

Uniform-in-time Mean-field Limit for Consensus-Based Optimization

Groupe de travail marnais: Algos sto et co

Urbain Vaes
urbain.vaes@inria.fr

MATERIALS – Inria Paris & CERMICS – École des Ponts ParisTech

December 2025

Collaborators and reference

Nicolai Gerber
universität
ulm

Hausdorff Center for
Mathematics

Franca Hoffmann

Caltech

Caltech

Dohyeon Kim

Caltech

Caltech

References:

- ▶ N. J. Gerber, F. Hoffmann, and UV. [ESAIM Control Optim. Calc. Var.](#), 2025
Mean-field limits for Consensus-Based Optimization and Sampling
- ▶ N. J. Gerber, F. Hoffmann, D. Kim, and UV. [Arxiv preprint](#), 2025
Uniform-in-time propagation of chaos for Consensus-Based Optimization

Outline

Motivation

The classical synchronous coupling approach for a toy model

Synchronous coupling approach for CBO/S

Towards uniform-in-time estimates

Paradigmatic inverse problem

Find an unknown parameter $\theta \in \mathcal{U}$ from data $y \in \mathbf{R}^m$ where

$$y = \mathcal{G}(\theta) + \eta,$$

- ▶ \mathcal{G} is the **forward operator**;
- ▶ η is **observational noise**.

Two difficulties¹ associated with this problem are the following:

- ▶ Because of the noise, it might be that $y \notin \text{Ran}(\mathcal{G})$;
- ▶ The problem might be **underdetermined**.

Additionally, in many PDE applications,

- ▶ \mathcal{G} is expensive to evaluate;
- ▶ The derivatives of \mathcal{G} are difficult to calculate;
- ▶ θ is a function → **infinite dimension**.

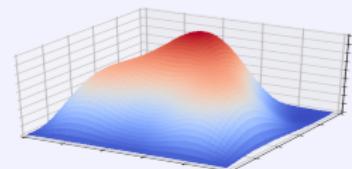
¹M. Dashti and A. M. Stuart. In **Handbook of uncertainty quantification**. Vol. 1, 2, 3. Springer, Cham, 2017.

Example: inference of the thermal conductivity in a plate

Mathematical model:

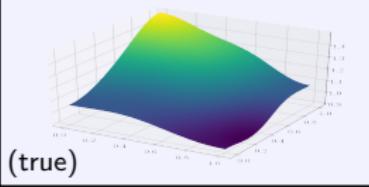
$$\begin{aligned}-\nabla \cdot (\theta(x) \nabla T(x)) &= f(x), & x \in \Omega, \\ T(x) &= 0, & x \in \partial\Omega.\end{aligned}$$

Solution:



Unknown parameter:

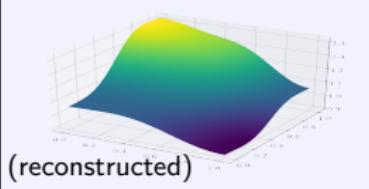
Thermal conductivity $\theta(x)$



Forward problem

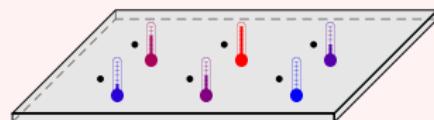
Temperature field $T(x)$

MAP estimator:



Inverse problem

Data:



Noisy temperature measurements:

$$y = (T(x_1), \dots, T(x_m)) + \eta.$$

Probabilistic approach for solving “ $y = \mathcal{G}(\theta) + \eta$ ”¹

Bayesian approach to inverse problems

Modeling step:

- ▶ Probability distribution on parameter: $\theta \sim \pi$, encoding our **prior knowledge**;
- ▶ Probability distribution for noise: $\eta \sim \nu$.

An application of **Bayes' theorem** gives the **posterior distribution**:

$$\rho^y(\theta) \propto \pi(\theta) \nu(y - \mathcal{G}(\theta)) = \text{prior} \times \text{likelihood}.$$

(In infinite dimension, use Radon–Nikodym derivative.)

In the Gaussian case where $\pi = \mathcal{N}(m, \Sigma)$ and $\nu = \mathcal{N}(0, \Gamma)$,

$$\rho^y(\theta) \propto \exp\left(-\left(\frac{1}{2} |y - \mathcal{G}(\theta)|_{\Gamma}^2 + \frac{1}{2} |\theta - m|_{\Sigma}^2\right)\right) =: \exp(-\mathcal{F}(\theta)).$$

where $|x|_A := \sqrt{x^T A^{-1} x}$.

Two approaches for extracting information:

- ▶ Find the maximizer of $\rho^y(\theta)$ (maximum a posteriori estimation);
- ▶ Sample the posterior distribution $\rho^y(\theta)$.

¹A. M. Stuart. *Acta Numer.*, 2010.

Brief review of the recent literature on interacting particle methods

- ▶ 1994: Ensemble Kalman filter¹ (6,611 citations);
- ▶ 1995: Particle swarm optimization² (**90,668** citations);
- ▶ 2006: Sequential Monte Carlo samplers³ (2,255 citations);
- ▶ 2010: Affine-invariant many-particle MCMC⁴ (3,505 citations);
- ▶ 2013: Ensemble Kalman inversion⁵ (473 citations);
- ▶ 2016: Stein variational gradient descent⁶ (1,285 citations);
- ▶ 2017: Consensus-based optimization⁷ (185 citations);
- ▶ 2020: Ensemble Kalman sampling⁸ (233 citations);

Often **parallelizable**, and some can be studied through **mean-field equations**.

¹G. Evensen. *Journal of Geophysical Research: Oceans*, 1994.

²J. Kennedy and R. Eberhart. In *Proceedings of ICNN'95-international conference on neural networks*. ieee, 1995.

³P. Del Moral, A. Doucet, and A. Jasra. *J. R. Stat. Soc. Ser. B Stat. Methodol.*, 2006.

⁴J. Goodman and J. Weare. *Commun. Appl. Math. Comput. Sci.*, 2010.

⁵M. A. Iglesias, K. J. H. Law, and A. M. Stuart. *Inverse Problems*, 2013.

⁶Q. Liu and D. Wang. In *Advances In Neural Information Processing Systems*, 2016.

⁷R. Pinna, C. Totzeck, O. Tse, and S. Martin. *Math. Models Methods Appl. Sci.*, 2017.

⁸A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. *SIAM J. Appl. Dyn. Syst.*, 2020.

Consensus-based optimization (CBO)^{1,2}

Global optimization problem:

$$\text{Find } x \in \arg \min_{\mathbf{R}^d} \mathcal{F} \quad (\mathcal{F}: \mathbf{R}^d \rightarrow \mathbf{R})$$

CBO interacting particle system

$$dX_t^j = - \left(X_t^j - \mathcal{M}_{\beta}(\mu_t^J) \right) dt + \sqrt{2}\sigma \left| X_t^j - \mathcal{M}_{\beta}(\mu_t^J) \right| dW_t^j, \quad j = 1, \dots, J,$$

- ▶ β is “inverse temperature” parameter.
- ▶ μ_t^J is empirical measure $\mu_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j}$.
- ▶ $\mathcal{M}_{\beta}: \mathcal{P}(\mathbf{R}^d) \rightarrow \mathbf{R}^d$ is weighted mean operator:

$$\mathcal{M}_{\beta}(\mu) = \frac{\int x e^{-\beta \mathcal{F}(x)} \mu(dx)}{\int e^{-\beta \mathcal{F}(x)} \mu(dx)}, \quad \mathcal{M}_{\beta}(\mu_t^J) = \frac{\sum_{j=1}^J X_t^j \exp(-\beta \mathcal{F}(X_t^j))}{\sum_{j=1}^J \exp(-\beta \mathcal{F}(X_t^j))}.$$

¹R. Pinna, C. Totzeck, O. Tse, and S. Martin. [Math. Models Methods Appl. Sci.](#), 2017.

²J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. [Mathematical Models and Methods in Applied Sciences](#), 2018.

Typical evolution of CBO dynamics

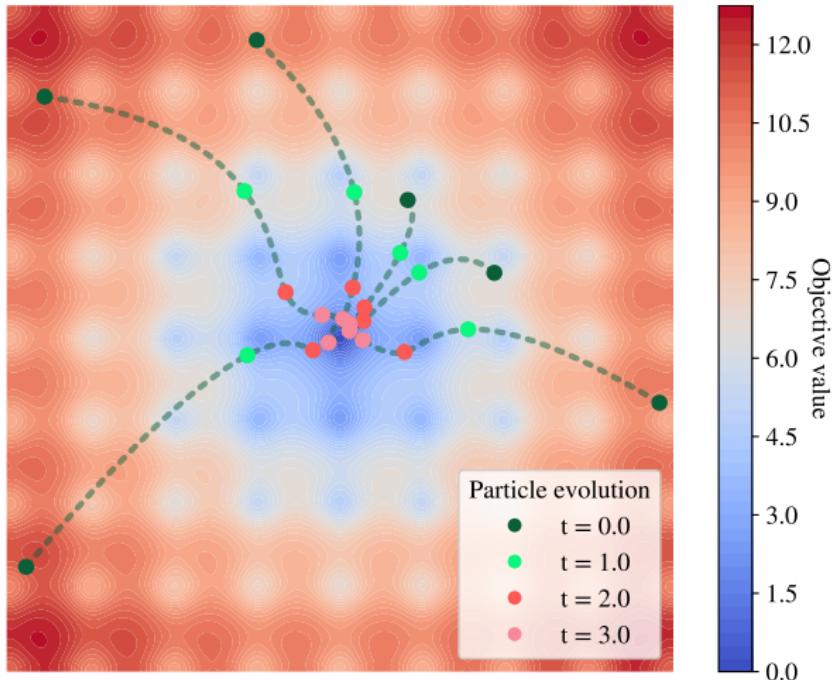
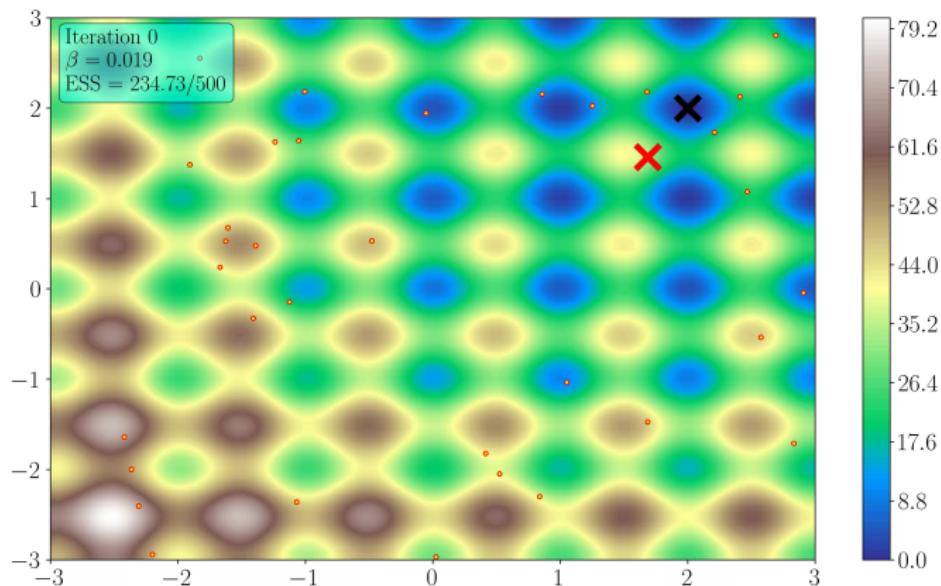


Figure: Ensemble evolution for the Ackley function

Video illustration



Software library in Python (lead T. Roith) and Julia (lead R. Bailo):

- ▶ Offers high-performance implementation of the method;
- ▶ Implements a number of extensions (different noises, mini-batching, sampling, . . .)
- ▶ Provides general interface that can accommodate extensions.

CBX: Python and Julia Packages for Consensus-Based Interacting Particle Methods

Rafael Bailo ¹, Alethea Barbaro ², Susana N. Gomes ³, Konstantin Riedl ^{4,5}, Tim Roith ⁶, Claudia Totzeck ⁷, and Urbain Vaes ^{8,9}

¹ Mathematical Institute, University of Oxford, United Kingdom ² Delft University of Technology, The Netherlands ³ Mathematics Institute, University of Warwick, United Kingdom ⁴ Technical University of Munich, Germany ⁵ Munich Center for Machine Learning, Germany ⁶ Helmholtz Imaging, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ⁷ University of Wuppertal, Germany ⁸ MATHERIALS team, Inria Paris, France ⁹ École des Ponts ParisTech, Marne-la-Vallée, France

¹R. Bailo, A. Barbaro, S. N. Gomes, K. Riedl, T. Roith, C. Totzeck, and U. Vaes. *Journal of Open Source Software*, 2024.

Consensus-based sampling (CBS)¹

Sampling problem:

Generate samples from distribution $\pi \propto e^{-\mathcal{F}}$ $(\mathcal{F}: \mathbf{R}^d \rightarrow \mathbf{R})$

CBS interacting particle system

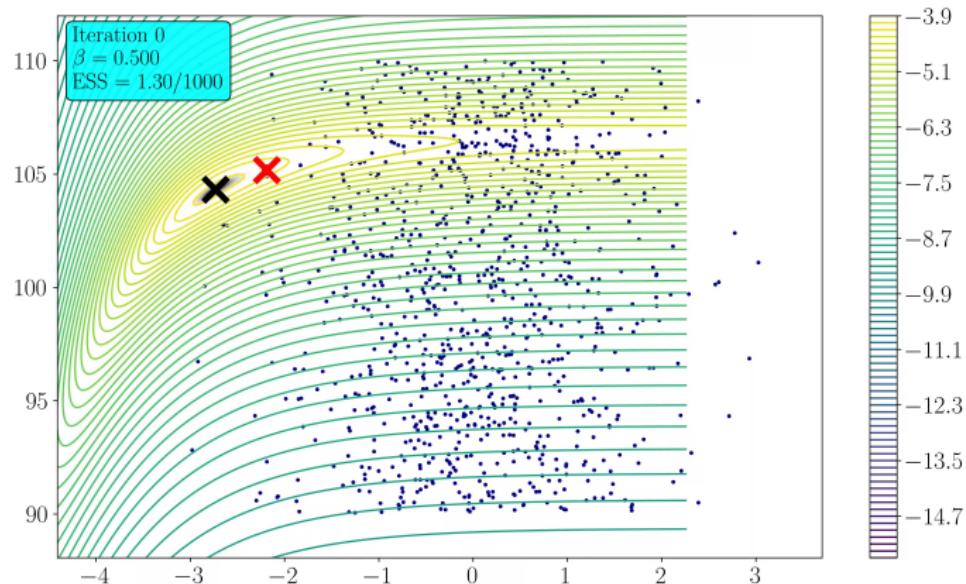
$$dX_t^j = -\left(X_t^j - \mathcal{M}_\beta\left(\mu_t^J\right)\right) dt + \sqrt{2(1 + \beta) \mathcal{C}_\beta(\mu_t^J)} dW_t^j, \quad j = 1, \dots, J,$$

- ▶ β is “inverse temperature” parameter.
- ▶ μ_t^J is empirical measure $\mu_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j}$.
- ▶ $\mathcal{C}_\beta: \mathcal{P}(\mathbf{R}^d) \rightarrow \mathbf{R}^{d \times d}$ is weighted covariance operator:

$$\mathcal{C}_\beta(\mu) = \frac{\int (x \otimes x) e^{-\beta \mathcal{F}(x)} \mu(dx)}{\int e^{-\beta \mathcal{F}(x)} \mu(dx)} - \mathcal{M}_\beta(\mu) \otimes \mathcal{M}_\beta(\mu).$$

¹J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. Stud. Appl. Math., 2022.

Illustration



Taking formally $J \rightarrow \infty$ in the interacting particle systems leads to

CBO mean field limit

$$\begin{cases} d\bar{X}_t = -\left(\bar{X}_t - \mathcal{M}_\beta(\bar{\rho}_t)\right) dt + \sqrt{2}\sigma \left|\bar{X}_t - \mathcal{M}_\beta(\bar{\rho}_t)\right| d\bar{W}_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$

CBS mean field limit

$$\begin{cases} d\bar{X}_t = -\left(\bar{X}_t - \mathcal{M}_\beta(\bar{\rho}_t)\right) dt + \sqrt{2(1 + \beta)} \mathcal{C}_\beta(\bar{\rho}_t) d\bar{W}_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$

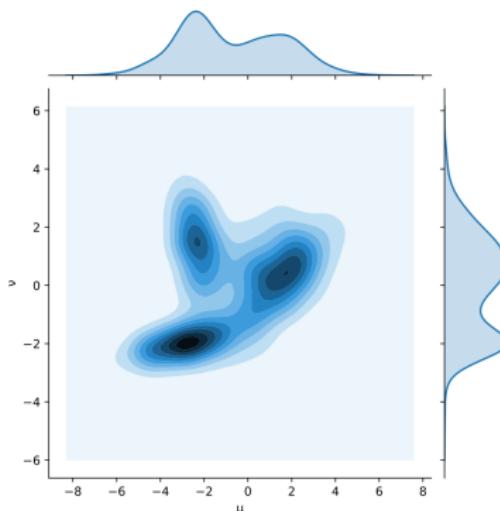
- ▶ Nonlinear Markov processes in \mathbf{R}^d : future depends on \bar{X}_t and its distribution;
- ▶ Associated Fokker–Planck equations are nonlinear and nonlocal.

Notation: Wasserstein distances¹

Wasserstein distance in \mathbf{R}^d (here $|\cdot|$ is always the Euclidean norm)

$$\text{For } \mu, \nu \in \mathcal{P}_p(\mathbf{R}^d), \quad \mathcal{W}_p(\mu, \nu) = \inf_{\gamma \in \Pi(\mu, \nu)} \left(\mathbf{E}_{(X, Y) \sim \gamma} |X - Y|^p \right)^{\frac{1}{p}}$$

Here $\Pi(\mu, \nu) = \{\gamma \in \mathcal{P}(\mathbf{R}^d \times \mathbf{R}^d) : \text{proj}_\sharp^x \gamma = \mu, \text{proj}_\sharp^y \gamma = \nu\}$.



¹L.-P. Chaintron and A. Diez. *Kinet. Relat. Models*, 2022.

Convergence results in mean field law for CBO and CBS

Recall $\mathcal{W}_2: \mathcal{P}_2(\mathbf{R}^d) \times \mathcal{P}_2(\mathbf{R}^d) \rightarrow \mathbf{R}$ denotes the Wasserstein-2 metric.

Convergence of mean field CBO^{1,2}

Under mild conditions including existence of a unique minimizer x_* , there exists $\lambda > 0$ and $x_\beta \in \mathbf{R}^d$ such that

$$\forall t \geq 0, \quad \mathcal{W}_2(\bar{\rho}_t, \delta_{x_\beta}) \lesssim \mathcal{W}_2(\bar{\rho}_0, \delta_{x_\beta}) e^{-\lambda t}, \quad x_* = \arg \min_{\mathbf{R}^d} \mathcal{F}.$$

Furthermore $x_\beta \rightarrow x_*$ in the limit $\beta \rightarrow \infty$.

Convergence of mean field CBS³

If $\pi \propto e^{-\mathcal{F}}$ is Gaussian and $\bar{\rho}_0$ is Gaussian, then

$$\forall t \geq 0, \quad \mathcal{W}_2(\bar{\rho}_t, \pi) \leq C e^{-\left(\frac{\beta}{1+\beta}\right)t}.$$

¹J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. *Mathematical Models and Methods in Applied Sciences*, 2018.

²M. Fornasier, T. Klock, and K. Riedl. *SIAM J. Optim.*, 2024.

³J. A. Carrillo, F. Hoffmann, A. M. Stuart, and UV. *Stud. Appl. Math.*, 2022.

- ▶ Derivative-free, making them versatile and widely applicable:

```
from cbx.dynamics import CBO
f = lambda x: x[0]**2 + x[1]**2
x = CBO(f, d=2).optimize()
```

- ▶ Can be easily implemented in parallel;
- ▶ (For the sampling variant) Affine invariant: convergence rate independent of target;
- ▶ Theoretical guarantees for the mean field equations.

Question: how to obtain convergence guarantees in the finite-size setting?

Wasserstein distance in $\mathbf{R}^{d\mathbf{J}}$

$$\text{For } f^{\mathbf{J}}, g^{\mathbf{J}} \in \mathcal{P}(\mathbf{R}^{d\mathbf{J}}), \quad \mathcal{W}_p(f^J, g^J) = \inf_{\gamma \in \Pi(f^{\mathbf{J}}, g^{\mathbf{J}})} \left(\mathbf{E}_{(\mathbf{X}, \mathbf{Y}) \sim \gamma} \frac{1}{J} \sum_{j=1}^J |X^j - Y^j|^p \right)^{\frac{1}{p}}$$

- ▶ With this normalization, $\mathcal{W}_p(\mu^{\otimes J}, \nu^{\otimes J}) = \mathcal{W}_p(\mu, \nu)$.
- ▶ For associated empirical measures, $\mathbf{E} [\mathcal{W}_p(\mu_f^J, \mu_g^J)^p] \leq \mathcal{W}_p(f^J, g^J)^p$.

In our setting,

- ▶ $f^J, \bar{f}^J \in \mathcal{P}(\mathbf{R}^{d\mathbf{J}})$ are **joint laws**
- ▶ $\mu^J, \bar{\mu}^J$ are **empirical measures**, with laws in $\in \mathcal{P}(\mathcal{P}(\mathbf{R}^d))$

$$\mu^J = \frac{1}{J} \sum_{j=1}^J \delta_{X^j}, \quad \bar{\mu}^J = \frac{1}{J} \sum_{j=1}^J \delta_{\bar{X}^j}.$$

¹L.-P. Chaintron and A. Diez. *Kinet. Relat. Models*, 2022.

Convergence for the interacting particle systems

Let $f_t^J = \text{Law}(X_t^1, \dots, X_t^J)$. By the triangle inequality,

$$\mathcal{W}_2(f_t^J, \nu^{\otimes J}) \leq \underbrace{\mathcal{W}_2(f_t^J, \bar{\rho}_t^{\otimes J})}_{\rightarrow 0 \text{ as } J \rightarrow \infty ???} + \underbrace{\mathcal{W}_2(\bar{\rho}_t, \nu)}_{\leq C e^{-\lambda t}}, \quad \nu = \begin{cases} \delta_{x_\beta} & \text{for CBO,} \\ e^{-\mathcal{F}} & \text{for CBS.} \end{cases}$$

Pre-existing mean field results for CBO (i.i.d. initial condition and **fixed t**)

- ¹Based on a compactness argument, it was shown that

$$\mu_t^J \xrightarrow[J \rightarrow \infty]{\text{Law}} \bar{\rho}_t, \quad (\text{no rate}), \quad \mu_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{X_t^j}.$$

- ²For all $\varepsilon > 0$ and $t \geq 0$, there is $C_\varepsilon > 0$ such that for all J there is $\Omega_\varepsilon \subset \Omega$ satisfying

$$\mathbf{P}[\Omega \setminus \Omega_\varepsilon] \leq \varepsilon \quad \text{and} \quad \mathbf{E} \left[\mathcal{W}_2(f_t^J, \bar{\rho}_t^{\otimes J}) \mid \Omega_\varepsilon \right] \leq C_\varepsilon J^{-\frac{1}{2}}, \quad C_\varepsilon \xrightarrow[\varepsilon \rightarrow 0]{} \infty.$$

Our goal: obtain an estimate of the form $\sup_{t \geq 0} \mathcal{W}_p(f_t^J, \bar{\rho}_t^{\otimes J}) \leq C J^{-\frac{1}{2}}$.

¹H. Huang and J. Qiu. *Math. Methods Appl. Sci.*, 2022.

²M. Fornasier, T. Klock, and K. Riedl. *SIAM J. Optim.*, 2024.

Outline

Motivation

The classical synchronous coupling approach for a toy model

Synchronous coupling approach for CBO/S

Towards uniform-in-time estimates

Introduction of synchronous coupling

Toy example (with $\mathcal{M}(\mu)$ the **usual mean** under μ)

Interacting particle system:

$$dX_t^j = -\left(X_t^j - \mathcal{M}(\mu_t^j)\right) dt + e^{-t} dW_t^j, \quad X_0^j = x_0^j \stackrel{\text{i.i.d.}}{\sim} \bar{\rho}_0 \quad j = 1, \dots, J.$$

Mean field limit:

$$\begin{cases} d\bar{X}_t = -\left(\bar{X}_t - \mathcal{M}(\bar{\rho}_t)\right) dt + e^{-t} d\bar{W}_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$

Synchronous coupling

We couple to the particle system J copies of the mean field dynamics:

$$dX_t^j = -\left(X_t^j - \mathcal{M}(\mu_t^j)\right) dt + e^{-t} dW_t^j, \quad X_0^j = x_0^j, \quad j = 1, \dots, J,$$

$$d\bar{X}_t^j = -\left(\bar{X}_t^j - \mathcal{M}(\bar{\rho}_t)\right) dt + e^{-t} dW_t^j, \quad \bar{X}_0^j = x_0^j, \quad j = 1, \dots, J,$$

with the same **initial condition** and **driving Brownian motions**.

Synchronous coupling $j \in \{1, \dots, J\}$

$$\begin{aligned} dX_t^j &= -\left(X_t^j - \mathcal{M}(\mu_t^j)\right) dt + e^{-t} dW_t^j, & X_0^j &= x_0^j, \\ d\bar{X}_t^j &= -\left(\bar{X}_t^j - \mathcal{M}(\bar{\rho}_t)\right) dt + e^{-t} dW_t^j, & \bar{X}_0^j &= x_0^j. \end{aligned}$$

Key fact: mean field processes are i.i.d. with law $\bar{X}_t^j \sim \bar{\rho}_t$, so

$$\mathcal{W}_2\left(f_t^J, \bar{\rho}_t^{\otimes J}\right) = \mathcal{W}_2\left(f_t^J, \bar{f}_t^J\right), \quad \bar{f}_t^J = \text{Law}\left(\bar{X}_t^1, \dots, \bar{X}_t^J\right).$$

By definition of Wasserstein distance and exchangeability,

$$\mathcal{W}_2\left(f_t^J, \bar{f}_t^J\right)^2 \leq \mathbf{E} \left[\frac{1}{J} \sum_{j=1}^J \left| X_t^j - \bar{X}_t^j \right|^2 \right] = \mathbf{E} \left[\left| X_t^1 - \bar{X}_t^1 \right|^2 \right].$$

Bounding the remaining term (using Sznitman's approach¹)

Synchronous coupling $j \in \{1, \dots, J\}$

$$\begin{aligned} dX_t^j &= -\left(X_t^j - \mathcal{M}\left(\mu_t^J\right)\right) dt + e^{-t} dW_t^j, & X_0^j &= x_0^j, \\ d\bar{X}_t^j &= -\left(\bar{X}_t^j - \mathcal{M}(\bar{\rho}_t)\right) dt + e^{-t} dW_t^j, & \bar{X}_0^j &= x_0^j. \end{aligned}$$

Key Lemma: Lipschitz continuity of $\mathcal{M}: \mathcal{P}_1(\mathbf{R}^d) \rightarrow \mathbf{R}^d$

$$\forall (\mu, \nu) \in \mathcal{P}_1(\mathbf{R}^d) \times \mathcal{P}_1(\mathbf{R}^d), \quad \left| \mathcal{M}(\mu) - \mathcal{M}(\nu) \right| \leq \mathcal{W}_1(\mu, \nu).$$

$$\begin{aligned} \mathbf{E} \left[\left| X_t^1 - \bar{X}_t^1 \right|^2 \right] &\lesssim \int_0^t \mathbf{E} \left| X_s^1 - \bar{X}_s^1 \right|^2 + \mathbf{E} \left| \mathcal{M} \left(\mu_s^J \right) - \mathcal{M} \left(\bar{\rho}_s \right) \right|^2 ds \\ &\lesssim \int_0^t \mathbf{E} \left| X_s^1 - \bar{X}_s^1 \right|^2 + \mathbf{E} \left| \mathcal{M} \left(\mu_s^J \right) - \mathcal{M} \left(\bar{\mu}_s^J \right) \right|^2 + \mathbf{E} \left| \mathcal{M} \left(\bar{\mu}_s^J \right) - \mathcal{M} \left(\bar{\rho}_s \right) \right|^2 ds \\ &\lesssim \int_0^t \mathbf{E} \left| X_s^1 - \bar{X}_s^1 \right|^2 + \mathbf{E} \left[\mathcal{W}_2 \left(\mu_s^J, \bar{\mu}_s^J \right)^2 \right] ds + C_{\text{MC}} J^{-1} \\ &\lesssim \int_0^t \mathbf{E} \left| X_s^1 - \bar{X}_s^1 \right|^2 ds + C_{\text{MC}} J^{-1} \quad \xrightarrow{\text{Grönwall}} \quad \mathbf{E} \left[\left| X_t^1 - \bar{X}_t^1 \right|^2 \right] \leq C(t) J^{-1}. \end{aligned}$$

¹A.-S. Sznitman. In *École d'Été de Probabilités de Saint-Flour XIX—1989*. Springer, Berlin, 1991.

Infinite-dimensional chaos

Sznitman's approach can be generalized to \mathcal{W}_p , leading to

$$\mathcal{W}_p(f_t^J, \bar{\rho}_t^{\otimes J}) = \mathcal{O}\left(\frac{1}{\sqrt{J}}\right) \quad \text{as } J \rightarrow \infty.$$

Question: Can we say anything about the convergence of the empirical measure μ_t^J ?

$$\begin{aligned} \left(\mathbf{E}\mathcal{W}_p(\mu_t^J, \bar{\rho}_t)^p\right)^{\frac{1}{p}} &\leq \left(\mathbf{E}\mathcal{W}_p(\mu_t^J, \bar{\mu}_t^J)^p\right)^{\frac{1}{p}} + \left(\mathbf{E}\mathcal{W}_p(\bar{\mu}_t^J, \bar{\rho}_t)^p\right)^{\frac{1}{p}} \\ &\leq \left(\mathbf{E} \frac{1}{J} \sum_{j=1}^J |X_t^j - \bar{X}_t^j|^p\right)^{\frac{1}{p}} + \left(\mathbf{E}\mathcal{W}_p(\bar{\mu}_t^J, \bar{\rho}_t)^p\right)^{\frac{1}{p}} \\ &\lesssim J^{-\frac{1}{2}} + J^{-\alpha}, \end{aligned}$$

for $\alpha > 0$ depending on dimension¹.

¹N. Fournier and A. Guillin. [Probab. Theory Related Fields](#), 2015.

Why the classical Sznitman approach fails for CBO/CBS

Synchronous coupling for CBO, $x_0^j \stackrel{\text{i.i.d.}}{\sim} \bar{\rho}_0$ for $j \in \{1, \dots, J\}$,

$$dX_t^j = -\left(X_t^j - \mathcal{M}_\beta(\mu_t^j)\right) dt + \sqrt{2}\sigma \left|X_t^j - \mathcal{M}_\beta(\mu_t^j)\right| dW_t^j, \quad X_0^j = x_0^j.$$

$$d\bar{X}_t^j = -\left(\bar{X}_t^j - \mathcal{M}_\beta(\bar{\rho}_t)\right) dt + \sqrt{2}\sigma \left|\bar{X}_t^j - \mathcal{M}_\beta(\bar{\rho}_t)\right| dW_t^j, \quad \bar{X}_0^j = x_0^j.$$

Technical difficulties:

- $\mathcal{M}_\beta: \mathcal{P}_1(\mathbf{R}^d) \rightarrow \mathbf{R}^d$ is **not globally Lipschitz** continuous in general:

Example

Take $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x) = x^2$, with $\mu_n = \frac{1}{n}\delta_0 + (1 - \frac{1}{n})\delta_n$ and $\nu_n = \delta_n$. Then

$$\mathcal{M}_\beta(\mu_n) \approx 0, \quad \mathcal{M}_\beta(\nu_n) = n, \quad \mathcal{W}_1(\mu_n, \nu_n) = 1.$$

- Presence of multiplicative noise that depends on μ_t^J .
- Usual Monte Carlo estimates do not enable to bound

$$\mathbf{E} \left| \mathcal{M}_\beta(\bar{\mu}_s^J) - \mathcal{M}_\beta(\bar{\rho}_s) \right|^2.$$

Outline

Motivation

The classical synchronous coupling approach for a toy model

Synchronous coupling approach for CBO/S

Towards uniform-in-time estimates

Main result: quantitative mean field limits

Assumption (focusing on the unbounded \mathcal{F} setting for simplicity here)

- ▶ **Local Lipschitz continuity.** \mathcal{F} is bounded from below by $\mathcal{F}_* = \inf \mathcal{F}$ and satisfies

$$\forall x, y \in \mathbf{R}^d, \quad |\mathcal{F}(x) - \mathcal{F}(y)| \leq L_f (1 + |x| + |y|)^s |x - y|, \quad s \geq 0.$$

- ▶ **Growth at infinity.** There are constants $c, u > 0$ and a compact $K \subset \mathbf{R}^d$ such that

$$\forall x \in \mathbf{R}^d \setminus K, \quad \frac{1}{c} |x|^u \leq \mathcal{F}(x) \leq c |x|^u.$$

Main theorem¹, holds for both CBO and CBS

If \mathcal{F} satisfies the above assumption and $\bar{\rho}_0$ has infinitely many moments, then

$$\forall J \in \mathbf{N}^+, \quad \forall j \in \{1, \dots, J\}, \quad \mathbf{E} \left[\sup_{t \in [0, T]} \left| X_t^j - \bar{X}_t^j \right|^p \right] \leq C \textcolor{blue}{J}^{-\frac{p}{2}}.$$

¹N. J. Gerber, F. Hoffmann, and UV. *ESAIM Control Optim. Calc. Var.*, 2025.

Convergence of the weighted mean for i.i.d. samples

Proposition^{1,2}

Assume first that \mathcal{F} is bounded. Take $\mu \in \mathcal{P}(\mathbf{R}^d)$ and let

$$\rho = \frac{\left(\int_{\mathbf{R}^d} e^{-\beta \mathcal{F}} d\mu \right)^2}{\int_{\mathbf{R}^d} e^{-2\beta \mathcal{F}} d\mu} \in (0, 1], \quad \bar{\mu}^J := \frac{1}{J} \sum_{j=1}^J \delta_{\bar{X}^j} \quad \bar{X}^j \stackrel{\text{i.i.d.}}{\sim} \mu.$$

which measures the fraction of samples contributing to the weighted mean. Then

$$\sup_{\|\phi\|_{L^\infty} \leq 1} \mathbf{E} \left| \frac{\int_{\mathbf{R}^d} \phi e^{-\beta \mathcal{F}} d\bar{\mu}^J}{\int_{\mathbf{R}^d} e^{-\beta \mathcal{F}} d\bar{\mu}^J} - \frac{\int_{\mathbf{R}^d} \phi e^{-\beta \mathcal{F}} \bar{\mu}}{\int_{\mathbf{R}^d} e^{-\beta \mathcal{F}} d\bar{\mu}} \right|^2 \leq \frac{4}{\rho J}.$$

This can be extended to $p \geq 2$ and unbounded \mathcal{F} under moment conditions on μ :

$$\rightsquigarrow \mathbf{E} \left| \mathcal{M}_{\beta}(\bar{\mu}^J) - \mathcal{M}_{\beta}(\mu) \right|^p \lesssim \mathbf{E} |\bar{X}^1 - \mathbf{E} \bar{X}^1|^p J^{-\frac{p}{2}}.$$

¹P. Doukhan and G. Lang. Bernoulli, 2009.

²S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.

Local Lipschitz continuity for \mathcal{M}_β

For all $p \geq 1$, there exists L depending only on $\mathcal{W}_p(\mu, \delta_0)$ and \mathcal{F}, β such that

$$\forall (\mu, \nu) \in \mathcal{P}_p(\mathbf{R}^d) \times \mathcal{P}_p(\mathbf{R}^d), \quad \left| \mathcal{M}_\beta(\mu) - \mathcal{M}_\beta(\nu) \right| \leq L(\mathcal{W}_p(\mu, \delta_0)) \mathcal{W}_p(\mu, \nu).$$

Idea: we will use this estimate with $\mu = \bar{\mu}_t^J$ and $\nu = \mu_t^J$.

Moment bounds

Suppose $\bar{\rho}_0 \in \mathcal{P}_q(\mathbf{R}^d)$. Then there is $\kappa > 0$ such that

$$\forall J \in \mathbf{N}^+, \quad \mathbf{E} \left[\sup_{t \in [0, T]} \left| X_t^J \right|^q \right] \quad \vee \quad \mathbf{E} \left[\sup_{t \in [0, T]} \left| \bar{X}_t^J \right|^q \right] \leq \kappa.$$

- Local Lipschitz continuity of \mathcal{M}_β motivates **stopping time**

$$\theta_J = \inf \left\{ t \geq 0 : \mathcal{W}_p(\bar{\mu}_t^J, \delta_0) \geq R \right\}, \quad \bar{\mu}_t^J := \frac{1}{J} \sum_{j=1}^J \delta_{\bar{X}_t^j}.$$

- Then decompose

$$\mathbf{E} \left[\left| X_t^j - \bar{X}_t^j \right|^p \right] = \mathbf{E} \left[\left| X_t^j - \bar{X}_t^j \right|^p \mathbf{1}_{\{\theta_J > T\}} \right] + \mathbf{E} \left[\left| X_t^j - \bar{X}_t^j \right|^p \mathbf{1}_{\{\theta_J \leq T\}} \right].$$

- First term can be shown to scale as $CJ^{-\frac{p}{2}}$ using classical approach;
- Second term handled as follows ($q > p$):

$$\mathbf{E} \left[\left| X_t^j - \bar{X}_t^j \right|^p \mathbf{1}_{\{\theta_J \leq T\}} \right] \leq \mathbf{E} \left[\left| X_t^j - \bar{X}_t^j \right|^q \right]^{\frac{p}{q}} \mathbf{P}[\theta_J \leq T]^{\frac{q-p}{q}}.$$

- First factor bounded using moment bounds.
- Second factor: for sufficiently large R , by generalized Chebyshev inequality,

$$\forall a > 0, \quad \exists C(a) : \quad \mathbf{P}[\theta_J \leq T] \leq C(a) J^{-a}$$

¹D. J. Higham, X. Mao, and A. M. Stuart. *SIAM J. Numer. Anal.*, 2002.

Outline

Motivation

The classical synchronous coupling approach for a toy model

Synchronous coupling approach for CBO/S

Towards uniform-in-time estimates

Revisiting the toy example

Toy example (with $\mathcal{M}(\mu)$ the **usual mean** under μ)

Interacting particle system:

$$dX_t^j = -\left(X_t^j - \mathcal{M}(\mu_t^j)\right) dt + e^{-t} dW_t^j, \quad X_0^j = x_0^j \stackrel{\text{i.i.d.}}{\sim} \bar{\rho}_0 \quad j = 1, \dots, J.$$

Mean field limit:

$$\begin{cases} d\bar{X}_t = -\left(\bar{X}_t - \mathcal{M}(\bar{\rho}_t)\right) dt + e^{-t} d\bar{W}_t, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$

Moment decay estimate: by Itô's formula,

$$\begin{aligned} \frac{d}{dt} \mathbf{E} \left| X_t^j - \mathcal{M}(\mu_t^j) \right|^2 &\leq -2 \mathbf{E} \left| X_t^j - \mathcal{M}(\mu_t^j) \right|^2 + d e^{-2t} \\ &\stackrel{\text{Grönwall}}{\leq} \left(\mathbf{E} \left| X_0^j - \mathcal{M}(\mu_0^j) \right|^2 + \frac{d}{2} \right) e^{-2t}. \end{aligned}$$

Similarly

$$\frac{d}{dt} \mathbf{E} \left| \bar{X}_t - \mathbf{E} \bar{X}_t \right|^2 \leq \left(\mathbf{E} \left| \bar{X}_0 - \mathbf{E} \bar{X}_0 \right|^2 + \frac{d}{2} \right) e^{-2t}.$$

Synchronous coupling for toy example

$$\begin{aligned} dX_t^j &= -\left(X_t^j - \mathcal{M}(\mu_t^J)\right) dt + e^{-t} dW_t^j, & X_0^j &= x_0^j, & j &= 1, \dots, J, \\ d\bar{X}_t^j &= -\left(\bar{X}_t^j - \mathcal{M}(\bar{\rho}_t)\right) dt + e^{-t} dW_t^j, & \bar{X}_0^j &= x_0^j, & j &= 1, \dots, J. \end{aligned}$$

$$\begin{aligned} \frac{d}{dt} \frac{1}{2J} \sum_{j=1}^J \left| X_t^j - \bar{X}_t^j \right|^2 &= -\frac{1}{J} \sum_{j=1}^J \left\langle X_t^j - \bar{X}_t^j, X_t^j - \mathcal{M}(\mu_t^J) - \bar{X}_t^j + \mathcal{M}(\bar{\mu}_t^J) \right\rangle \\ &\quad + \frac{1}{J} \sum_{j=1}^J \left\langle X_t^j - \bar{X}_t^j, \mathcal{M}(\bar{\mu}_t^J) - \mathcal{M}(\bar{\rho}_t) \right\rangle. \end{aligned}$$

The first term is **nonpositive**. By the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \mathbf{E} \left| X_t^1 - \bar{X}_t^1 \right|^2 &\leq \sqrt{\mathbf{E} \left| X_t^1 - \bar{X}_t^1 \right|^2} \sqrt{\mathbf{E} \left| \mathcal{M}(\bar{\mu}_t^J) - \mathcal{M}(\bar{\rho}_t) \right|^2}. \\ \stackrel{\textcolor{blue}{\sim}}{\rightarrow} \frac{d}{dt} \sqrt{\mathbf{E} \left| X_t^1 - \bar{X}_t^1 \right|^2} &\leq \sqrt{\mathbf{E} \left| \mathcal{M}(\bar{\mu}_t^J) - \mathcal{M}(\bar{\rho}_t) \right|^2} \lesssim \frac{e^{-t}}{\sqrt{J}}. \end{aligned}$$

Extending Malrieu's approach to CBO

Synchronous coupling for CBO, $j \in \{1, \dots, J\}$

$$\begin{aligned} dX_t^j &= -\left(X_t^j - \mathcal{M}_{\beta}\left(\mu_t^J\right)\right) dt + \sqrt{2}\sigma \left|X_t^j - \mathcal{M}_{\beta}\left(\mu_t^J\right)\right| dW_t^j, & X_0^j &= x_0^j, \\ d\bar{X}_t^j &= -\left(\bar{X}_t^j - \mathcal{M}_{\beta}(\bar{\rho}_t)\right) dt + \sqrt{2}\sigma \left|\bar{X}_t^j - \mathcal{M}_{\beta}(\bar{\rho}_t)\right| dW_t^j, & \bar{X}_0^j &= x_0^j. \end{aligned}$$

$$\begin{aligned} \frac{d}{dt} \frac{1}{2J} \sum_{j=1}^J \left|X_t^j - \bar{X}_t^j\right|^2 &= -\frac{1}{J} \sum_{j=1}^J \left\langle X_t^j - \bar{X}_t^j, X_t^j - \mathcal{M}(\mu_t^J) - \bar{X}_t^j + \mathcal{M}(\bar{\mu}_t^J) \right\rangle \\ &\quad - \frac{1}{J} \sum_{j=1}^J \left\langle X_t^j - \bar{X}_t^j, \underbrace{\mathcal{M}(\mu_t^J) - \mathcal{M}_{\beta}(\mu_t^J) - \mathcal{M}(\bar{\mu}_t^J) + \mathcal{M}_{\beta}(\bar{\mu}_t^J)}_{\text{Small } ??} \right\rangle \\ &\quad + \frac{1}{J} \sum_{j=1}^J \left\langle X_t^j - \bar{X}_t^j, \underbrace{\mathcal{M}_{\beta}(\bar{\mu}_t^J) - \mathcal{M}_{\beta}(\bar{\rho}_t)}_{\text{Small when } J \gg 1} \right\rangle + \sigma \dots \end{aligned}$$

Assumption: for simplicity here, we assume

- ▶ no noise ($\sigma = 0$);
- ▶ \mathcal{F} bounded and globally Lipschitz;
- ▶ initialization in a compact set: $x_0^j \sim \bar{\rho}_0$ with $\bar{\rho}_0$ compactly supported.

Auxiliary results

Notation: For a probability measure $\mu \in \mathcal{P}_1(\mathbf{R}^d)$, let

$$\mathfrak{M}_p(\mu) := \int |x - \mathcal{M}(\mu)|^p \mu(dx).$$

Key ingredient: Moment estimate for particle system

For all $p > 0$, there exists $\lambda_p > 0$ such that

$$\mathbf{E} [\mathfrak{M}_p(\mu_t^J)] \leq \mathbf{E} [\mathfrak{M}_p(\mu_0^J)] e^{-\lambda_p t}, \quad \mathbf{E} |\overline{X}_t - \mathbf{E} \overline{X}_t|^p \leq \mathbf{E} |\overline{X}_0 - \mathbf{E} \overline{X}_0|^p e^{-\lambda_p t}.$$

Key ingredient: Stability of weighted mean

Then there exists $C_{\mathcal{M}} > 0$ such that for all $\mu, \nu \in \mathcal{P}_2(\mathbf{R}^d)$,

$$|\mathcal{M}_{\beta}(\mu) - \mathcal{M}(\mu) - \mathcal{M}_{\beta}(\nu) + \mathcal{M}(\nu)| \leq C_{\mathcal{M}} \left(\sqrt{\mathfrak{M}_2(\mu)} + \sqrt{\mathfrak{M}_2(\nu)} \right) \mathcal{W}_2(\mu, \nu).$$

Auxiliary results

Notation: For a probability measure $\mu \in \mathcal{P}_1(\mathbf{R}^d)$, let

$$\mathfrak{M}_p(\mu) := \int |x - \mathcal{M}(\mu)|^p \mu(dx).$$

Key ingredient: Stability of weighted mean

Then there exists $C_{\mathcal{M}} > 0$ such that for all $\mu, \nu \in \mathcal{P}_2(\mathbf{R}^d)$,

$$|\mathcal{M}_{\beta}(\mu) - \mathcal{M}(\mu) - \mathcal{M}_{\beta}(\nu) + \mathcal{M}(\nu)| \leq C_{\mathcal{M}} \left(\sqrt{\mathfrak{M}_2(\mu)} + \sqrt{\mathfrak{M}_2(\nu)} \right) \mathcal{W}_2(\mu, \nu).$$

Key ingredient: Moment estimate for particle system

For all $p > 0$ and for σ sufficiently small, there exists $\lambda_p > 0$ such that

$$\mathbf{E} \left[\mathfrak{M}_p(\mu_t^J) \right] \leq \mathbf{E} \left[\mathfrak{M}_p(\mu_0^J) \right] e^{-\lambda_p t}, \quad \mathbf{E} \left| \overline{X}_t - \mathbf{E} \overline{X}_t \right|^p \leq \mathbf{E} \left| \overline{X}_0 - \mathbf{E} \overline{X}_0 \right|^p e^{-\lambda_p t}.$$

$$\rightsquigarrow \left| \mathcal{M}(\mu_t^J) - \mathcal{M}_{\beta}(\mu_t^J) - \mathcal{M}(\overline{\mu}_t^J) + \mathcal{M}_{\beta}(\overline{\mu}_t^J) \right| \lesssim e^{-\frac{\lambda_2}{2} t} \mathcal{W}_2(\mu_t^J, \overline{\mu}_t^J)$$

Concentration inequalities for the empirical measures μ_t^J and $\bar{\mu}_t^J$

Suppose that $\bar{\rho}_0$ has finite moments of all orders. Then for all $q > 0$, there is $\kappa_0 > 0$ that for all $\kappa \in (0, \kappa_0)$, there exists $C > 0$ independent of J such that

$$\mathbf{P}[\Omega_\kappa] \leq C J^{-\frac{q}{2}} \mathfrak{M}_{2q}(\bar{\rho}_0), \quad \Omega_\kappa := \left\{ \sup_{t \geq 0} e^{\kappa t} \mathfrak{M}_2(\mu_t^J) \geq \mathbf{E}[\mathfrak{M}_2(\bar{\rho}_0)] + 1 \right\}.$$

and

$$\mathbf{P}[\bar{\Omega}_\kappa] \leq C J^{-\frac{q}{2}} \mathfrak{M}_{2q}(\bar{\rho}_0), \quad \bar{\Omega}_\kappa := \left\{ \sup_{t \geq 0} e^{\kappa t} \mathfrak{M}_2(\bar{\mu}_t^J) \geq \mathbf{E}[\mathfrak{M}_2(\bar{\rho}_0)] + 1 \right\}.$$

Decomposing $\Omega = (\Omega_\kappa \cup \bar{\Omega}_\kappa) \cup (\Omega_\kappa \cup \bar{\Omega}_\kappa)^C$ leads to

$$\mathbf{E} \left[\left(\mathfrak{M}_2(\mu_t^J) + \mathfrak{M}_2(\bar{\mu}_t^J) \right) \mathcal{W}_2^2(\mu_t^J, \bar{\mu}_t^J) \right] \lesssim J^{-\frac{q}{2}} e^{-\lambda t} + e^{-\kappa t} \mathbf{E} \left[\mathcal{W}_2^2(\mu_t^J, \bar{\mu}_t^J) \right].$$

Main theorem

Suppose that

- ▶ function \mathcal{F} is bounded $\underline{f} \leq f \leq \bar{f}$ and L_f -globally Lipschitz;
- ▶ probability distribution $\bar{\rho}_0$ has finite moments of all orders;
- ▶ noise coefficient σ is sufficiently small.

Then there exists $C_{\text{MFL}}(\beta, \underline{f}, \bar{f}, L_f, \sigma, d)$ such that

$$\sup_{t \geq 0} \mathbf{E} \left[|X_t^1 - \bar{X}_t^1|^2 \right] \leq \frac{C_{\text{MFL}}}{J}.$$

Theorem

Under the same assumptions as in the previous theorem, it holds that

- ▶ There exists a \mathbf{R}^d -valued random variable \mathcal{M}^X such that

$$\lim_{t \rightarrow +\infty} \mathcal{M}(\mu_t^J) = \mathcal{M}^X$$

- ▶ There exists a $\gamma > 0$ such that for all $t \geq 0$,

$$|X_t^1 - \mathcal{M}^X| \lesssim e^{-\gamma t} \quad \text{almost surely}, \quad \mathbf{E} \left[|X_t^1 - \mathcal{M}^X|^2 \right] \lesssim e^{-\gamma t}$$

- ▶ Recall that $\mathcal{M}(\bar{\rho}_t) \rightarrow x_\beta$ as $t \rightarrow +\infty$. As a corollary of our result, it holds that

$$\mathbf{E} \left[|\mathcal{M}^X - x_\beta|^2 \right] \leq \frac{C_{\text{MFL}}}{J}.$$

Future directions:

- ▶ Uniform-in-time estimate for Consensus-Based Sampling;
- ▶ Discrete-time estimates;
- ▶ Improve the (currently exponential) dependence on β . . .

Thank you for your attention!

Future directions:

- ▶ Uniform-in-time estimate for Consensus-Based Sampling;
- ▶ Discrete-time estimates;
- ▶ Improve the (currently exponential) dependence on β . . .

Thank you for your attention!

Details of the proof: first term (1/2)

- ▶ Starting point: the following is an upper bound for $\left|X_t^j - \bar{X}_t^j\right|^p \mathbf{1}_{\{\theta_J > T\}}$:

$$\begin{aligned} \left|X_{t \wedge \theta_J}^j - \bar{X}_{t \wedge \theta_J}^j\right|^p &\leq \left| \int_0^{t \wedge \theta_J} b(X_s^j, \mu_s^j) - b(\bar{X}_s^j, \bar{\rho}_s) \, ds \right|^p \\ &\quad + \left| \int_0^{t \wedge \theta_J} \sigma(X_s^j, \mu_s^j) - \sigma(\bar{X}_s^j, \bar{\rho}_s) \, dW_s \right|^p. \end{aligned}$$

- ▶ By Doob's optional stopping and Burkholder–Davis–Gundy,

$$\begin{aligned} \mathbf{E} \left[\sup_{s \in [0, t]} \left| X_{s \wedge \theta_J}^j - \bar{X}_{s \wedge \theta_J}^j \right|^p \right] &\leq (2T)^{p-1} \mathbf{E} \int_0^{t \wedge \theta_J} \left| b(X_s^j, \mu_s^j) - b(\bar{X}_s^j, \bar{\rho}_s) \right|^p \, ds \\ &\quad + C_{\text{BDG}} 2^{p-1} T^{\frac{p}{2}-1} \mathbf{E} \int_0^{t \wedge \theta_J} \left\| \sigma(X_s^j, \mu_s^j) - \sigma(\bar{X}_s^j, \bar{\rho}_s) \right\|_{\text{F}}^p \, ds =: A_t + B_t. \end{aligned}$$

- ▶ Both terms handled similarly. For the drift, by the triangle inequality,

$$\begin{aligned} A_t &\lesssim \int_0^t \mathbf{E} \left| b(X_{s \wedge \theta_J}^j, \mu_{s \wedge \theta_J}^j) - b(\bar{X}_{s \wedge \theta_J}^j, \bar{\mu}_{s \wedge \theta_J}^j) \right|^p \, ds \\ &\quad + \int_0^t \mathbf{E} \left| b(\bar{X}_s^j, \bar{\mu}_s^j) - b(\bar{X}_s^j, \bar{\rho}_s) \right|^p \, ds =: A_t^{(1)} + A_t^{(2)}. \end{aligned}$$

Details of the proof: first term (2/2)

- ▶ In order to bound $A_t^{(1)}$, recall that $b(x, \mu) = -x + \mathcal{M}_\beta(\mu)$, so

$$\mathbf{E} \left| b\left(X_{s \wedge \theta_J}^j, \mu_{s \wedge \theta_J}^j\right) - b\left(\bar{X}_{s \wedge \theta_J}^j, \bar{\mu}_{s \wedge \theta_J}^j\right) \right|^p \lesssim \mathbf{E} \left| X_{s \wedge \theta_J}^j - \bar{X}_{s \wedge \theta_J}^j \right|^p + \mathbf{E} \left| \mathcal{M}_\beta(\mu_{s \wedge \theta_J}^j) - \mathcal{M}_\beta(\bar{\mu}_{s \wedge \theta_J}^j) \right|^p$$

By **local \mathcal{W}_p Lipschitz continuity** of \mathcal{M}_β and definition of θ_J ,

$$\begin{aligned} \mathbf{E} \left| \mathcal{M}_\beta(\mu_{s \wedge \theta_J}^j) - \mathcal{M}_\beta(\bar{\mu}_{s \wedge \theta_J}^j) \right|^p &\lesssim C(R) \mathbf{E} \left| \mathcal{W}_p\left(\mu_{s \wedge \theta_J}^j, \bar{\mu}_{s \wedge \theta_J}^j\right) \right|^p \\ &\leq C(R) \mathbf{E} \left| X_{s \wedge \theta_J}^j - \bar{X}_{s \wedge \theta_J}^j \right|^p. \end{aligned}$$

- ▶ To bound $A_t^{(2)}$, we use the convergence of the weighted mean for i.i.d. samples^{1,2}

$$\mathbf{E} \left| b\left(\bar{X}_s^j, \bar{\mu}_s^j\right) - b\left(\bar{X}_s^j, \bar{\rho}_s\right) \right|^p \propto \mathbf{E} \left| \mathcal{M}_\beta(\bar{\mu}_s^j) - \mathcal{M}_\beta(\bar{\rho}_s) \right|^p \lesssim J^{-\frac{p}{2}}.$$

Combining the above estimates and using Grönwall's lemma,

$$\mathbf{E} \left[\sup_{t \in [0, T]} \left| X_{t \wedge \theta_J}^j - \bar{X}_{t \wedge \theta_J}^j \right|^p \right] \lesssim J^{-\frac{p}{2}}.$$

¹P. Doukhan and G. Lang. Bernoulli, 2009.

²S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Statist. Sci., 2017.

Details of the proof: second term

It remains to bound the probability

$$\begin{aligned}\mathbf{P}[\theta_J(R) \leq T] &= \mathbf{P}\left[\sup_{t \in [0, T]} \frac{1}{J} \sum_{j=1}^J \left|\bar{X}_t^j\right|^p \geq R\right] \\ &\leq \mathbf{P}\left[\frac{1}{J} \sum_{j=1}^J Z_j \geq R\right], \quad Z_j := \sup_{t \in [0, T]} \left|\bar{X}_t^j\right|^p.\end{aligned}$$

Let $X = \frac{1}{J} \sum_{j=1}^J Z_j$. By the Marcinkiewicz–Zygmund inequality, it holds for $r \geq 2$ that

$$\mathbf{E}|X - \mathbf{E}[X]|^r \lesssim J^{-r} \mathbf{E}\left[\left(\sum_{j=1}^J |Z_j - \mathbf{E}[Z_j]|^2\right)^{\frac{r}{2}}\right] \leq J^{-\frac{r}{2}} \mathbf{E}\left[|Z_1 - \mathbf{E}[Z_1]|^r\right],$$

where we used Jensen's inequality and exchangeability. If $R > \mathbf{E}[X]$, then

$$\mathbf{P}[X \geq R] \leq \mathbf{P}\left[|X - \mathbf{E}[X]|^r \geq (R - \mathbf{E}[X])^r\right] \leq \mathbf{E}\left[\frac{|X - \mathbf{E}[X]|^r}{(R - \mathbf{E}[X])^r}\right] \leq \frac{CJ^{-\frac{r}{2}}}{(R - \mathbf{E}[X])^r},$$

where we used Markov's inequality.