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Abstract

We introduce a practical method for incorporating equality and inequality constraints in
global optimization methods based on stochastic interacting particle systems, specifically consensus-
based optimization (CBO) and ensemble Kalman inversion (EKI). Unlike other approaches in
the literature, the method we propose does not constrain the dynamics to the feasible region
of the state space at all times; the particles evolve in the full space, but are attracted towards
the feasible set by means of a penalization term added to the objective function and, in the
case of CBO, an additional relaxation drift. We study the properties of the method through the
associated mean-field Fokker–Planck equation and demonstrate its performance in numerical
experiments on several test problems.

1 Introduction

Finding efficiently the global minimizer of a function in large dimensions is crucial in today’s data
science activity, with applications in various fields of research ranging from modern areas such
as machine learning, neural networks, inverse problems, data assimilation and model parameter
estimation to more classical areas such as economics, computational biology, mathematical finance
and statistical physics. In the most general form, the global optimization task is simply

argmin
x∈B

f(x) (1.1)

for a given objective function f and state space B ⊂ Rd. This simple-to-describe problem is highly
nontrivial for general nonconvex functions f due to the existence of usually many, and in some cases
even infinitely many, local minima. Most of the approaches have followed metaheuristic arguments
in order to find robust algorithms; see for instance [1, 4, 49, 7, 19, 39] and the references therein.
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Among global optimization methods, several algorithms were inspired by physical or biological
models using the idea of interacting particle/agent systems: ant colony optimization [16], artificial
bee colony optimization [38], firefly optimization [55], wind driven optimization [5], and particle
swarm optimization [40, 48]. All of these methods have in common the use of interactions of
particles with nonlocal terms, the exchange of information among agents and the use of noise
terms to explore the landscape of the function f ; see [6] for a review. Another family of global
optimization algorithms is known as simulated annealing methods [30, 31]. The simplest examples
of simulated annealing methods use the cost function f as the potential in an overdamped Langevin
diffusion, which is solved with a time-dependent temperature [33, 43, 46] – a cooling schedule – so
that the unique probability measure in the kernel of the Fokker–Planck operator associated with
the dynamics at time t converges to a Dirac mass at the global minimizer in the limit as t → ∞.
Despite their simplicity, these methods usually have a slow convergence rate.

Concerning machine learning applications and large scale optimization, there have been a flurry
of works in SGD methods, where stochasticity is again introduced as a way of improving exploration
of the landscape. An essential ingredient of SGD methods [50, 9, 10] is the mini-batch strategy, also
introduced recently in [37, 36] for interacting particle systems, which reduces the computational cost
of the iterations. The SGD family of methods relies on the computation of gradients of functions in
high-dimensional settings, which may be computationally expensive or even impossible, if the loss
function is nondifferentiable. In addition, even when gradients can be calculated at a reasonable
computational cost, they may fail to provide useful information on the overall behavior of the loss
function if this function exhibits many small-scale oscillations. Gradient-free methods, which rely
only on evaluations of the loss function, are therefore an attractive alternative to SGD methods
in these settings. In this paper, we consider two particular classes of methods belonging to this
category which received a lot of attention lately: the Consensus-Based Optimization (CBO) meth-
ods [47, 11, 14, 12], reviewed recently in [53], and methods based on the Ensemble Kalman Filter
(EnKF) [17, 21, 34, 51, 25, 26, 13], which are mainly employed in the context of inverse problems
but have also proved useful for machine learning tasks [41]. It is shown in [20] that gradient-free
ensemble Kalman methods perform better than their gradient-based counterparts in noisy likelihood
landscapes. Within the class of ensemble Kalman methods, we focus specifically on the Ensemble
Kalman Inversion (EKI) gradient-free method, in the form proposed in [51].

While the EKI method as discussed in Section 3 relies on a nonlocal approximation of gradients,
and can be viewed as an exact preconditioned gradient descent in the case of a quadratic objective
function [25], the central mechanism of CBO is a relaxation drift towards the weighted average

mf =

∑J
j=1 x

(j)e−αf(x(j))∑J
j=1 e−αf(x(j))

=:

J∑
j=1

w(x(j))x(j). (1.2)

Here, x(j) are the positions of a number J of explorers evolving in the landscape of the objective
function f . As a metaphor for the CBO method, one may think of butterflies in the mountains
able to communicate their height and position instantaneously by wireless communication and to

2



integrate this information in the form of the weighted average mf , towards which they move with
the hope of eventually reaching the global minimum of the landscape given by the function f .

The motivation for the CBO reweighting e−αf(x), which is the Gibbs distribution corresponding
to f(x), comes from statistical mechanics: the probability distribution function 1

Zα
e−αf(x), where

Zα is the normalization constant, is the unique invariant measure of overdamped Langevin dynamics
at temperature α−1 in an external potential given by the cost function f(x) [45, Chapter 6]. For
sufficiently large α, the weighted average (1.2) provides a good approximation of the particle position
x(j∗) minimizing f(x(j)), assuming this is unique. Indeed, in this limit all the weights in (1.2)
converge to 0, except for the one associated with particle j∗, which converges to 1.

Both the CBO and EKI methods are based on a system of interacting stochastic differential
equations, and it is possible to show that their behavior is well described by nonlocal deterministic
Fokker–Planck equations when the number of particles is sufficiently large. Studying these continu-
ous equations brings considerable insight, and turns out to be much simpler than working with the
particle systems. The mean-field Fokker–Planck equation associated with CBO includes a weighted
average which, despite no longer being a finite sum as in (1.2), can still be understood in the limit
as α → ∞. This is achieved through Laplace’s method [44, 18], a classical asymptotic method for
integrals.

In its original form [47], the CBO method combines the relaxation drift towards the weighted
average mf with isotropic multiplicative noise proportional in amplitude to the Euclidean distance
to the weighted average mf . The specific form of the multiplicative factor of the noise, which may
be viewed as a temperature scheduling, is improved in [12] in order to decrease the computational
cost of the method for large dimensional problems; see Section 2 for details. In [12], the authors also
demonstrate that approximating mf based on a randomly selected subset of the particles – a mini-
batch – leads to large computational savings. Using mini-batches also introduces extra stochasticity,
which is observed to be useful for promoting exploration of the landscape given by f .

In this work, we propose new extensions of the CBO and EKI methods to constrained optimiza-
tion and constrained inverse problems, respectively. In the case of CBO, we consider problems of
the general form

argmin
x∈B

f(x), with B =
{
x : E(x) = 0, I(x) ≥ 0

}
, (1.3)

where E : Rd → RNe and I : Rd → RNi are continuously differentiable functions and the inequality
I(x) ≥ 0 is understood componentwise. In the case of EKI, we consider subsets of problems of the
form (1.3) for which the objective function is of the specific form f(x) = 1

2

∣∣Γ−1
(
G(x)− y

)∣∣2, where
G : Rd → RK is a map, Γ ∈ RK×K is a positive definite matrix, and y ∈ RK . In applications,
objective functions of this form are used as a simple measure of the misfit between some data y and
a model G(x).

The literature on global optimization with constraints is abundant and an extensive review
is beyond the scope of this paper, so we summarize hereafter only recent contributions that are
specifically related to the CBO and EKI methods. Several recent works propose extensions of CBO
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strategies to equality constrained problems, based on imposing that the dynamics is restricted to
the feasible manifold at all times [24, 22, 23]. Most of these works consider the specific case of
the Euclidean sphere as the feasible region, with applications to robust subspace detection and
efficient eigenvalue computations in machine learning as prime examples. The evolution of particles
is restricted to the feasible manifold by appropriate projection onto the tangent space. Although this
method performs relatively well in very simple settings like the sphere, its implementation is difficult
and error-prone for more general constraint manifolds. In addition, since the weighted average is
computed in the ambient space, there are cases in which the method does not produce good results,
for example when the feasible region is a closed hypersurface enclosing a nonconvex domain. Let us
finally emphasize that manifolds other than the sphere are important in optimization problems in
machine learning. SGD methods have been studied in Riemannian optimization applications, see
for instance [56, 54] and the references therein. Here, the state space is usually a set of matrices
with certain constraints, like positive definite matrices in Wasserstein barycenters or Riemannian
centroids.

Several methods have also been proposed in the literature for incorporating constraints in EKI.
In [2], the authors propose a generalization of EKI such that the iterates produced by the method
are guaranteed to lie in the feasible region at each iteration. The method proposed leverages the fact
that the update step in the usual ensemble Kalman method can be formulated as an optimization
problem, in which linear constraints can be integrated. In [15], a variant of EKI incorporating a
projection step is developed for the specific case of box constraints, and the continuous time limit of
the method is studied. See also [28], where the continuous-time and mean field limits of the method
proposed in [2] are studied.

In this work, we follow an orthogonal approach: we propose extensions of the CBO and EKI
methods in which the particles evolve in the full space Rd, instead of being constrained to the
feasible manifold at all times. A requirement for this approach to work, which we take as a standing
assumption in the rest of this paper, is that the objective function f(x) can be evaluated anywhere
in Rd, which may or may not hold in applications. The unifying idea behind our extensions of CBO
and EKI is the addition of a penalization to the objective function. In the case of only one equality
constraint E(x) = 0, for example, we seek a solution to

argmin
x∈Rd

(
f(x) +

1

ν
|E(x)|2

)
. (1.4)

When the penalization parameter ν tends to 0, we expect the solution of this problem to be close to
the zero-level set of E . We emphasize that the use of penalty functions for constrained optimization
problems is a standard idea and can be employed, in principle, together with any method for
unconstrained global optimization. In this paper, we demonstrate the effectiveness of this simple
idea when used in conjunction with CBO and EKI, and we propose specific approaches for its
implementation.

In the specific case of CBO, we also propose to use, in addition to a penalization of the form (1.3),
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an extra drift term based on the constraint that imposes that particles are asymptotically confined
to the manifold. This idea is reminiscent of swarming problems where the Vicsek model with noise
on the sphere can be retrieved from the Cucker-Smale model on the whole space in an appropriate
limit [8].

The rest of this paper is organized as follows. In Sections 2 and 3, we explain our strategy
for including constraints in the CBO and the EKI methods, respectively. In Section 2, we also
compare the solution to the constrained CBO method and associated the mean-field equations
qualitatively for a toy problem in two dimensions, in order to illustrate the method and gain a deeper
understanding of its behavior in the many-particle limit. In Sections 4 and 5, we investigate the
potential of the proposed methods by means of numerical experiments in some reference examples.
To this end, we use typical benchmarks [35] in optimization. Section 6 is reserved for conclusions
and perspectives for future work.

2 CBO for constrained global optimization problems

In order to illustrate our strategy for incorporating constraints into the CBO methods and its
variants, we consider the CBO scheme with component-wise Brownian motion proposed in [14],
which reads as

dx
(j)
t = −(x

(j)
t −mf ) dt+

√
2σ(x

(j)
t −mf ) ◦ dW

(j)
j , j = 1, . . . , J, (2.1)

where {W (j)}1≤j≤J are independent Wiener processes in Rd and v1 ◦ v2, for vectors v1 and v2 in
Rd, is the Hadamart (component-wise) product, that is to say v1 ◦ v2 = diag(v1)v2. The particles
are initialized independently according to some given probability density %0, and so the law of the
initial ensemble is %⊗J0 . The main ingredient of the method, indeed the only mechanism by which
the particles interact with the objective function, is the weighted mean mf given by

mf (µJt ) =

∫
xe−αf(x)µJt (dx)∫
e−αf(x)µJt (dx)

, µJt =
1

J

J∑
j=1

δ
x
(j)
t
, (2.2)

where α > 0 is a parameter. Equivalently,

mf (µJt ) =

∑J
j=1 x

(j)
t exp

(
−αf(x

(j)
t )
)∑J

j=1 exp
(
−αf(x

(j)
t )
) .

As mentioned in the introduction, for fixed t the weighted mean mf (µJt ) in (2.2) converges to
the global minimizer of f constrained to the support of the empirical measure µJt , provided this
minimizer is unique, in the limit as α tends to infinity.

Assume the problem we aim to solve is (1.1). In order to illustrate the incorporation of equality
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and inequality constraints in a unified manner, we introduce A : Rd → RNe+Ni given by

(
A(x)

)
i

=


(
E(x)

)
i

if i ≤ Ne,

min
{(
I(x)

)
i−Ne , 0

}
if i > Ne.

We can then write B = {x ∈ Rd : A(x) = 0}; that is, we can assume without loss of generality that
all the constraints are of equality type. Notice that A may not be C1 at the manifold even though
E and I are, but this is not an issue given that only ∇ |A|2 appears in the method we propose, and
the function x 7→ |A(x)|2 is continuously differentiable. To solve the optimization problem (1.1)
with constraint A(x) = 0, we modify the scheme (2.1) in the following manner:

1. The first modification is a penalization of the objective function in the weighted average. More
precisely, we substitute mf in (2.1) by

mg(µ
J
t ) =

∫
xe−αg(x)µJt (dx)∫
e−αg(x)µJt (dx)

, g(x) := f(x) +
1

ν
|A(x)|2, (2.3)

where ν is a small parameter. By the Laplace principle, for fixed t this new weighted average
tends to the minimizer of g (within the support of the empirical measure and assuming this
minimizer is unique) in the limit as α → ∞, which is expected to lie close to the feasible set
{x : A(x) = 0} when the parameter ν is sufficiently small.

2. The second modification is the introduction of a drift term that drives particles towards the
constraint manifold. For 0 < ε� 1 we propose the dynamics

dx
(j)
t = −1

ε
(∇|A|2)

(
x

(j)
t

)
dt−

(
x

(j)
t −mg(µ

J
t )
)

dt

+
√

2σ
(
x

(j)
t −mg(µ

J
t )
)
◦ dW

(j)
t . (2.4)

Both mechanisms are useful for driving the particles to the constraint manifold. The first modifi-
cation is straightforward to implement and does not generate stiffness of the stochastic differential
equations driving the particles. Consequently, these can be discretized in time with a step of the
same order of magnitude as that used for unconstrained problems. The second modification is help-
ful for ensuring that the particles move towards the weighted average in a manner independent of
the other particles. The additional drift pushes the particles to the manifold in an asymptotically
orthogonal manner (indeed ∇ |A|2 is orthogonal to the contour lines of |A|2), giving us more func-
tion evaluations along the manifold. Despite being detrimental for stability at the discrete level,
this additional drift is observed to be useful in our numerical experiments.

Example 2.1. For global optimization problems subject to just one inequality constraint, i.e. prob-
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lems of the form
argmin
x∈B

f(x) with B = {x : I(x) ≥ 0}

with I : Rd → R, the above scheme reads

dx
(j)
t = −1

ε
∇(I2)(x

(j)
t )χ(−∞,0)

(
I(x

(j)
t )
)

dt− (x
(j)
t −mg(µ

J
t )) dt

+
√

2σ(x
(j)
t −mg(µ

J
t )) ◦ dW

(j)
t ,

where χ(−∞,0) denotes the indicator function of the set (−∞, 0). The weighted average is given by

mg(µ
J
t ) =

J∑
j=1

x
(j)
t exp

(
−αf(x

(j)
t )− αν−1I(x

(j)
t )2χ(−∞,0)

(
I(x

(j)
t )
))

J∑
j=1

exp
(
−αf(x

(j)
t )− αν−1I(x

(j)
t )2χ(−∞,0)

(
I(x

(j)
t )
)) .

2.1 Mean-field CBO

It is possible to prove a propagation of chaos result for (2.1); see [32]. In the many-particle limit
J � 1, the law of (x

(1)
t , . . . , x

(J)
t ) approximately tensorises, i.e. it holds approximately that

(
x

(1)
t , . . . , x

(J)
t

)
∼ µ⊗Jt , (2.5)

where µt is a probability measure. In addition, this measure satisfies the partial differential equation

∂tµ = ∇ ·
((
x−mf (µ)

)
µ
)

+ σ2
d∑
i=1

∂ii

((
x−mf (µ)

)2
i
µ
)
, µ0 = %0, (2.6)

in the distributional sense. In order to formally derive this equation from (2.5), one can take the
limit J →∞ in (2.1) and use the law of large numbers to obtain

dx
(1)
t = −

(
x

(1)
t −mf (µt)

)
dt+

√
2σ
(
x

(1)
t −mf (µt)

)
◦ dW

(1)
t . (2.7)

The Fokker–Planck equation corresponding to this equation is then (2.6). A similar formal argument
for (2.4) leads to the following nonlocal Fokker–Planck equation

∂tµ =
1

ε
∇ · (∇|A|2(x)µ) + divx

((
x−mg(µ)

)
µ
)

+ σ2
d∑
i=1

∂ii

((
x−mg(µ)

)2
i
µ
)
, µ0 = %0.

(2.8)

Remark 2.1. If g in (2.3) satisfies the assumptions in [11], then all the theoretical results proved
there for the mean-field Fokker–Planck equation associated with unconstrained CBO apply mutatis
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mutandis to (2.6) when ε =∞, i.e. with only the first modification – the penalization.

2.2 Numerical experiments: mean-field versus particles and the penalizations

We illustrate the CBO approach with and without constraints by comparing the solution to the
mean-field PDE (2.6) with the solution to the particle system (2.1) in simple two dimensional
problems.

−5 0 5
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0

2

4

6

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 1: J = 50, M = 100, ∆tSDE = 0.0005, ∆tPDE = 0.005, hmin = 0.125, hmax = 0.5, α = 30,
ν = 1, σ = 0.7, T = 50. Here hmin and hmax denote the minimum and maximum characteristic
lengths of the mesh employed for the PDE simulation. Left: contour plot of the Ackley function
shifted by (0.5, 0). Right: contour plot of the PDE solution which is concentrated at one triangle.
The red points show the weighted averages of 100 samples of particle simulations after convergence.

We begin with a comparison in the unconstrained setting. To this end, we use the Ackley
benchmark [35] shifted by (0.5, 0); see Figure 1 (left) for a contour plot. The SDE simulation uses
50 particles, which are drawn independently from the normal distribution N (0, 3I2), where I2 is the
2 by 2 identity matrix, at the beginning of the simulation. The PDE solution is initialized according
to the same distribution. In view of the shift, the global minimizer of the objective function is not at
the center of mass of the initial distribution. The mesh for the PDE solver has a maximal meshfield
size of hmax = 0.5 and is refined around the origin with a minimal meshfield size of hmin = 0.125.

In particular, the region around the global minimum is contained in the refined area. Additional
details on the numerical implementation and the parameters employed in the simulations are given
in Section 4.

Figure 1 (right) illustrates the weighted means after convergence of M = 100 independent
simulations, as well as the contour plot of the PDE solution after convergence to one triangle. The
weighted means lie at the minimizer of the shifted Ackley function and in particular in the support
of the PDE solution. This demonstrates that the SDE and PDE models are in good agreement,
even with as few as 50 particles. Note that the left panel in Figure 1 covers the domain [−7.5, 7.5]2,
while the right panel covers the zoomed-in region [−1.5, 1.5]2.

Next, we study the influence of the penalization (2.3). We consider again the Ackley function
shifted by (0.5, 0), with now a constraint given by the circle B = {x ∈ R2 : x2 = 9}, which is
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Figure 2: J = 50,M = 100, T = 0, α = 30, ν = 0/1. Left: weighted averages with ν = 0 of 100
samples at the beginning of the simulation. Right: weighted averages with ν = 1 of 100 samples at
the beginning of the simulation. The contour plots show the initial distribution of the mean-field
solution. The influence of the constraint in the weight is clearly visible.

depicted in gray in Figure 2. In this figure, the filled contours illustrate the initial density of the
PDE solution, while the red dots are the weighted averages corresponding to M = 100 independent
particle simulations at the initial time. The black crosses indicate the positions of the weighted
averages of the PDE solution at the initial time, without (left, calculated using (1.2)) or with
(right, calculated using (2.3)) penalization. We observe that the weighted average with penalization
of the initial PDE solution is already very close to the true global minimizer of the constrained
problem. This numerical experiment motivates the strategy of enforcing the constraints through
the penalization on the objective functions.

3 EKI with constraints

The EKI was initially proposed as a method for solving inverse problems of the following form: find
an unknown parameter x ∈ Rd from data y ∈ RK given that

y = G(x) + η, η ∼ N (0,Γ), (3.1)

where G : Rd → RK is a nonlinear map known as the forward operator. A point estimator for the
solution to (3.1) is usually defined as the minimizer of a least-squares functional of the form

ΦR(x; y) =
1

2
|y −G(x)|2Γ +

1

2
|x− a|2Σ . (3.2)

Here |·|A is a short-hand notation for
∣∣A−1/2·

∣∣ and the second term is a regularization parametrized
by a vector a ∈ Rd and a matrix Σ ∈ Rd×d. In the Bayesian approach to inverse problems, these
parameters can be viewed as the mean and variance of a Gaussian prior distribution N (a,Σ) on
the unknown x. In this case, the minimizer of ΦR( · ; y) is the pointwise maximizer of the Bayesian
posterior distribution associated with the problem [52]. The EKI is an optimization scheme for
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the functional ΦR( · ; y) that can be derived from the ensemble Kalman filter. Its continuous-time
version is based on the following interacting particle system:

dx
(j)
t = − 1

J

J∑
k=1

〈G(x
(k)
t )− Ḡt, G(x

(j)
t )− y〉Γ

(
x

(k)
t − x̄t

)
dt

− C(µJt )Σ−1(x
(j)
t − a) dt, j = 1, . . . , J, (3.3)

where µJt = 1
J

∑J
j=1 δx(j)t

denotes as before the empirical measure associated with the ensemble, and
the quantities x̄t and Ḡt are defined as

x̄t =

∫
Rd

xµJt (dx) =
1

J

J∑
j=1

x
(j)
t ,

Ḡt =

∫
Rd

G(x)µJt (dx) =
1

J

J∑
j=1

G(x
(j)
t ).

The matrix C(µJt ) is the covariance under the empirical distribution:

C(µJt ) =

∫
Rd

(x⊗ x)µJt (dx) =
1

J

J∑
j=1

(x
(j)
t − x̄t)⊗ (x

(j)
t − x̄t).

The first argument in the inner product on the right-hand side of (3.3) is related to consensus,
whereas the second argument measures the mismatch with the observed data. In the limit t→∞,
the particles are expected to concentrate at the global minimizer of ΦR given in (3.2).

In the case of a linear forward map G, the EKI algorithm takes the form of a gradient descent
preconditioned by the ensemble covariance:

dx
(j)
t = −C(µJt )∇ΦR(x

(j)
t ) dt, j = 1, . . . , J. (3.4)

In the case of a general forward map, the EKI (3.3) can be viewed as a derivative-free approximation
of (3.4). This viewpoint, which is adopted in [25, 26], is useful below: we first show how to include
constraints for (3.4), and then perform a derivative-free approximation of the resulting system.

In the Bayesian approach to inverse problems, it would be natural to incorporate equality and
inequality constraints in the prior distribution on the unknown parameter x. The EKI method,
however, applies only to the case of a Gaussian prior distribution, i.e. regularization by a quadratic
function in (3.2), and so extensions of this algorithm are required in order to handle nonlinear
constraints.

In this section, we demonstrate how a simple penalty-based method similar to that in Section 2
for CBO can be employed for including constraints in EKI. For the sake of simplicity, we assume
there is only one equality constraint A(x) = 0. This constraint can be incorporated in the gradient
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method (3.4) by adding a penalization term to the regularized least-squares functional:

dx
(j)
t = −C(µJt )∇

(
ΦR +

1

ν
|A|2

)
(x

(j)
t ) dt,

= −C(µJt )∇ΦR(x
(j)
t ) dt− 2

ν
C(µJt )A(x

(j)
t )∇A(x

(j)
t ) dt, j = 1, . . . , J.

A derivative-free version of this methodology is obtained by approximating gradients in the same
manner as in standard EKI:

dx
(j)
t = − 1

J

J∑
k=1

〈G(x
(k)
t )− Ḡt, G(x(j))− y〉Γ(x(k) − x̄t)dt

− C(µJt )Σ−1(x(j) − a) dt− 2

ν
C(µJt )A(x

(j)
t )∇A(x

(j)
t ) dt,

(3.5)

for j = 1, . . . , J . In contrast with the other methods proposed in the literature, the particles
forming the ensemble produced by this method are not confined to the feasible region. Therefore,
as already emphasized in the introduction, a prerequisite of the method is that the forward map
may be evaluated for any x ∈ Rd, and not only in the feasible region.

The formulation (3.5) also assumes that the gradient of the function A can be calculated ana-
lytically. In the general case, one may employ a gradient-free approximation of ∇|A|2,

dx
(j)
t = − 1

J

J∑
k=1

〈G(x
(k)
t )− Ḡt, G(x

(j)
t )− y〉Γx(k)

t dt− C(µJt )Σ−1(x
(j)
t − a) dt,

− 2

νJ

J∑
k=1

〈A(x
(k)
t )− Āt,A(x

(j)
t )〉(x(k)

t − x̄t) dt, j = 1, . . . , J,

(3.6)

where Āt = 1
J

∑J
j=1A(x

(j)
t ). The gradient-based and gradient-free constraint terms coincide in the

case where A is linear.

Remark 3.1. The scheme (3.6) can be rewritten as

dx
(j)
t = − 1

J

J∑
k=1

〈G(x
(k)
t )− Ḡt,G(x

(j)
t )− ỹ〉

Γ̃
(x

(k)
t − x̄t) dt, j = 1, . . . , J, (3.7)

where G(x) =
(
G(x), x,A(x)

)T, ỹ =
(
y, a, 0d

)T and

Γ̃ =

Γ 0 0

0 Σ 0

0 0 ν

 .

Numerically, implementing (3.6) presents the same level of difficulty as implementing unconstrained
EKI. The constraint is interpreted here as an additional observation, with very small associated
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noise.

4 Numerical results for CBO

In this section, we discuss numerical results for CBO with constraints. We first present the numerical
scheme employed throughout this section in Section 4.1, and then we investigate the qualitative
behavior of the method.

In Section 4.2 and Section 4.3, we present numerical results for the case of equality and in-
equality constraints, respectively. In Section 4.4, we investigate the convergence to the mean-field
equation (2.8) in the many-particle limit. In Section 4.5, we compare the proposed method with
another approach in the literature [24, 22]. Finally, in Section 4.6, we present a brief parameter
study, with the aim of highlighting the role of the parameters entering in the method.

In all the numerical experiments presented in this section, the objective function is defined from
the Ackley function in two dimension:

fA(x) = −20 exp

−1

5

√√√√1

2

2∑
i=1

|xi|2
− exp

(
1

d

2∑
i=1

cos
(
2πxi

))
+ e + 20.

4.1 Numerical schemes

As mentioned, the introduction of a relaxation drift towards the feasible manifold with ε� 1 leads
to stiffness of the CBO particle system (2.4). This leads to a stringent limitation on the time step
when using an explicit method such as Euler–Maruyama [29]. In the case of a single quadratic
equality or inequality constraint, this issue can be mitigated by using a semi-implicit scheme. Let
us consider, for example, an equality constraint of the form

A(x) = xTAx− c = 0 (4.1)

for a positive definite matrix A ∈ Rd×d and a positive real number c. This general form of the con-
straint encompasses elliptic and, in particular, the circular equality constraints considered through-
out this section. Moreover, it is simple to extend the method to similar inequality constraints. In
order to use CBO with the constraint (4.1), we propose the discretization

y(j)
n = x(j)

n −
(
x(j)
n −mg(µ

J
n)
)
∆t+

√
2∆t σ

(
x(j)
n −mg(µ

J
n)
)
◦ ξ(j)

n , (4.2a)

x
(j)
n+1 =

(
Id +

4∆t

ε
A(x(j)

n )A

)−1

y(j)
n , (4.2b)

where ξ(j)
n ∼ N (0, 1), for n = 1, 2, . . . and j = 1, . . . , J , are independent. This discretization

arises when treating the term ∇A in (2.4) implicitly and all the other terms on the right-hand side
explicitly. The PDE associated with CBO is solved with the help of the Python free software library
Fenics [3] on a mesh refined locally around the feasible manifold using the open source software
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gmsh [27]. We use the discontinuous Galerkin method with elements of degree zero. The drift term
is computed with upwind flux and for the diffusion we use the discretization proposed in [42].

In order to make the SDE and PDE results comparable, we initialize the particle SDE (2.4)-
(2.3) with x

(j)
0 ∼ N (0, 3I2), and the corresponding PDE (2.8) is initialized with initial condition

%0(x) = 1√
2π
e−

1
2(x3 )

2

, i.e. %0 is the probability density function of N (0, 3I2). Unless otherwise
stated, we always assume these initial conditions at the particle and PDE levels. The following
parameters are fixed for all simulations: σ = 0.7, α = 30,∆tPDE = 5× 10−3,∆tSDE = 5× 10−4.

The number of particles J , and the relaxation parameter ε, are specified on a case-by-case basis.

4.2 CBO with equality constraint

We now present the results of particle simulations of the CBO method with constraints (2.4), which
incorporates both the relaxation drift towards the constraint and the penalization (2.3), and of
PDE simulations of the associated mean field equation (2.8). We begin by considering the following
optimization problem with circular equality constraint,

argmin
x∈B

fA(x− x∗), x∗ =

(
3

0

)
, B = {x ∈ R2 : x2 = 9}.

Here fA is the Ackley function, which is minimized at x = 0, so that the solution of this problem
is given by x∗ = (3, 0). (Note that this corresponds to the minimizer of the unconstrained global
optimization problem.)

The top left panel in Figure 3 illustrates the shifted Ackley function (filled contour) and the
constraint set B (gray line). The top right, bottom left and bottom right panels depict the PDE
solution (filled contour), as well as the weighted averages corresponding to 100 independent simu-
lations of the particle system (one red dot per independent simulation), at times 0.01, 0.15 and 0.5.
We observe that, already for t = 0.01, the weighted averages provide a good approximation of the
global minimizer.

4.3 CBO with inequality constraint

Now, we investigate the following example with inequality constraint:

argmin
x∈B

fA(x− x∗), x∗ =

(
2

2

)
, B = {x ∈ R2 : x2 ≥ 18},

where fA is the standard Ackley function in two dimensions. The associated numerical results are
illustrated in Figure 4. Again, the red particles indicate the positions of the weighted means of
M = 100 independent simulations with J = 50 particles each. The top left panel of Figure 4 shows
the shifted Ackley function (filled contour), and the boundary of the feasible set (gray line). The
top right, bottom left and bottom right panels depict the evolution of the PDE solution as well
as the weighted means of the SDE simulations. Compared to the previous example, the solution
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Figure 3: Top left panel: Ackley function shifted by (3, 0), and feasible set B = {x ∈ R2 : x2 =
9}. Other panels: PDE solution at t = 0.01, t = 0.15 and t = 0.5 (filled contour), and weighted
averages ofM = 100 independent simulations with J = 50 particles each (red dots). We observe that
the weighted averages lie in the support of the mean-field solution and provide a good approximation
of the global minimizer. The parameters employed for the simulation are the following: J = 50,M =
100,∆tSDE = 0.0005,∆tPDE = 0.005, hmin = 0.125, hmax = 0.5, α = 30, ν = 1, σ = 0.7, ε = 0.1.

to the mean-field PDE is less concentrated, which is expected since the constraint is of inequality
type. At t = 0.01 (top right plot), not all weighted averages are close to the minimizer. At t = 0.15

and t = 0.5 (bottom plots), the weighted averages are very close to the minimizer, and the density
concentrates around it.

We emphasize that the accuracy of the PDE results is strongly restricted by the mesh size;
since this is fixed during a simulation, the PDE solver is unable to capture the evolution of the
ensemble after this has concentrated to a very small area. Comparisons between the SDE and PDE
simulations are therefore meaningful only in the beginning of the simulation. For this reason we
restrict the following numerical studies to particle simulations.

4.4 Many particle limit J →∞ for CBO

In the following we investigate the behavior of the proposed CBO scheme as J tends to infinity. For
simplicity, we consider toy examples where the true minimizer x∗ is known. For the particle scheme
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Figure 4: Parameters: J = 50,M = 100,∆tSDE = 0.0005,∆tPDE = 0.005, hmin = 0.125, hmax =
0.5, α = 30, ν = 1, σ = 0.7, ε = 0.1 Top-left: Ackley function shifted by (2, 2) and the constraint
x2 ≥ 18 (gray). Top-right to bottom-right: mean-field density and weighted means of the particle
solution at t = 0.01, 0.15 and 0.5. The weighted averages lie in the support of the mean-field solution
and very close to the global minimum of the function.

we perform M = 100 independent simulations for every setting considered, each with a number J
of particles. For j = 1, . . . , J and m = 1, . . . ,M, the vector x(m,j)

t ⊂ Rd denotes the position of the
j-th particle in the m-th independent simulation at time t. First, we study in Figure 5 the evolution
of the variance (more precisely, the trace of the covariance) of particle positions under an averaged
empirical measure,

VarX∼µ̄Jt (X) =

∫ ∣∣∣∣x− ∫ y µ̄Jt (dy)

∣∣∣∣2 µ̄Jt (dx), µ̄Jt =
1

M

M∑
m=1

µJ,mt ,

where µJ,mt denotes the empirical measure for them-th independent simulation at time t, for different
ensemble sizes. During the first few time steps, we observe a fast decrease of all variances, as
all the particles quickly move toward the feasible manifold. Thereafter, the ensembles continue
concentrating but more slowly. As the figure shows, starting from t ≈ 8 ensembles with a smaller
number of particles begin to collapse faster than ensembles with more particles. This plot does not
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reveal any information on the proximity of the convergence point to the global minimizer, however.

Figure 5: Ensemble variance for different ensemble sizes. For the simulation we used the following
parameters: M = 100,∆tSDE = 0.0005, α = 30, ν = 1, σ = 0.7, ε = 0.1.

The accuracy of the convergence point is discussed in Figure 6, which depicts the time evolution
of the expected value of the Wasserstein distance W2(µJt , δx∗), approximated in practice based on
100 independent simulations. Again, we see a strong decrease at the beginning of the simulation as

Figure 6: Evolution in time of the expectation (left) and variance (right) of the Wasserstein
distances. The parameters employed here are the same as in Figure 5.

the particles are driven towards the manifold. Then the expected values of the Wasserstein distances
decrease exponentially until the ensembles collapse. As we already observed in Figure 5, smaller
ensembles collapse earlier than larger ones. The approximation of the true minimizer is very good
already for small ensemble sizes.

To illustrate the convergence to the deterministic mean-field dynamics in the limit as J → ∞,
we plot the Wasserstein distances of W2(µJ , µ16000) for different values of J in Figure 7, with this
time only one simulation per value of J . At t = 0 we see the expected decrease of the Wasserstein
distance along the y-axis. The distances vary over time but decrease at the end of the simulation
as all ensembles converge towards the global minimizer.

In Figure 8 the average distance of the ensembles to the constraint is illustrated with the help
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Figure 7: Wasserstein distance to reference solution with J = 16000. The parameters employed
here are the same as in Figure 5.

Figure 8: Distance to constraint measured with the quantity defined in (4.3). The parameters
employed here are the same as in Figure 5.

of the quantity

CE
(
t) =

1

M

M∑
m=1

(
1

J

J∑
i=1

A
(
x

(m,j)
t

)2) ≈ E

(∫
Rd

|A(x)|2 µJt (dx)

)
. (4.3)

This may be viewed as a “constraint energy”; the smaller CE(t) is, the closer the ensemble is to the
constraint. At the beginning of the simulation, the quantity CE(t) decreases very fast thanks to
the relaxation drift towards the manifold. As time increases, we observe small fluctuations of the
constraint energy, but it is likely that these oscillations would disappear in the limit M → ∞ of
many independent simulations. The oscillations are due to the diffusion term acting on the particles,
which is stronger for particles far away for the weighted mean. At t = 15, all ensembles are close to
the constraint.
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Figure 9: Comparison of our method (2.4) with the projection-based method. The parameters
employed for the simulation are the following: J = 50,M = 100, α = 30, ν = 1,∆t = 0.0005, σ =
0.7, ε = 0.1.

4.5 Comparison with a projection-based method

In the introduction, we mentioned that, in the case of CBO, the approach discussed here incorporates
the constraint via two distinct mechanisms: a penalization added to the objective function, and a
relaxation drift towards the manifold. This is in contrast with other methods that ensure that
the constraint is satisfied at all times. We therefore make a comparison of the method proposed
here and a method using projection to the constraint in every time step, as proposed in [24]. The
results of the comparison are presented in Figure 9. In the left panel, which depicts the evolution
of the expected value of the variance, we observe that the two graphs differ at the beginning,
which is not surprising given that the ensembles are not initially confined to the manifold with
our method, and then the two approaches perform comparably. One advantage of our approach is
that the initial ensemble can be drawn from any probability distribution over Rd, whereas for the
projection method of [24] the initial ensemble needs to be supported on the constraint. In addition,
calculating projections to the feasible manifold at each time step can be computationally costly. The
panel in the middle illustrates the evolution of the expected value of the Wasserstein distance to
the minimizer, W2(µ50, δx∗), approximated for each method from 100 independent simulations and
the evolution of the variance of the Wasserstein distance to the minimizer, again approximated for
each method from 100 independent simulations, is shown on the right. As expected, the ensembles
corresponding to both methods eventually collapse and provide reasonable approximations of the
global minimizer.

We notice that, in all the above plots concerning CBO, the time evolution of the particle ensemble
can be divided into roughly three phases. In the first phase, at the beginning of the simulation,
the particles are quickly driven to the manifold. In the second phase, the particles move along the
feasible manifold towards the solution of the constrained optimization problem, and few fluctuations
are observed in the plots. The size of the fluctuations, in logarithmic scale, in the final phase are
consistent with the fact that the amplitude of the noise decreases as we get closer to the collapse of
the ensemble near the global minimizer at the final stages of the simulation.

To conclude this section, we examine the influence of the parameter ε, which enters in the
relaxation drift, on the speed of relaxation towards the constraint. This is illustrated in Figure 10,
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Figure 10: Distance to constraint for different relaxation parameters ε. Other parameters of the
simulation are: J = 1000,M = 100, α = 30, ν = 1,∆t = 0.0005, σ = 0.7.

where the evolution of “constraint energy”, measured using (4.3), is shown for different values of
ε. For all the values of ε considered, the “constraint energy” is approximated based on M = 100

independent simulations with J = 1000 particles each.

4.6 Numerical experiments for the CBO particle system

In this section, we present additional numerical experiments concerning the particle system. We in-
vestigate, in particular, the influence of the parameters ν, ε and J on the accuracy of the convergence
point of CBO, first for the following optimization problem:

argmin
x∈B

fA(x− x∗), x∗ =

(
2

2

)
, B =

{
x ∈ R2 : x2 + y2 = 18

}
. (4.4)

All the numerical results presented below are generated from CBO with the parameters σ = 0.7

and ∆t = 0.01. In each simulation, the particles forming the initial ensembles are always drawn
from N (0, 100I2). The other parameters are specified on a case-by-case basis.

In Figure 11, we illustrate for different values of ν ∈ {10, 1, .1, .01} and J ∈ {100, 1000}, the
convergence points of 100 independent simulations (per set of parameters). Here we take ε = ∞;
that is, we employ the CBO particle system with penalization but without relaxation drift. From
the figures corresponding to J = 100, we observe that, although smaller values of ν enable to enforce
the constraint more effectively, taking ν too small is detrimental for the accuracy of the convergence

19



point. This effect is observed also for J = 1000, but to a much lesser extent, which may indicate
a better behavior of the system in the many-particle limit. This numerical experiment highlights
the considerable influence of the number of particles on the behavior of the method. In practice, a
trade-off needs to be achieved between precision and computational cost.
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Figure 11: Points of convergence ofM = 100 simulations of CBO for the constrained optimization
problem (4.4), for different values of ν and J and for ε = 0. The black cross indicates the position
of the global minimizer under the constraint.

In Figure 12, we illustrate the convergence points of 100 independent simulations with this time
(ν, ε) ∈ {.1, 10}2, and for fixed J = 100.
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Figure 12: Points of convergence ofM = 100 simulations of CBO for the constrained optimization
problem (4.4), for different values of ν and ε.

For the simulations corresponding to ε = .1, we take a smaller time step ∆t = 10−3 in order to
avoid stability issues, and in all the simulations, we employ the semi-implicit scheme (4.2). Interest-
ingly, the presence of the relaxation drift, even with a relatively small amplitude 1/ε, considerably
improves the performance of the method compared to the case without penalization.

To conclude this section, we present in Figure 13 numerical results for (4.4) with the inequality
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constraint B =
{
x ∈ R2 : x2 + y2 ≥ 18

}
instead of an equality constraint. The problem setting

is then the same as in Figure 3. Rather than presenting the points of convergence of the method
for several parameter choices as in the previous figures, here we perform only one simulation with
a given set of parameters (ν = ε = 1, J = 100), and we illustrate the evolution in time of the
ensemble. As the figure shows, the ensemble appears to collapse after roughly 800 iterations, that
is at time t ≈ 8. In addition, the point of convergence is very close to the optimal solution given
the constraint.
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Figure 13: Evolution of the particles for simulations when CBO is employed for minimizing the
Ackley function under the constraint that

{
x2 + y2 ≥ 18

}
. The parameters for this example are

ε = ν = 1 and J = 100.

5 Numerical results for EKI with constraints

In this section, we present numerical results for EKI with constraints. We simulate only the particle
system and do not present result for the associated mean-field equation. Our numerical experiments
aim at illustrating the performance of the method on a toy problem, as a proof of concept.

The numerical schemes employed are described in Section 5.1, and numerical results for a simple
inverse problem arising from a PDE application are presented in Section 5.2.
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5.1 Numerical schemes

The presence of the relaxation term originating from the constraint poses a challenge also for the
discretization of EKI with constraints (3.5), although to a lesser extent than for CBO thanks to
the affine-invariance of the method [26]. In this section, we consider specifically the derivative-free
dynamics (3.7), and we investigate two different approaches for discretizing this dynamics in time:

• An explicit discretization using the explicit Euler method with adaptive time step. Specifically,
the particle positions are evolved according to

x
(j)
n+1 = x(j)

n −∆tn

J∑
k=1

Mkj
n x

(k)
n , j = 1, . . . , J,

Mkj
n =

1

J
〈G(x(k)

n )− Ḡn,G(x(j)
n )− ỹ〉

Γ̃
, (5.1)

and the time step is calculated dynamically according to the method proposed in [41], that is

∆tn =
∆t∗

‖Mn‖2 + ∆t∗
∆tmax

, (5.2)

where ∆t∗ (base time step) and ∆tmax (maximum time step) are parameters, and where Mn

is the matrix with entries Mkj
n . With the notation Xn = (x

(1)
n , . . . , x

(J)
n ), equation (5.1) reads

in matrix form as
Xn+1 = Xn −∆tnXnMn. (5.3)

• A semi-implicit discretization given by

Xn+1 = Xn −∆tnXn+1Mn,

where the same notation is used as in the previous item. The associated update formula is
given by

Xn+1 = Xn(Id + ∆tnMn)−1. (5.4)

Although this approach could be employed with a fixed time step, we obtain faster convergence
when the time step is adapted according to (5.2), and so we consider only the latter setting.

Remark 5.1. Note that
∑K

k=1M
kj
n = 0 for all n and j, by definition of Ḡn. Consequently, the

update formulas (5.3) and (5.4) can be rewritten equivalently as

Xn+1 = Xn −∆tn(Xn − x̄n)Mn, (5.5a)

Xn+1 = x̄n + (Xn − x̄n)(Id + ∆tnMn)−1, (5.5b)

where x̄n = 1
J

∑J
j=1 x

(j)
n and Xn − x̄n denotes, by a slight abuse of notation, the matrix obtained by

subtracting x̄n from each column of Xn. Although mathematically equivalent, these discretizations
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are observed in our numerical experiments to be much less sensitive to roundoff errors, and therefore
preferable in practice.

5.2 Numerical experiments for EKI with constraints

In this section, we illustrate the performance of the dynamics (3.7), discretized according to (5.5a)
or (5.5b), for solving a toy inverse problem with constraints. The problem considered concerns the
recovery of the initial condition of a Fokker–Planck equation based on incomplete observation of
the solution. More precisely, our aim is to find the parameters of a Gaussian mixture

%0(x) =
N∑
n=1

wn

exp

(
−
∣∣x−mn

∣∣2
2σ2

n

)
√

2πσ2
n

, (5.6)

given noisy observations at time T of the solution %(x, t) to the following initial value problem with
initial condition %0: {

∂t% = ∂x(x%+ ∂x%), in R× (0, T ),

% = %0, on R× {t = 0}.
(5.7)

We assume that the data is composed of noisy observations

yk = %(xk, T ) + ηk, 1 ≤ i ≤ K,

where xk ∈ R are discrete positions and ηk are noise terms drawn independently from N (0, γ2) for
some covariance γ2. The observation positions are given by xk = −L + (k − 1) L

K−1 , i.e. they are
uniformly spread between −L and L, with both ends included.

Recovering the weights. Assuming first that the means and variances of the Gaussian mix-
ture (5.6) are known, we seek to find, as an approximation of the true weights w†, a vector of
weights w = (w1, . . . , wN )T that minimizes the least-square misfit

f(w) =

K∑
k=1

1

γ2

∣∣yk − %e(xk, T ;w)
∣∣2,

under the constraints that
∑N

n=1wn = 1 and wn ≥ 0 for all n ∈ {1, . . . N}, which guarantee that %0

is a probability density. Here %e(T, x;w) is the exact solution to the initial value problem (5.7) when
the weights in the initial condition are given by w. This admits the following explicit expression:

%e(x, t;w) =

N∑
n=1

wn

exp

(
−
∣∣x−mn(t)

∣∣2
2σn(t)2

)
√

2πσn(t)2
, (5.8)
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with mn(t) = e−tmn and σn(t) =
√

1 + (σ2
n − 1)e−2t. Note that, in this problem, the forward

model w 7→ {%e(xk, T ;w)}Kk=1 is linear and so, in the absence of constraints, the ensemble Kalman
inversion method performs an exact preconditioned gradient descent.

Figure 14: Noisy observations of the solution to the Fokker–Planck equation, in the case of only
2 components in the binary mixture, and solution at time T obtained by using the reconstructed
initial condition.

We assume, for simplicity, that the Gaussian mixture is composed of only N = 2 components,
and that the known means and variances of these components are given by m1 = −m2 = 4 and
σ1 = σ2 = .1. For the observations, we take the parameters L = 10, γ = .01 and K = 100, and
for the adaptation of the time step (5.2) we use the parameters ∆t∗ = 1 and ∆tmax = ∞. The
ensemble size is taken to be J = 100, the final time is T = .5, and the noisy observations are
illustrated in Figure 14.

We begin by analyzing the influence of the small parameter ν on the solution returned by
the method when the particles forming the initial ensemble, each corresponding to the couple
of weights, are drawn from N (0, I2). For this numerical experiment, we use only the explicit
discretization (5.5a). Since the evolution (3.7) is deterministic, and since we observed empirically
that the initial ensemble does not have much influence on the point of convergence of the method,
we run only one simulation per value of ν. In the table below, we indicate for several values of ν
the value of the sum w1 + w2 at the point of convergence of the method, as well as the distance to
the true value of the weights from which the observed data was generated. This was taken to be
w† = (0.411..., 0.588...).

ν w1 + w2 |w1 − w†1|+ |w2 − w†2|
1 0.9845... 0.0282...

10−2 0.9847... 0.0282...
10−4 0.99289... 0.0282...
10−6 0.999869... 0.0282...
10−8 0.99999868... 0.0282...

As expected, we observe that the smaller ν, the closer the point of convergence is to the feasible
manifold. In addition, the proximity to the true weights is hardly affected by changes in the value
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of ν. Figures 15 and 16 depict the evolution of the ensemble for ν = 1 and ν = 10−8. Although the
method converges quickly in both cases, the dynamics look qualitatively very different: for ν = 1

the effect of the penalization is not clearly apparent, while for ν = 10−8 the constraint term appears
dominant in the penalized objective function (2.3) depicted in the background. In the latter case,
the particles first converge to a vicinity of the feasible line w1 + w2 = 1, and then then move along
this line to the optimizer.

Figure 15: Evolution of the ensemble obtained from the explicit discretization (5.5a) of EKI with
constraints, in the case where ν = 1. The penalized objective function (denoted by g in (2.3)) is
depicted as a filled contour in the background.

Figure 16: Like Figure 15, this plot depicts the evolution the discrete-time dynamics (5.5a), with
now ν = 10−8.

To conclude this paragraph, we compare the two discretizations proposed in (5.1), when both
methods use the same initial ensemble and with ν = 10−8. In the left panel of Figure 17, we
illustrate the evolution of the error, measured as |w̄1−w†1|+ |w̄2−w†2|, where w̄1 are w̄2 are sample
averages of the weights over the particles. In the right panel, we present the evolution of the matrix
2-norm of the sample covariance for each method. Both methods converge quickly, but the figures
indicate a slightly faster convergence for the fully explicit discretization.
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Figure 17: Evolution of the error (left) and sample covariance (right), for the explicit and semi-
implicit discretizations described in Section 5.1. In both cases, the time step is adapted dynamically
according to (5.2). We emphasize that the error is computed with respect not to the optimal solution
to (5.9) but to the true weights, which were employed to generate the data. It is not surprising,
therefore, that the error converges to a strictly positive value in the limit as the iteration index
tends to infinity.

Recovering the weights and variances. In this paragraph, we consider the more challenging
case where N = 3 and both the weights and variances of the initial Gaussian mixture need to be
recovered, in which case the forward model is no longer linear. For simplicity, we assume that the
means {mn}Nn=1 are still known and this time given by (m1,m2,m3) = (−5, 0, 5), and we seek to
minimize

f(w, v) =
K∑
k=1

1

γ2

∣∣yk − %e(xk, T ;w, abs.(v)
)∣∣2, (5.9)

where w is the vector of weights and v = (σ2
1, σ

2
2, σ

2
3) is the vector of variances, under the constraints

3∑
n=1

wn = 1, wn ≥ 0 ∀n ∈ {1, 2, 3}, σ2
n ≥ 0 ∀n ∈ {1, 2, 3}.

Here the function “abs.” denotes the element-wise absolute value, and the function (x, t) 7→ %e(x, t;w, v)

denotes the exact solution (5.8) to the Fokker–Planck equation (5.7) when the parameters w and v
are employed in the initial condition (5.6). We define the objective function in this manner, with
the presence of the “abs.” function, in order to guarantee that this function can be evaluated for
any choice of parameters w ∈ R3 and v ∈ R3, which is a requirement for applying EKI.

Apart from the parameters of the Gaussian mixtures, and unless otherwise specified, all the
parameters employed to generate the numerical results presented in the rest of this section are the
same as in the previous paragraph. We begin by examining the influence of the small parameter
ν on the error and convergence point of the method. We employ to this end the explicit method
described in Section 5.1. The table below, in which all figures are truncated after three significant
digits, gives the points of convergence of EKI with constraint for different values of ν. We observe
again that small values of ν lead to a point of convergence closer to the feasible manifold, as is
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expected.

w1 + w2 + w3 w1 w2 w3 σ2
1 σ2

2 σ2
3

Truth 1 0.333 0.476 0.191 0.400 0.100 0.500
ν = 1 0.9844 0.337 0.480 0.167 0.433 0.095 0.303

ν = 10−2 0.9847 0.337 0.480 0.167 0.434 0.095 0.305
ν = 10−4 0.99502 0.342 0.482 0.171 0.467 0.093 0.363
ν = 10−6 0.9999273 0.344 0.483 0.173 0.483 0.092 0.392
ν = 10−8 0.999999270 0.344 0.483 0.173 0.483 0.092 0.393

The solution to the Fokker–Planck equation at time T , when using as parameters in the initial
condition the point of convergence of EKI with small parameter ν = 10−8, is illustrated in Figure 18.
A good qualitative agreement between the observed and reconstructed solutions is observed.

Figure 18: Noisy observations (blue dots) and solution to the Fokker–Planck equation (5.7) at
time T when using the reconstructed initial condition.

To conclude this section, we compare in Figure 19 the two discretization methods (5.5a) and (5.5b)
in the case where ν = 10−8. All the ensemble members are initialized according to N (0, I6). The
error depicted in the left panel is computed as

3∑
n=1

∣∣w̄n − w†n∣∣+
∣∣σ̄2
n − (σ2

n)†
∣∣,

where w†n and (σ2
n)† are respectively the true weights and variances of the components of the initial

Gaussian mixture, whereas w̄n and σ̄2
n are the average weights and variances over the ensemble. As

already remarked in the caption of Figure 17, the error does not decrease to 0 as the number of
iterations is increased, because the true value of the mixture parameters do not coincide with the
minimizer of f(w, v) in (5.9). As shown in the right panel, the sample variances decrease to a small
value below 10−15 in less than a hundred iterations.
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Figure 19: Evolution of the error (left) and sample covariance (right), for the explicit and semi-
implicit discretizations described in Section 5.1. In both cases, the time step is adapted dynamically
according to (5.2).

6 Conclusions

In this work, we study a new approach for incorporating constraints in consensus-based optimiza-
tion and ensemble Kalman methods. We demonstrate that, despite their simplicity and ease of
implementation, the proposed methods perform well for a number of toy examples. Our study is
mostly qualitative and aims at providing a general idea of the performance of the methods, their
behavior in the many-particle limit (in the case of CBO), and the influence of the parameters they
contain.

Future investigation would be useful in order to determine the practical value of the proposed
approach for realistic high-dimensional constrained optimization problems, and to further assess its
efficiency in comparison with other methods in the literature. It would also be worthwhile to obtain
quantitative results on the link between the particle systems and their mean-field limits, which could
inform the choice of the number of particles employed in practice.

Acknowledgments

JAC was supported by the Advanced Grant Nonlocal-CPD (Nonlocal PDEs for Complex Particle
Dynamics: Phase Transitions, Patterns and Synchronization) of the European Research Council
Executive Agency (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 883363) and by EPSRC grant number EP/T022132/1. JAC and UV
were also supported by EPSRC grant number EP/P031587/1. CT was partly supported by the the
European social Fund and by the Ministry Of Science, Research and the Arts Baden-Württemberg
(Germany). UV was also supported by the Fondation Sciences Mathématiques de Paris (FSMP),
through a postdoctoral fellowship in the “mathematical interactions” program.

28



References

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann machines. New York, NY; John
Wiley and Sons Inc., 1988.

[2] D. J. Albers, P.-A. Blancquart, M. E. Levine, E. Esmaeilzadeh Seylabi, and A. Stuart. En-
semble Kalman methods with constraints. Inverse Problems, 35(9):095007, 28, 2019.

[3] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells. The FEniCS project version 1.5. Archive of Numerical Software,
3(100), 2015.

[4] T. Back, D. B. Fogel, and Z. Michalewicz. Handbook of evolutionary computation. IOP Pub-
lishing Ltd., 1997.

[5] Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner. The wind driven optimiza-
tion technique and its application in electromagnetics. IEEE transactions on antennas and
propagation, 61(5):2745–2757, 2013.

[6] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. A survey on metaheuristics for
stochastic combinatorial optimization. Natural Computing: an international journal, 8(2):239–
287, 2009.

[7] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003.

[8] M. Bostan and J. A. Carrillo. Asymptotic fixed-speed reduced dynamics for kinetic equations
in swarming. Mathematical Models and Methods in Applied Sciences, 23(13):2353–2393, 2013.

[9] L. Bottou et al. Online learning and stochastic approximations. On-line learning in neural
networks, 17(9):142, 1998.

[10] S. Bubeck. Convex optimization: algorithms and complexity. Foundations and Trends® in
Machine Learning, 8:231–357, 2015.

[11] J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. An analytical framework for consensus-
based global optimization method. Mathematical Models and Methods in Applied Sciences,
28(6):1037–1066, 2018.

[12] J. A. Carrillo, F. Hoffmann, A. M. Stuart, and U. Vaes. Consensus Based Sampling. arXiv
e-prints, 2106.02519, 2021.

[13] J. A. Carrillo and U. Vaes. Wasserstein stability estimates for covariance-preconditioned
Fokker–Planck equations. Nonlinearity, 34(4):2275–2295, Feb. 2021.

[14] J. A. Carrillo, S. Jin, L. Li, and Y. Zhu. A consensus-based global optimization method for
high dimensional machine learning problems. ESAIM. Control, Optimisation and Calculus of
Variations, 27(suppl.):Paper No. S5, 22, 2021.

[15] N. K. Chada, C. Schillings, and S. Weissmann. On the Incorporation of Box-Constraints for
Ensemble Kalman Inversion. arXiv e-prints, 1908.00696, Aug. 2019.

29



[16] B. Chandra Mohan and R. Baskaran. A survey: Ant Colony Optimization based recent re-
search and implementation on several engineering domain. Expert Systems with Applications,
39(4):4618–4627, 2012.

[17] Y. Chen and D. S. Oliver. Ensemble randomized maximum likelihood method as an iterative
ensemble smoother. Mathematical Geosciences, 44(1):1–26, Jan. 2012.

[18] A. Dembo and O. Zeitouni. Large deviations techniques and applications, volume 38. Springer
Science & Business Media, 2009.

[19] M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical computer
science, 344(2):243–278, 2005.

[20] A. B. Duncan, A. M. Stuart, and M.-T. Wolfram. Ensemble Inference Methods for Models
With Noisy and Expensive Likelihoods. arXiv e-prints, 2104.03384, Apr. 2021.

[21] A. A. Emerick and A. C. Reynolds. Investigation of the sampling performance of ensemble-
based methods with a simple reservoir model. Computational Geosciences, 17(2):325–350,
2013.

[22] M. Fornasier, H. Huang, L. Pareschi, and P. Sünnen. Consensus-based Optimization on the
Sphere II: Convergence to Global Minimizers and Machine Learning. arXiv e-prints, 2001.11988,
Jan. 2020.

[23] M. Fornasier, T. Klock, and K. Riedl. Consensus-based optimization methods converge glob-
ally in mean-field law. arXiv e-prints, 2103.15130, 2021.

[24] M. Fornasier, H. Huang, L. Pareschi, and P. Sünnen. Consensus-based optimization on hyper-
surfaces: well-posedness and mean-field limit. Mathematical Models and Methods in Applied
Sciences, 30(14):2725–2751, 2020.

[25] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: gra-
dient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical Systems,
19(1):412–441, 2020.

[26] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics
for Bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.

[27] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for Numerical Methods
in Engineering, 79(11):1309–1331, 2009.

[28] M. Herty and G. Visconti. Continuous limits for constrained ensemble Kalman filter. Inverse
Problems, 36(7):075006, 28, 2020.

[29] D. Higham. An algorithmic introduction to numerical simulation of stochastic differential
equations. SIAM Review, 43(3):525–546.

[30] R. Holley and D. Stroock. Simulated annealing via Sobolev inequalities. Communications in
Mathematical Physics, 115(4):553–569, 1988.

30



[31] R. A. Holley, S. Kusuoka, and D. W. Stroock. Asymptotics of the spectral gap with appli-
cations to the theory of simulated annealing. Journal of functional analysis, 83(2):333–347,
1989.

[32] H. Huang and J. Qiu. On the mean-field limit for the consensus-based optimization. arXiv
e-prints, 2105.12919, 2021.

[33] C.-R. Hwang and S.-J. Sheu. Large-time behavior of perturbed diffusion markov processes
with applications to the second eigenvalue problem for fokker-planck operators and simulated
annealing. Acta Applicandae Mathematica, 19(3):253–295, 1990.

[34] M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse prob-
lems. Inverse Problems, 29(4):045001, 20, 2013.

[35] M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global optimisa-
tion problems. International Journal of Mathematical Modelling and Numerical Optimisation,
4(2):150–194, 2013.

[36] S. Jin, L. Li, and J.-G. Liu. Convergence of the random batch method for interacting particles
with disparate species and weights. SIAM Journal on Numerical Analysis, 59(2):746–768,
2021.

[37] S. Jin, L. Li, and J.-G. Liu. Random batch methods (RBM) for interacting particle systems.
Journal of Computational Physics, 400:108877, 30, 2020.

[38] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga. A comprehensive survey: artificial
bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1):21–57,
2014.

[39] J. Kennedy. Particle swarm optimization. In Encyclopedia of Machine Learning, pages 760–
766. Springer, 2010.

[40] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages 1942–1948. IEEE, 1995.

[41] N. B. Kovachki and A. M. Stuart. Ensemble Kalman inversion: a derivative-free technique for
machine learning tasks. Inverse Problems, 35(9):095005, 35, 2019.

[42] D. V. Kulkarni, D. V. Rovas, and D. A. Tortorelli. A discontinuous Galerkin formulation for
solution of parabolic equations on nonconforming meshes. In Domain decomposition methods
in science and engineering XVI. volume 55, Lect. Notes Comput. Sci. Eng. Pages 651–658.
Springer, Berlin, 2007.

[43] D. Márquez. Convergence rates for annealing diffusion processes. The Annals of Applied Prob-
ability :1118–1139, 1997.

[44] P. D. Miller. Applied asymptotic analysis, volume 75. American Mathematical Soc., 2006.

[45] G. A. Pavliotis. Stochastic processes and applications, volume 60 of Texts in Applied Mathe-
matics. Springer, New York, 2014, pages xiv+339.

31



[46] M. Pelletier. Weak convergence rates for stochastic approximation with application to multiple
targets and simulated annealing. Annals of Applied Probability :10–44, 1998.

[47] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global optimization
and its mean-field limit. Mathematical Models and Methods in Applied Sciences, 27(1):183–
204, 2017.

[48] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm intelligence,
1(1):33–57, 2007.

[49] C. Reeves. Genetic algorithms. Springer, 2003.

[50] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics:400–407, 1951.

[51] C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse problems.
SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.

[52] A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica, 19:451–559, 2010.

[53] C. Totzeck. Trends in consensus-based optimization. arXiv e-prints, 2104.01383, 2021.

[54] M. Weber and S. Sra. Projection-free nonconvex stochastic optimization on Riemannian man-
ifolds, 2021.

[55] X.-S. Yang. Firefly algorithms for multimodal optimization. In O. Watanabe and T. Zeug-
mann, editors, Stochastic Algorithms: Foundations and Applications, pages 169–178, Berlin,
Heidelberg. Springer Berlin Heidelberg, 2009.

[56] H. Zhang, S. J Reddi, and S. Sra. Riemannian SVRG: fast stochastic optimization on Rie-
mannian manifolds. Advances in Neural Information Processing Systems, 29:4592–4600, 2016.

32


	Introduction
	CBO for constrained global optimization problems
	Mean-field CBO
	Numerical experiments: mean-field versus particles and the penalizations

	EKI with constraints
	Numerical results for CBO
	Numerical schemes
	CBO with equality constraint
	CBO with inequality constraint
	Many particle limit for CBO
	Comparison with a projection-based method
	Numerical experiments for the CBO particle system

	Numerical results for EKI with constraints
	Numerical schemes
	Numerical experiments for EKI with constraints

	Conclusions

