motions.
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Using the synchronously coupled to prove propagation of chaos

Synchronous coupling j ∈ {1, . . . , J}

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ e−t dW j

t , Xj
0 = xj

0,

dX
j
t = −

(
X

j
t −M(ρt)

)
dt+ e−t dW j

t , X
j
0 = xj

0.

Key fact: mean field processes are i.i.d. with law X
j
t ∼ ρt, so

W2

(
fJ
t , ρ

⊗J
t

)
= W2

(
fJ
t , f

J

t

)
, f

J

t = Law
(
X

1
t , . . . , X

J
t

)
.

By definition of Wasserstein distance and exchangeability,

W2

(
fJ
t , f

J

t

)2
⩽ E

[
1

J

J∑
j=1

∣∣∣Xj
t −X

j
t

∣∣∣2] = E

[∣∣∣X1
t −X

1
t

∣∣∣2].
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Bounding the remaining term (using Sznitman’s approach1)

Synchronous coupling j ∈ {1, . . . , J}

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ e−t dW j

t , Xj
0 = xj

0,

dX
j
t = −

(
X

j
t −M(ρt)

)
dt+ e−t dW j

t , X
j
0 = xj

0.

Key Lemma: Lipschitz continuity of M : P1(R
d) → Rd

∀(µ, ν) ∈ P1(R
d)× P1(R

d),
∣∣∣M(µ)−M(ν)

∣∣∣ ⩽W1(µ, ν).

E

[∣∣∣X1
t − X

1
t

∣∣∣2] ≲ ∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 + E
∣∣∣M(

µ
J
s

)
− M (ρs)

∣∣∣2 ds

≲
∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 + E
∣∣∣M(

µ
J
s

)
− M

(
µ
J
s

)∣∣∣2 + E
∣∣∣M(

µ
J
s

)
− M (ρs)

∣∣∣2 ds

≲
∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 + E

[
W2

(
µ
J
s , µ

J
s

)2
]

ds + CMCJ
−1

≲
∫ t

0

E
∣∣∣X1

s − X
1
s

∣∣∣2 ds + CMCJ
−1 Grönwall

⇝ E
[
|X1

t − X
1
t |

2
]
⩽ C(t)J

−1
.

1A.-S. Sznitman. In École d’Été de Probabilités de Saint-Flour XIX—1989. Springer, Berlin, 1991.
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From infinite-dimensional chaos to empirical chaos

Infinite-dimensional chaos

Sznitman’s approach can be generalized to Wp, leading to

Wp

(
fJ
t , ρ

⊗J
t

)
= O

(
1√
J

)
as J → ∞.

Question: Can we say anything about the convergence of the empirical measure µJ
t ?(

EWp

(
µJ
t , ρt

)p) 1
p
⩽
(
EWp

(
µJ
t , µ

J
t

)p) 1
p
+
(
EWp

(
µJ
t , ρt

)p) 1
p

⩽

(
E

1

J

J∑
j=1

∣∣∣Xj
t −X

j
t

∣∣∣p) 1
p

+
(
EWp

(
µJ
t , ρt

)p) 1
p

≲ J− 1
2 + J−α,

for α > 0 depending on dimension1.

1N. Fournier and A. Guillin. Probab. Theory Related Fields, 2015.
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Why the classical Sznitman approach fails for CBO/CBS

Synchronous coupling for CBO, xj
0

i.i.d.∼ ρ0 for j ∈ {1, . . . , J},

dXj
t = −

(
Xj

t −Mβ

(
µJ
t

))
dt+

√
2σ
∣∣∣Xj

t −Mβ

(
µJ
t

)∣∣∣ dW j
t , Xj

0 = xj
0.

dX
j
t = −

(
X

j
t −Mβ(ρt)

)
dt+

√
2σ
∣∣∣Xj

t −Mβ(ρt)
∣∣∣ dW j

t , X
j
0 = xj

0.

Technical difficulties:

▶ Mβ : P1(R
d) → Rd is not globally Lipschitz continuous in general:

Example

Take f : R → R given by f(x) = x2, with µn = 1
n
δ0 + (1− 1

n
)δn and νn = δn. Then

Mβ(µn) ≈ 0 , Mβ(νn) = n , W1(µn, νn) = 1 .

▶ Presence of multiplicative noise that depends on µJ
t .

▶ Usual Monte Carlo estimates do not enable to bound

E
∣∣∣Mβ

(
µJ
s

)
−Mβ(ρs)

∣∣∣2 .
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Main result: quantitative mean field limits

Assumption (focusing on the unbounded F setting for simplicity here)

▶ Local Lischitz continuity. F is bounded from below by F⋆ = inf F and satisfies

∀x, y ∈ Rd, |F(x)−F(y)| ≤ Lf

(
1 + |x|+ |y|

)s|x− y|, s ⩾ 0.

▶ Growth at infinity. There are constants c, u > 0 and a compact K ⊂ Rd such that

∀x ∈ Rd \K,
1

c
|x|u ⩽ F(x) ⩽ c|x|u.

Main theorem1, holds for both CBO and CBS

If F satisfies the above assumption and ρ0 has infinitely many moments, then

∀J ∈ N+, ∀j ∈ {1, . . . , J}, E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j
t

∣∣∣p] ≤ CJ− p
2 .

1N. J. Gerber, F. Hoffmann, and UV. ESAIM Control Optim. Calc. Var., 2025.
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Convergence of the weighted mean for i.i.d. samples

Proposition1,2

Assume first that F is bounded. Take µ ∈ P(Rd) and let

ρ =

(∫
Rd

e−βF dµ

)2

∫
Rd

e−2βF dµ

∈ (0, 1] , µJ :=
1

J

J∑
j=1

δ
X

j X
j i.i.d.∼ µ .

which measures the fraction of samples contributing to the weighted mean. Then

sup
∥ϕ∥L∞⩽1

E

∣∣∣∣
∫
Rd ϕ e−βF dµJ∫
Rd e−βF dµJ

−
∫
Rd ϕ e−βF µ∫
Rd e−βF dµ

∣∣∣∣2 ⩽ 4

ρJ
.

This can be extended to p ⩾ 2 and unbounded F under moment conditions on µ:

⇝ E
∣∣∣Mβ

(
µJ
)
−Mβ(µ)

∣∣∣p ≲ E
∣∣X1 −EX

1∣∣p J− p
2 .

1P. Doukhan and G. Lang. Bernoulli, 2009.
2S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.
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Main ingredients of the proof

Local Lipschitz continuity for Mβ

For all p ⩾ 1, there exists L depending only on Wp(µ, δ0) and F , β such that

∀(µ, ν) ∈ Pp

(
Rd)× Pp

(
Rd), ∣∣∣Mβ(µ)−Mβ(ν)

∣∣∣ ≤ L
(
Wp(µ, δ0)

)
Wp(µ, ν).

Idea: we will use this estimate with µ = µJ
t and ν = µJ

t .

Moment bounds

Suppose ρ0 ∈ Pq(R
d). Then there is κ > 0 such that

∀J ∈ N+, E

[
sup

t∈[0,T ]

∣∣∣Xj
t

∣∣∣q] ∨ E

[
sup

t∈[0,T ]

∣∣∣Xj
t

∣∣∣q] ⩽ κ.

Synchronous coupling approach for CBO/S 29 / 40



Sketch of the proof: stopping time approach1 Details of proof

▶ Local Lipschitz continuity of Mβ motivates stopping time

θJ = inf
{
t ⩾ 0 : Wp(µ

J
t , δ0) ⩾ R

}
, µJ

t :=
1

J

J∑
j=1

δ
X

j
t
.

▶ Then decompose

E
[∣∣∣Xj

t −X
j
t

∣∣∣p] = E
[∣∣∣Xj

t −X
j
t

∣∣∣p 1{θJ>T}

]
+E

[∣∣∣Xj
t −X

j
t

∣∣∣p 1{θJ⩽T}

]
.

▶ First term can be shown to scale as CJ− p
2 using classical approach;

▶ Second term handled as follows (q > p):

E
[∣∣∣Xj

t −X
j
t

∣∣∣p 1{θJ⩽T}

]
⩽ E

[∣∣∣Xj
t −X

j
t

∣∣∣q] p
q
P[θJ ⩽ T ]

q−p
q .

▶ First factor bounded using moment bounds.
▶ Second factor: for sufficiently large R, by generalized Chebyshev inequality,

∀a > 0, ∃C(a) : P [θJ ⩽ T ] ⩽ C(a)J−a

1D. J. Higham, X. Mao, and A. M. Stuart. SIAM J. Numer. Anal., 2002.
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Revisiting the toy example

Toy example (with M(µ) the usual mean under µ)

Interacting particle system:

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ e−t dW j

t , Xj
0 = xj

0
i.i.d.∼ ρ0 j = 1, . . . , J.

Mean field limit: dXt = −
(
Xt −M(ρt)

)
dt+ e−t dW t,

ρt = Law(Xt).

Moment decay estimate: by Itô’s formula,

d

dt
E
∣∣∣Xj

t −M(µJ
t )
∣∣∣2 ⩽ −2E

∣∣∣Xj
t −M(µJ

t )
∣∣∣2 + d e−2t

Grönwall
⩽

(
E
∣∣∣Xj

0 −M(µJ
0 )
∣∣∣2 + d

2

)
e−2t .

Similarly

d

dt
E
∣∣∣Xt −EXt

∣∣∣2 ⩽ (E∣∣∣X0 −EX0

∣∣∣2 + d

2

)
e−2t .
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Exploiting convexity with synchronous coupling: Malrieu’s approach

Synchronous coupling for toy example

dXj
t = −

(
Xj

t −M
(
µJ
t

))
dt+ e−t dW j

t , Xj
0 = xj

0, j = 1, . . . , J,

dX
j
t = −

(
X

j
t −M(ρt)

)
dt+ e−t dW j

t , X
j
0 = xj

0, j = 1, . . . , J.

d

dt

1

2J

J∑
j=1

∣∣∣Xj
t −X

j
t

∣∣∣2 = − 1

J

J∑
j=1

〈
Xj

t −X
j
t , X

j
t −M(µJ

t )−X
j
t +M(µJ

t )
〉

+
1

J

J∑
j=1

〈
Xj

t −X
j
t ,M(µJ

t )−M(ρt)
〉
.

The first term is nonpositive. By the Cauchy–Schwarz inequality, we obtain

1

2

d

dt
E
∣∣∣X1

t −X
1
t

∣∣∣2 ⩽√E
∣∣∣X1

t −X
1
t

∣∣∣2√E
∣∣M(µJ

t )−M(ρt)
∣∣2.

⇝
d

dt

√
E
∣∣∣X1

t −X
1
t

∣∣∣2 ⩽√E
∣∣M(µJ

t )−M(ρt)
∣∣2 ≲ e−t

√
J
.
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Extending Malrieu’s approach to CBO

Synchronous coupling for CBO, j ∈ {1, . . . , J}

dXj
t = −

(
Xj

t −Mβ

(
µJ
t

))
dt+

√
2σ
∣∣∣Xj

t −Mβ

(
µJ
t

)∣∣∣ dW j
t , Xj

0 = xj
0,

dX
j
t = −

(
X

j
t −Mβ(ρt)

)
dt+

√
2σ
∣∣∣Xj

t −Mβ(ρt)
∣∣∣ dW j

t , X
j
0 = xj

0.

d

dt

1

2J

J∑
j=1

∣∣∣Xj
t −X

j
t

∣∣∣2 = − 1

J

J∑
j=1

〈
Xj

t −X
j
t , X

j
t −M(µJ

t )−X
j
t +M(µJ

t )
〉

− 1

J

J∑
j=1

〈
Xj

t −X
j
t ,M(µJ

t )−Mβ(µ
J
t )−M(µJ

t ) +Mβ(µ
J
t )︸ ︷︷ ︸

Small ???

〉

+
1

J

J∑
j=1

〈
Xj

t −X
j
t ,Mβ(µ

J
t )−Mβ(ρt)︸ ︷︷ ︸

Small when J ≫ 1

〉
+ σ . . .

Assumption: for simplicity here, we assume

▶ no noise (σ = 0);
▶ F bounded and globally Lipschitz;
▶ initialization in a compact set: xj

0 ∼ ρ0 with ρ0 compactly supported.
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Auxiliary results

Notation: For a probability measure µ ∈ P1(R
d), let

Mp(µ) :=

∫ ∣∣x−M(µ)
∣∣p µ(dx).

Key ingredient: Moment estimate for particle system

For all p > 0, there exists λp > 0 such that

E
[
Mp(µ

J
t )
]
⩽ E

[
Mp(µ

J
0 )
]
e−λpt, E

∣∣∣Xt −EXt

∣∣∣p ⩽ E
∣∣∣X0 −EX0

∣∣∣p e−λpt .

Key ingredient: Stability of weighted mean

Then there exists CM > 0 such that for all µ, ν ∈ P2(Rd),∣∣∣Mβ(µ)−M(µ)−Mβ(ν) +M(ν)
∣∣∣ ⩽ CM

(√
M2(µ) +

√
M2(ν)

)
W2(µ, ν).
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Auxiliary results

Notation: For a probability measure µ ∈ P1(R
d), let

Mp(µ) :=

∫ ∣∣x−M(µ)
∣∣p µ(dx).

Key ingredient: Stability of weighted mean

Then there exists CM > 0 such that for all µ, ν ∈ P2(Rd),∣∣∣Mβ(µ)−M(µ)−Mβ(ν) +M(ν)
∣∣∣ ⩽ CM

(√
M2(µ) +

√
M2(ν)

)
W2(µ, ν).

Key ingredient: Moment estimate for particle system

For all p > 0 and for σ sufficiently small, there exists λp > 0 such that

E
[
Mp(µ

J
t )
]
⩽ E

[
Mp(µ

J
0 )
]
e−λpt, E

∣∣∣Xt −EXt

∣∣∣p ⩽ E
∣∣∣X0 −EX0

∣∣∣p e−λpt .

⇝
∣∣∣M(µJ

t )−Mβ(µ
J
t )−M(µJ

t ) +Mβ(µ
J
t )
∣∣∣ ≲ e−

λ2
2

t W2

(
µJ
t , µ

J
t

)
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Extra auxiliary result needed in the presence of noise: σ > 0

Concentration inequalities for the empirical measures µJ
t and µJ

t

Suppose that ρ0 has finite moments of all orders. Then for all q > 0, there is κ0 > 0 that
for all κ ∈ (0, κ0), there exists C > 0 independent of J such that

P[Ωκ] ⩽ CJ− q
2M2q(ρ0), Ωκ :=

{
sup
t⩾0

eκt M2(µ
J
t ) ⩾ E

[
M2(ρ0)

]
+ 1

}
.

and

P
[
Ωκ

]
⩽ CJ− q

2M2q(ρ0), Ωκ :=

{
sup
t⩾0

eκt M2(µ
J
t ) ⩾ E

[
M2(ρ0)

]
+ 1

}
.

Decomposing Ω = (Ωκ ∪ Ωκ)
⋃

(Ωκ ∪ Ωκ)
∁ leads to

E
[(

M2(µ
J
t ) +M2(µ

J
t )
)
W2

2

(
µJ
t , µ

J
t

)]
≲ J− q

2 e−λt +e−κt E
[
W2

2

(
µJ
t , µ

J
t

)]
.
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Uniform-in-time propagation of chaos: main result

Main theorem

Suppose that

▶ function F is bounded f ⩽ f ⩽ f and Lf -globally Lipschitz;

▶ probability distribution ρ0 has finite moments of all orders;

▶ noise coefficient σ is sufficiently small.

Then there exists CMFL

(
β, f, f , Lf , σ, d

)
such that

sup
t⩾0

E
[∣∣X1

t −X
1
t

∣∣2] ⩽ CMFL

J
.
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Corollary: long-time error for the interacting particle system

Theorem

Under the same assumptions as in the previous theorem, it holds that

▶ There exists a Rd-valued random variable MX such that

lim
t→+∞

M(µJ
t ) = MX

▶ There exists a γ > 0 such that for all t ⩾ 0,

|X1
t −MX | ≲ e−γt almost surely , E

[
|X1

t −MX |2
]
≲ e−γt

▶ Recall that M(ρt) → xβ as t → +∞. As a corollary of our result, it holds that

E
[
|MX − xβ |2

]
⩽

CMFL

J
.
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Uniform-in-time propagation of chaos

Future directions:

▶ Uniform-in-time estimate for Consensus-Based Sampling;

▶ Discrete-time estimates;

▶ Improve the (currently exponential) dependence on β . . .

Thank you for your attention!
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Details of the proof: first term (1/2)

▶ Starting point: the following is an upper bound for
∣∣∣Xj

t −X
j
t

∣∣∣p 1{θJ>T} :

∣∣∣Xj
t∧θJ

−X
j
t∧θJ

∣∣∣p ⩽ ∣∣∣∣∫ t∧θJ

0

b
(
Xj

s , µ
J
s

)
− b
(
X

j
s, ρs

)
ds

∣∣∣∣p
+

∣∣∣∣∫ t∧θJ

0

σ
(
Xj

s , µ
J
s

)
− σ

(
X

j
s, ρs

)
dWs

∣∣∣∣p .
▶ By Doob’s optional stopping and Burkholder–Davis–Gundy,

E

[
sup

s∈[0,t]

∣∣Xj
s∧θJ

−X
j
s∧θJ

∣∣p] ⩽ (2T )p−1E

∫ t∧θJ

0

∣∣∣b(Xj
s , µ

J
s

)
− b
(
X

j
s, ρs

)∣∣∣p ds

+ CBDG2
p−1T

p
2
−1E

∫ t∧θJ

0

∥∥∥σ(Xj
s , µ

J
s

)
− σ

(
X

j
s, ρs

)∥∥∥p
F
ds =: At +Bt .

▶ Both terms handled similarly. For the drift, by the triangle inequality,

At ≲
∫ t

0

E
∣∣∣b(Xj

s∧θJ
, µJ

s∧θJ

)
− b
(
X

j
s∧θJ , µ

J
s∧θJ

)∣∣∣p ds

+

∫ t

0

E
∣∣∣b(Xj

s, µ
J
s

)
− b
(
X

j
s, ρs

)∣∣∣p ds =: A
(1)
t +A

(2)
t .
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Details of the proof: first term (2/2)

▶ In order to bound A
(1)
t , recall that b(x, µ) = −x+Mβ(µ), so

E
∣∣∣b(Xj

s∧θJ
, µJ

s∧θJ

)
− b
(
X

j
s∧θJ , µ

J
s∧θJ

)∣∣∣p ≲ E
∣∣∣Xj

s∧θJ
−X

j
s∧θJ

∣∣∣p
+E

∣∣∣Mβ

(
µJ
s∧θJ

)
−Mβ

(
µJ
s∧θJ

)∣∣∣p
By local Wp Lipschitz continuity of Mβ and definition of θJ ,

E
∣∣∣Mβ

(
µJ
s∧θJ

)
−Mβ

(
µJ
s∧θJ

)∣∣∣p ≲ C(R) E
∣∣∣Wp

(
µJ
s∧θJ , µ

J
s∧θJ

)∣∣∣p
⩽ C(R) E

∣∣∣Xj
s∧θJ

−X
j
s∧θJ

∣∣∣p .
▶ To bound A

(2)
t , we use the convergence of the weighted mean for i.i.d. samples1,2

E
∣∣∣b(Xj

s, µ
J
s

)
− b
(
X

j
s, ρs

)∣∣∣p ∝ E
∣∣∣Mβ

(
µJ
s

)
−Mβ(ρs)

∣∣∣p ≲ J− p
2 .

Combining the above estimates and using Grönwall’s lemma,

E

[
sup

t∈[0,T ]

∣∣∣Xj
t∧θJ

−X
j
t∧θJ

∣∣∣p] ≲ J− p
2 .

1P. Doukhan and G. Lang. Bernoulli, 2009.
2S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.
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Details of the proof: second term

It remains to bound the probability

P[θJ(R) ⩽ T ] = P

[
sup

t∈[0,T ]

1

J

J∑
j=1

∣∣∣Xj
t

∣∣∣p ⩾ R

]

⩽ P

[
1

J

J∑
j=1

Zj ⩾ R

]
, Zj := sup

t∈[0,T ]

∣∣∣Xj
t

∣∣∣p .
Let X = 1

J

∑J
j=1 Zj . By the Marcinkiewicz–Zygmund inequality, it holds for r ⩾ 2 that

E
∣∣X −E[X]

∣∣r ≲ J−rE

( J∑
j=1

∣∣∣Zj −E[Zj ]
∣∣∣2) r

2

 ⩽ J− r
2 E
[∣∣∣Z1 −E[Z1]

∣∣∣r] ,
where we used Jensen’s inequality and exchangeability. If R > E[X], then

P [X ≥ R] ⩽ P
[∣∣X −E[X]

∣∣r ≥
(
R−E[X]

)r]
⩽ E

[ ∣∣X −E[X]
∣∣r(

R−E[X]
)r
]
⩽

CJ− r
2(

R−E[X]
)r ,

where we used Markov’s inequality.
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