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Abstract

We propose a novel method for sampling and optimization tasks based on a stochastic

interacting particle system. We explain how this method can be used for the following two

goals: (i) generating approximate samples from a given target distribution; (ii) optimiz-

ing a given objective function. The approach is derivative-free and affine invariant, and is

therefore well-suited for solving inverse problems defined by complex forward models: (i)

allows generation of samples from the Bayesian posterior and (ii) allows determination of

the maximum a posteriori estimator. We investigate the properties of the proposed family of

methods in terms of various parameter choices, both analytically and by means of numerical

simulations. The analysis and numerical simulation establish that the method has potential

for general purpose optimization tasks over Euclidean space; contraction properties of the

algorithm are established under suitable conditions, and computational experiments demon-

strate wide basins of attraction for various specific problems. The analysis and experiments

also demonstrate the potential for the sampling methodology in regimes in which the target

distribution is unimodal and close to Gaussian; indeed we prove that the method recovers

a Laplace approximation to the measure in certain parametric regimes and provide numer-

ical evidence that this Laplace approximation attracts a large set of initial conditions in a

number of examples.

1 Introduction

1.1 Background

We consider the inverse problem of finding θ from y where

y = G(θ) + η. (1.1)

Here y ∈ RK is the observation, θ ∈ Rd is the unknown parameter, G : Rd → RK is the forward

model and η is the observational noise. We adopt the Bayesian approach to inversion [38] and

assume that the parameter and the noise are independent and normally distributed: θ ∼ N(0,Σ)

and η ∼ N(0,Γ). By (1.1) and Bayes’ formula, the posterior density (i.e., the conditional

probability density function of θ given y) equals

ρ(θ) =
exp
(
−f(θ)

)∫
Rd exp

(
−f(θ)

)
dθ
, (1.2)
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where

f(θ) := Φ(θ; y) +
1

2
|θ|2Σ , Φ(θ; y) =

1

2
|y −G(θ)|2Γ .

In the foregoing and in what follows, we adopt the following notation: for a positive definite

matrix A,

〈•, •〉A = 〈•, A−1•〉, |•|2A = 〈•, •〉A .

We also define the matrix norm ‖B‖A =
∥∥A−1/2BA−1/2

∥∥ (noting that this is not the induced

matrix norm from vector norm |•|A).

Solving inverse problems in the Bayesian framework can be prohibitively expensive because

of the need to characterize an entire probability distribution. One approach to this is simply to

seek the point of maximum posterior probability, the MAP point [38, 17], defined by

θ∗ = argminθ f(θ). (1.3)

However, this essentially reduces the solution of the inverse problem to a classical optimization

approach [21] and fails to capture uncertainty. A compromise between a fully Bayesian approach

and the classical optimization approach is to seek a Gaussian approximation of the measure [45].

By the Bernstein–von Mises theorem (and its extensions) [64], the posterior is expected to be

well approximated by a Gaussian density in the large data limit, if the parameter is identifiable

in the infinite data setting; a Gaussian approximation is also expected to be good if the forward

map is close to linear. For these reasons, use of the Laplace method [60] to obtain a Gaussian

approximation of the posterior density is often viewed as a useful approach in many application

domains.

Many inverse problems arising in applications are defined by complex forward models G,

often available only as a black box, and in particular adjoints and derivatives may not be readily

available. Consensus-based approaches are proving to be interesting and viable derivative-free

techniques for optimization [54, 8, 12]. The focus of this paper is on developing consensus-based

sampling of the posterior distribution for Bayesian inverse problems and, in particular, on the

study of such methods in the context of Gaussian approximation of the posterior.

1.2 Literature Review

Systematic procedures to sample probability measures have their roots in statistical physics and

the 1953 paper of Metropolis et al [46]. In 1970 Hastings recognized this work as a special case

of what is now known as the Metropolis-Hastings methodology [31]. These methods in turn

may be seen as part of the broader Markov Chain Monte Carlo (MCMC) approach to sampling

[6]. In 2006, sequential Monte Carlo (SMC) methods, based on creating a homotopy deforming

the initial (simple to sample) measure into the desired target measure, were introduced [18]; in

practice these methods work best when entwined with MCMC kernels. These SMC methods

introduce the idea of using the evolution of an interacting system of particles to approximate

the desired target measure; the large particle limit of this evolution captures the homotopy from

the initial measure to the target measure. In a parallel development, the mathematical physics
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community has developed a large body of understanding of interacting particle systems, and

their mean field limits, initially primarily for models on a countable state space [43, 61] and more

recently for models in uncountable state space [62, 10, 4, 5, 36]. Studying interactions between

sampling, collective dynamics of particles and mean field limits holds considerable promise as

a direction for finding improved sampling algorithms for specific classes of problems and is an

active area of research [55, 66, 7, 65].

The focus of this work is on sampling measure (1.2), or optimizing objective function (1.3),

by means of algorithms which only involve black box evaluation of G. While some MCMC and

SMC methods are of this type, the Metropolis algorithm being a primary example, the use of

collective dynamics of particles opens the door to a wider range of methods to solve inverse

problems in this setting. There are two primary classes of methods emerging in this context:

those arising from consensus forming dynamics [54] and those arising from ensemble Kalman

methods [56].

Iterative ensemble Kalman methods for inverse problems were introduced in [14, 20]. Similar

ideas are also implicit in the work of Reich [55] who studies state estimation sequential data

assimilation, rather than the inverse problem; however, what is termed the “analysis” step in

sequential data assimilation corresponds to solving a Bayesian inverse problem. These iterative

ensemble Kalman methods are similar to SMC in that they seek to map the prior to the posterior

in finite continuous time or in a finite number of steps. Reich also introduced continuous

time analysis of ensemble Kalman methods for state estimation in [1, 2], naming the resulting

algorithm the ensemble Kalman Bucy filter (EnKBF); the ensemble Kalman approach to inverse

problems introduced in [14, 20] may be studied using the EnKBF leading to a clear link with

SMC methods in continuous time. An alternative Kalman methodology (ensemble Kalman

inversion – the EKI) for the optimization approach to the inverse problem, which involves

iteration to infinity, was introduced and studied in [34, 33] in discrete time and in [58, 59] in

continuous time; the idea of using ensemble methods for optimization rather than sampling was

anticipated in [55]. The ensemble based optimization approach was generalized to approximate

sampling of the Bayesian posterior solution to the inverse problem in [26] (the ensemble Kalman

sampler – the EKS), and studied further in [13, 27, 49].

The idea of consensus based optimization may be seen as a variation of particle swarm opti-

mization methods [19, 39] which are themselves related to Cucker-Smale dynamics for collective

behavior and opinion formation [63, 16, 30, 4, 10, 48]. These dynamical systems model the ten-

dency of the constituent particles to align (consensus in velocity) or to concentrate in certain

variables modelling averaged quantities (consensus in position or opinion), and they have been

extensively studied in terms of long time asymptotics leading to consensus [9, 48]. Consensus

Based Optimization (CBO) was introduced in [54] based on the following simple idea: particles

are explorers in the landscape of the graph of the function f(θ) to be minimized, they are

able to exchange information instantaneously, and they redirect their movement towards the

location of a consensus position in parameter space that is a weighted average of the explorer’s

parameter values relative to the Gibbs measure associated to the function f , 1
Z e
−f(θ). Noise is

introduced for suitable exploration in parameter space but the strength of the noise is reduced

according to the distance to the consensus parameter values. These effects lead to concentration
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in parameter space at the global minimum of the function, as proven in [8] for the mean-field

limit PDE and in [29] for the particle system under certain conditions on f and the parame-

ters of the model. The original CBO method has been recently improved so as to be efficient

for high-dimensional optimization problems [12], such as those arising in machine learning, by

adding coordinate-wise noise terms and introducing ideas from random batch methods [37] for

computing stochastic particle systems efficiently. Furthermore, these ideas have been recently

used to solve constraint problems on the sphere [23, 24, 25].

The development of the EKI into the EKS suggests a parallel development of CBO into a

sampling methodology. In this paper we pursue this idea and develop Consensus Based Sampling

(CBS). A key property of the EKS is that it is affine invariant [28] as shown in the paper [27]

where the Affine Invariant Interacting Langevin Dynamics (ALDI) algorithm is introduced;

relatedly, in the mean field limit, the rate of convergence to the posterior is the same for all

Gaussian posterior distributions [26]. We will show identical properties for the CBS algorithm.

Our focus is on unimodal distributions and obtaining Gaussian approximations to them; we note,

however, that there are recent forays into the use of ensemble Kalman methods for the sampling

of multimodal distributions [57, 44]. Like the ensemble Kalman sampler, the CBS approach

is only exact for Gaussian problems and in the mean field limit. However recently developed

methods based on multiscale stochastic dynamics provide a refineable methodology for sampling

from non-Gaussian distributions [52]; methods such as CBS or EKS may be used to precondition

these multiscale stochastic dynamics algorithms, making them more efficient. Alternatively, the

CBS method may be used in the calibration step employed within the calibrate-emulate-sample

methodology introduced in [15]. Thus, the methods developed in this paper potentially form

an important component in an efficient and rigorously justifiable approach to solving Bayesian

inverse problems.

1.3 Our Contributions

We introduce CBS as a method to approximate probability distributions of the form (1.2), or to

find the MAP estimator (1.3). The method requires G only as a black-box (it is derivative-free)

and hence is of potential use for large-scale inverse problems. We show the following:

• in the case of linear G, and in the mean field limit, parameters can be chosen in the

algorithm so that, if initiated at a Gaussian, successive iterates remain Gaussian and

converge to the Gaussian posterior (1.2);

• in the case of linear G, and in the mean field limit, parameters can be chosen in the

algorithm so that, if initiated at a Gaussian, successive iterates remain Gaussian and

converge to a Dirac located at the MAP point θ∗ given by (1.3);

• the CBS method is affine invariant and, in the case of linear G and in the mean field

limit, converges at the same rate across all linear inverse problems defined by (1.2); for

linear G, we obtain sharp convergence rates that are explicit in terms of all parameters of

the method;
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• in the case of nonlinear G, and in the mean field limit, parameters can be chosen in the

algorithm so that it has a steady state solution which is Gaussian, close to the Laplace

approximation of the posterior (1.2) and the algorithm is a local contraction mapping in

the neighbourhood of the steady state; we make explicit the dependence of this approxi-

mation, and its rate of attraction, on the parameters of the method;

• we present numerical results illustrating the foregoing theory and, more generally, demon-

strating the viability of the CBS scheme for sampling posterior distributions and for finding

MAP estimators.

The results are in arbitrary dimension d, with the exception of the results concerning the

Laplace approximation which are restricted to d = 1. There are no intrinsic barriers to extending

the Laplace approximation results to arbitrary dimension, but doing so will be technically

involved and would lose the focus of the paper.

In Section 2 we introduce the method, including its continuous time limit, and mean field

limits in both discrete and continuous time; we establish its properties in the Gaussian setting.

Section 3 contains analysis of the method beyond the Gaussian setting, deriving conditions for

convergence to an approximation of the MAP estimator when in optimization mode, and for

convergence to the Laplace approximation of the target measure when in sampling mode. In

Section 4 we provide the numerical experiments. Proofs of most of the theoretical results in

Sections 2 and 3 are presented in Section 5.

2 Presentation of the Method

We propose a novel method for sampling and optimization tasks based on a system of interacting

particles. Our goals are the following:

(1) Sampling: to generate approximate samples from the posterior distribution (1.2); this

allows to understand the distribution of parameters taking into account both model (1.1)

and the available data y.

(2) Optimization: to find the minimizer of f(•), which corresponds to the MAP point (1.3),

the most likely parameter θ given the data y and the model relating them.

In order to introduce the approach, we start by defining the mean-field limits of the algorithms,

in discrete and continuous time; later we explain how particle approximations of the mean-

field limit lead to implementable algorithms. We will be interested in the following McKean

difference equation: given parameters λ > 0, β > 0 and α ∈ [0, 1),θn+1 =Mβ(ρn) + α
(
θn −Mβ(ρn)

)
+
√

(1− α2)λ−1Cβ(ρn) ξn,

ρn = Law(θn).
(2.1)

5



where ξn, for n ∈ {0, 1, . . . } are independent N(0, Id) random variables, and Mβ, Cβ denote

respectively the mean and variance for a suitable reweighting of measures:

Mβ : ρ 7→ M(Lβρ) , Cβ : ρ 7→ C(Lβρ) , Lβ : ρ 7→ ρ e−βf∫
ρ e−βf

, (2.2a)

M(µ) =

∫
θµ(dθ) , C(µ) =

∫ (
θ −M(µ)

)
⊗
(
θ −M(µ)

)
µ(dθ) . (2.2b)

Letting α = exp(−∆t) and viewing θn as a discrete time approximation of a continuous time

process θ(t) at time t = n∆t, we find that the ∆t → 0 continuous-time limit associated with

these dynamics is the following McKean SDE:dθt = −
(
θt −Mβ(ρt)

)
dt+

√
2λ−1Cβ(ρt) dWt,

ρt = Law(θt).
(2.3)

where Wt denotes a standard Brownian motions in Rd. We refer to the two familes of methods

as Consensus Based Sampling (CBS) methods, parameterized by α, β with the ranges α ∈ [0, 1)

corresponding to (2.1) and α = 1 corresponding to (2.3). Recall that β > 0. We will focus on

two choices of λ: (i) the choice λ = 1, when the method is used to minimize f(•), which will be

referred to as CBS-O(α,β); and (ii) λ = (1 + β)−1 when the method is used for sampling the

target distribution e−f(•), which will be referred to as CBS(α,β).

In Subsection 2.1 we give motivation for the mean field stochastic dynamical systems (2.1)

and (2.3). In Subsection 2.2 we describe key properties of the mean field models, and in

Subsection 2.3, we establish convergence to equilibrium for (2.1) and (2.3) in the setting where

the forward model G is linear and the law of the initial condition is Gaussian. Subsection 2.4

introduces particle approximations to the mean field limit.

In what follows, we denote by g(•; m, C) the density of the Gaussian random variable N(m, C):

g(θ; m, C) =
1√

(2π)d det(C)
exp

(
−1

2
|θ −m|2C

)
. (2.4)

We also use the short-hand notation

mβ(m, C) :=Mβ

(
g(•; m, C)

)
, Cβ(m, C) := Cβ

(
g(•; m, C)

)
. (2.5)

More generally, we frequently denote mn =M(ρn) and Cn = C(ρn) for the standard mean and

covariance calculated with respect to a probability measure ρn. For a matrix A ∈ Rd×d, we

denote by ‖A‖ the operator norm induced by the Euclidean vector norm, and by ‖A‖F the Frobe-

nius norm1. Sometimes, we will make use of the shorthand notation ‖A‖B :=
∥∥B−1/2AB−1/2

∥∥
for a given invertible matrix B ∈ Rd×d. We let N := {0, 1, 2, 3, . . . } and N>0 := {1, 2, 3, . . . },
and we denote by Sd++ the set of symmetric strictly positive definite matrices in Rd×d. For

symmetric matrices X and Y , the notation X < Y (resp. X 4 Y ) means that X−Y is positive

semidefinite (resp. negative semidefinite).

1The Frobenius norm on matrices should not to be confused with the norm |u|A := 〈u, A−1u〉
1
2 on vectors

defined previously.
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2.1 Motivation

The mean-field model (2.1) contains a number of tuneable parameters. In this section we give

intuition about the role of these parameters in effecting approximate sampling or optimization

for the inverse problem defined by (1.1). We motivate sampling primarily through the discrete

time mean field model and optimization primarily through the continuous time mean field model.

However both discrete and continuous time models apply to optimization and to sampling.

2.1.1 Sampling.

Let G(•) = G• be a linear map so that the posterior distribution given by (1.2) is Gaussian, and

denote this Gaussian by N(a, A). The mean a and covariance A may be identified by completing

the square in (1.2): f is of the form 1
2 |θ − a|2A,

To motivate the algorithms that are the object of study in this paper we describe parameter

choices for which the iteration (2.1) has equilibrium distribution given by the Gaussian N(a, A).

For any choice of forward model G, it can be shown that the evolution of the first and second

moments is given by

M(ρn+1) = αM(ρn) + (1− α)Mβ(ρn), (2.6a)

C(ρn+1) = α2C(ρn) + λ−1(1− α2)Cβ(ρn). (2.6b)

From these identities it is clear that any fixed point of the mean and covariance is independent

of α. Further, when the initial distribution ρ0 is Gaussian the systems of equations (2.1) for

α ∈ [0, 1) map Gaussians into Gaussians. Computing the relationship between the mean and

covariance of the Gaussian ρ and the mean and covariance of the Gaussian Lβρ gives

mβ(m, C) =
(
C−1 + βA−1

)−1 (
βA−1a + C−1m

)
, (2.7a)

Cβ(m, C) =
(
C−1 + βA−1

)−1
. (2.7b)

Therefore, the mean and covariance of a non-degenerate Gaussian steady state g(•; m∞, C∞)

for (2.1) satisfes

m∞ =
(
C−1
∞ + βA−1

)−1 (
βA−1a + C−1

∞ m∞
)
,

C∞ = λ−1
(
C−1
∞ + βA−1

)−1
.

This has solution

m∞ = a, C∞ =
1− λ
λβ

A.

Choosing λ−1 = 1+β delivers a steady state equal to the posterior distribution. This motivates

our choice of λ in the sampling case. Furthermore, choosing λ = 1 is seen to be natural in

the optimization setting: the fixed point of the iteration is then a Dirac at the MAP estimator

a. We will demonstrate that these two distinguished choices of λ work well for sampling and

optimization, beyond the setting of a Gaussian posterior N(a, A).

7



Remark 2.1 (Enlarging the Choice of Parameters.). The mean-field dynamics (2.1) can be

generalized to the form

θn+1 = p1θn + p2M(ρn) + p3Mβ(ρn) +
√
p4C(ρn) + p5Cβ(ρn) ξn, ρn = Law(θn) , (2.8)

where (ξn)n=0,1,... are independent N(0, Id) random variables. Given β, one can ask the following

question: for what values of the parameters (p1, p2, p3, p4, p5) does the dynamics (2.8) admit the

Gaussian N(a, A) as an equilibrium distribution? A calculation analogous to that above shows

that N(a, A) is a steady state of (2.8) if and only if

p1 + p2 + p3 = 1, (2.9a)

p2
1 + p4 + p5(1 + β)−1 = 1. (2.9b)

Note that these constraints do not guarantee that N(a, A) is the only steady state, and in fact,

if p1 = 1 and p2 = p3 = p4 = p5 = 0, then any distribution is a steady state. In this paper,

we study only the dynamics (2.1), which corresponds to the special case where p2 = p4 = 0 and

p1 = α, p3 = 1− α and p5 = λ−1(1− α2), but it is potentially useful to exploit this wider class

of mean-field models.

2.1.2 Optimization.

We now discuss the algorithm in optimization mode, through the lens of the continuous time

limit. Another starting point triggering the research in this paper is the use of systems of

interacting particles for minimizing a target function f(θ). The papers [54, 8] introduce the

CBO technique for achieving this aim by means of particle appoximations of the stochastic

dynamical system

θ̇ = −(θ − θ̄) + σ|θ − θ̄|Ẇ(i)
, θ̄ =Mβ(ρt), (2.10)

where W is a standard Brownian motion in Rd, σ > 0 is the noise strength and ρt is the law

of θ. The idea behind the CBO method is to think about realizations of θ as explorers, in the

landscape of the function f(θ), which can continuously exchange evaluation of the function f

at their position θ, through Mβ(ρt). Then, the explorers compute a weighted average of their

position in parameter space and direct their relaxation movement towards this average θ̄; this

explains the first term on the right hand side of (2.10). The role of the second term is to impose

the property of noise strength decreasing proportionally to the distance of the explorer to the

weighted average θ̄. The choice of the weighted average promotes the concentration towards

parameter points θ leading to smaller values of f . The resulting law of the system converges

as t→∞ towards a Dirac mass concentrated at the MAP point θ∗, the global minimizer of f ,

under certain conditions on f ; see [8, 29]. In fact, the weighted covariance C̄ = Cβ(ρt) provides a

clearer and more natural alternative to the cooling schedule in (2.10) by way of using C̄ = Cβ(ρt)

as the modulation of the noise. In other words, one could propose as alternative to the CBO
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method (2.10), the following mean field system

θ̇ = −(θ − θ̄) +
√

2C̄ Ẇ.

This gives (2.3) in the optimization mode λ = 1. We will also establish that (2.3) is affine

invariant, whereas the CBO method given by (2.10) is not, see the key properties in Subsec-

tion 2.2. In practice, the mean field SDEs in this subsection can be made into algorithms by

invoking finite particle approximations, as described in Subsection 2.4.

2.2 Key Properties of the Mean Field Limits

In this subsection, we summarize key properties of the stochastic dynamics (2.1) and (2.3). We

consider, in turn: (i) the time evolution of the laws; (ii) the affine invariance; (iii) the steady

states; (iv) the evolution of the first and second moments; and (v) propagation properties for

Gaussian initial conditions.

2.2.1 Evolution Equations for the Law of the Mean Field Dynamical Systems.

The time evolution of the law of the solution (2.1) is governed by the following discrete-time

dynamics on probability densities:

ρn+1(θ) =

∫
Rd

g
(
θ;Mβ(ρn) + α

(
u−Mβ(ρn)

)
, (1− α2)λ−1 Cβ(ρn)

)
ρn(u) du. (2.11)

When α = 0, the map (2.11) takes a particularly simple form (recalling notation 2.4 for a

Gaussian):

ρn+1 = g
(
θ;Mβ(ρn), λ−1 Cβ(ρn)

)
. (2.12)

Likewise, the time evolution of the law of the solution to (2.3) is governed by the following

nonlinear and nonlocal Fokker–Planck equation:

∂ρ

∂t
= ∇ ·

((
θ −Mβ(ρ)

)
ρ+ λ−1Cβ(ρ)∇ρ

)
. (2.13)

Remark 2.2. We will not discuss here the question of existence and uniqueness of solutions

to (2.13), and we assume from now on that there exists a unique strong solution to (2.13) for

smooth initial data ρ0 ∈ P2(Rd), implying in turn the existence and uniqueness of a solution

to (2.3). The equation (2.13) will be analyzed in subsequent work.

2.2.2 Affine Invariance.

A fundamental property of both (2.1) and (2.3) is that they are affine invariant, in the sense

of [28]; the utility of this concept has been established for MCMC methods in [41] and for

Langevin based dynamics through the ALDI algorithm in [27]. For linear inverse problems with

posterior N(a, A) this has the consequence that the rate of convergence is independent of the

conditioning of A. We study affine invariance of (2.1); a similar reasoning can be employed to

show that the continuous-time mean-field dynamics (2.3) are also affine invariant.
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In order to demonstrate affine invariance for (2.1), let {θn}n∈N denote the solution to (2.1)

with initial condition θ0 ∼ ρ0, and let ρn = Law(θn). Consider a vector b ∈ Rd and an invertible

matrix B ∈ Rd×d which, together, define the affine transformation θ 7→ Bθ + b. We introduce

the following notation:

θ̃n = Bθn + b, f̃(θ̃) = f
(
B−1(θ̃ − b)

)
, L̃β : µ 7→ µ e−βf̃∫

Rd e−βf̃
.

We also introduce M̃β : µ 7→ M(L̃βµ) and C̃β : µ 7→ C(L̃βµ). To prove the affine invariance of

the scheme (2.1), we must show that {θ̃n}n∈N is equal in law to the solution {θ̂n}n∈N of

θ̂n+1 = αθ̂n + (1− α)M̃β(ρ̂n) +

√
(1− α2)λ−1C̃β(ρ̂n) ξ̂n, ρ̂n = Law(θ̂n), (2.14)

with initial condition θ̂0 = θ̃0 and where {ξ̂n}n∈N are independent N(0, Id) random variables.

In order to show this, we apply the affine transformation θ 7→ Bθ + b to both sides of (2.1),

which leads to

θ̃n+1 = αθ̃n + (1− α)
(
BMβ(ρn) + b

)
+B

√
(1− α2)λ−1Cβ(ρn) ξn, ρn = Law(θn).

Now notice that BMβ(ρn) + b = M̃(ρ̃n), where ρ̃n = Law(θ̃n), that

B
√
Cβ(ρn) ξn =

√
BCβ(ρn)BT ξn in law,

and that BCβ(ρn)BT = C̃β(ρ̃n), which implies that {θ̃n}n∈N is indeed a solution to (2.14).

2.2.3 Steady States.

The steady states of (2.1) and (2.3) coincide, if they exist, and they are necessarily Gaussian.

Recall the notation (2.4). We have:

Lemma 2.1. Let probability distribution ρ∞ have finite second moment and be a steady-state

solution of (2.11) or (2.13). Then

ρ∞(•) = g
(
•;Mβ(ρ∞), λ−1Cβ(ρ∞)

)
. (2.15)

Conversely, all probability distributions solving (2.15) are steady states of (2.11) and (2.13).

In particular, all steady states are Gaussian (with the limiting case of Diracs included in the

definition) and all Dirac masses are steady states.

Proof. If ρ∞ is an invariant measure for the law of (2.3), then ρ∞ must be an invariant measure

of the following SDE:

dθt = −
(
θt −Mβ(ρ∞)

)
dt+

√
2λ−1Cβ(ρ∞) dWt. (2.16)

Since this is just the Ornstein–Uhlenbeck process, we deduce (2.15).

Similarly, if ρ∞ is an invariant measure for the law of the discrete-time dynamics (2.1),
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then ρ∞ is the invariant measure of the following equation:

Xn+1 =Mβ(ρ∞) + α
(
Xn −Mβ(ρ∞)

)
+
√

(1− α2)λ−1Cβ(ρ∞)ξn,

where (ξn)n=0,1,... are independent N(0, Id) random variables. Since this equation is an exact

discretization of (2.16), we deduce that (2.15) holds.

2.2.4 Equations for the Moments.

The evolution equations for the moments given in (2.6) hold regardless of whether ρn is Gaussian

but they define closed equations characterizing ρn completely in settings where ρ0 is Gaussian.

The evolution of the moments can also be written for the limiting continuous time stochastic

dynamical system (2.3) obtained when α→ 1:

∂t
(
M(ρ)

)
= −M(ρ) +Mβ(ρ), (2.17a)

∂t
(
C(ρ)

)
= −2C(ρ) + 2λ−1Cβ(ρ). (2.17b)

2.2.5 Propagation of Gaussians.

We show that Gaussianity is preserved along the flow, both in discrete and continuous time.

Lemma 2.2. Let λ ∈ (0, 1] and β > 0.

(i) Discrete time α = 0. The law of (2.1) is Gaussian for all n ∈ N.

(ii) Discrete time α ∈ (0, 1). If the initial law ρ0 for (2.1) is Gaussian, then so is the law for

any n ∈ N>0, and the time evolution of the moments (mn, Cn) of ρn is governed by the

recurrence relation

mn+1 = αmn + (1− α)mβ(mn, Cn), (2.18a)

Cn+1 = α2Cn + λ−1(1− α2)Cβ(mn, Cn). (2.18b)

with mβ, Cβ given by (2.5).

(iii) Continuous time α → 1. If the initial law ρ0 for (2.3) is Gaussian, then so is the cor-

responding law for any t > 0. The time evolution of the moments
(
m(t), C(t)

)
of the

solution is governed by the equation

ṁ = −m + mβ(m, C), (2.19a)

Ċ = −2C + 2λ−1Cβ(m, C). (2.19b)

Proof. For the discrete-time dynamics in setting (i), this follows directly from (2.12). For (ii)

note that, if θn ∼ N(mn, Cn), then θn+1, being the sum of Gaussian random variables as given

in (2.1), is also normally distributed.

In order to show (iii), we consider a solution
(
m(t), C(t)

)
to the moment equations (2.19).

Then g
(
θ; m(t), C(t)

)
solves (2.13). To see this, one can verify that general Gaussians g(θ; m, C)
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satisfy the relations

∇θg = −∇mg , xT (D2
θ g)y = 2DCg : x⊗ y ,

for any x, y ∈ Rd; see similar computations in [26, 13]. The first identity can be checked directly,

and the second identity follows e.g. from equations (57) and (61) in [53]. Then

∂

∂t

(
g
(
θ,m(t), C(t)

))
= ∇mg · ṁ +DCg : Ċ

= −∇mg · (m−mβ) + 2DCg :
(
λ−1Cβ − C

)
= ∇θg · (m−mβ) +∇θ · (−C∇θg) + λ−1D2

θg : Cβ

= ∇θ ·
(
(θ −mβ)g + λ−1Cβ∇θg

)
,

where we used the explicit expression of C∇θg in the last equation.

2.3 Convergence for Gaussian Targets

In this subsection, we consider the case of a linear forward map in (1.1), leading to the posterior

distribution being a Gaussian N(a, A) where, throughout, we assume that A is strictly positive

definite, A ∈ Sd++. The corresponding potential f(•) is given by the quadratic function f(θ) =
1
2 |θ − a|2A. Recall the shorthand notation ‖B‖A =

∥∥A−1/2BA−1/2
∥∥. Throughout this section,

we denote

k0 =
∥∥C−1

0

∥∥
A−1 = ‖A1/2C−1

0 A1/2‖.

The main convergence results of this subsection, Propositions 2.4 to 2.6, establish the con-

vergence of the moments of the solutions to (2.1) and (2.3), respectively, in the case of Gaussian

initial conditions. All results show algebraic convergence in optimization mode (λ = 1) and

exponential convergence in sampling mode (λ = (1 + β)−1); this is analogous to what is known

about the EKI [58] and the EKS [26] methods. We provide in Table 1 an overview of the

results we obtain. Most proofs of the results presented in the rest of this subsection are given

in Subsection 5.1.

Sampling Optimization

Mean Covariance Mean Covariance

α = 0
(

1
1+β

)n (
1

1+β

)n
k0

k0+βn
k0

k0+βn

α ∈ (0, 1)
(

1+αβ
1+β

)n (
1+α2β

1+β

)n (
k0+β

k0+β+β(1−α2)n

) 1
1+α k0+β

k0+β+β(1−α2)n

α = 1 e
−
(

β
1+β

)
t

e
−
(

2β
1+β

)
t

(
k0+β

k0+β+2βt

) 1
2 k0+β

k0+β+2βt

Table 1: Convergence rates for CBS in sampling and optimization modes, in the case of
a Gaussian target distribution and a Gaussian initial condition with C0 ∈ Sd++. This table
summarizes the results in Propositions 2.4 to 2.6. All rates are sharp, see Remark 2.4.

We draw a number of conclusions from these results. Firstly, in the discrete time setting,
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smaller choices of α provide a faster rate of convergence, and choosing α = 0 is therefore

the most favorable choice in this regard. Secondly, larger choices of β increase the speed of

convergence, without limit as β → ∞ for α = 0; in the case α > 0, increasing β is favourable

but does not give rates which increase without limit.

2.3.1 Convergence Analysis for the Discrete-Time Dynamics.

Using the explicit expression of the weighted moments in the Gaussian case (2.7), we can rewrite

the right-hand sides of (2.18) as

(mn+1 − a) =
[
αId + (1− α)A(A+ βCn)−1

]
(mn − a),

Cn+1 =
[
α2Id + (1− α2)λ−1A(A+ βCn)−1

]
Cn .

Letting m̃n := A−1/2(mn − a) and C̃n := βA−1/2CnA
−1/2, we can verify that (m̃n, C̃n)n∈N

solves the following recurrence relation:

m̃n+1 =
[
αId + (1− α)(Id + C̃n)−1

]
m̃n , (2.20a)

C̃n+1 =
[
α2Id + (1− α2)λ−1(Id + C̃n)−1

]
C̃n . (2.20b)

This is a recurrence relation uniquely solvable given initial conditions (m̃0, C̃0). We begin by

studying the easier case α = 0, where the convergence of the scheme can be computed explicitly

by a direct argument.

Lemma 2.3. Consider the iterative scheme (2.12) with α = 0 and initial conditions (m0, C0) ∈
Rd × Sd++. Then, for any λ ∈ (0, 1] and β > 0, we have

mn = a + λnCnC
−1
0 (m0 − a), C−1

n =

λnC−1
0 + (1− λn)C−1

∞ if λ 6= 1,

C−1
0 + nβA−1 if λ = 1.

Proof. When α = 0, the evolution equations (2.20) for the moments simplify to

m̃n+1 = (Id + C̃n)−1m̃n , C̃−1
n+1 = λ

(
C̃−1
n + Id

)
.

For λ = 1, the result for the covariance matrix is easily obtained by solving the second equation

explicitly for C̃−1
n . Next, consider the case λ 6= 1. We have

C̃−1
n = λnC̃−1

0 + (λ+ . . .+ λn)Id = λnC̃−1
0 + λ

(
1− λn
1− λ

)
Id .

For the evolution of the mean, notice that

C̃−1
n+1m̃n+1 = λ

(
C̃−1
n + Id

)
(Id + C̃n)−1m̃n = λC̃−1

n m̃n .

Hence, m̃n = λnC̃nC̃
−1
0 m̃0 and the result follows.

We deduce from this result a convergence estimate for the mean and the covariance of the
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iterates.

Proposition 2.4. Consider the iterative scheme (2.12) with α = 0 and initial conditions

(m0, C0) ∈ Rd × Sd++. Then the following statements hold:

(i) Sampling mode λ = (1 + β)−1. For all n ∈ N, it holds that

|mn − a|A 6 max (1, k0)λn|m0 − a|A
‖Cn −A‖A 6 max (1, k0)λn ‖C0 −A‖A .

(ii) Optimization mode λ = 1. For all n ∈ N, it holds that

|mn − a|A 6

(
k0

k0 + βn

)
|m0 − a|A , Cn 4

(
k0

k0 + βn

)
C0.

In order to study the convergence in the general case α ∈ (0, 1), we will reduce the evolution

of the moments (2.20) to the scalar case,

un+1 =
[
α+ (1− α)(1 + vn)−1

]
un, (2.21a)

vn+1 =
[
α2 + (1− α2)λ−1(1 + vn)−1

]
vn (2.21b)

by diagonalization. Then, using Lemma A.1, the asymptotic behavior of the moments can be

summarized as follows.

Proposition 2.5. Consider the iterative scheme (2.1) with α ∈ (0, 1) and initial conditions

(m0, C0) ∈ Rd × Sd++. Then the following statements hold:

(i) Sampling mode λ = (1 + β)−1. For all n ∈ N,

|mn − a|A 6 max (1, k0)
1

1+α
(
(1− α)λ+ α

)n|m0 − a|A
‖Cn −A‖A 6 max (1, k0)

(
(1− α2)λ+ α2

)n ‖C0 −A‖A .

(ii) Optimization mode λ = 1. For all n ∈ N, it holds that

|mn − a|A 6

(
k0 + β

k0 + β + β(1− α2)n

) 1
1+α

|m0 − a|A

Cn 4

(
k0 + β

k0 + β + β(1− α2)n

)
C0 .

2.3.2 Convergence Analysis for the Continuous-time Dynamics.

Next, we consider the limiting case α→ 1. Rewriting the right-hand side of (2.19a) and (2.19b)

using (2.7), we obtain for any λ ∈ (0, 1] and β > 0,

ṁ = −βC (A+ βC)−1 (m− a), (2.22a)

Ċ = −2β C (A+ βC)−1

(
C −

(
1− λ
βλ

)
A

)
. (2.22b)
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Proposition 2.6. Let
(
m(t), C(t)

)
denote the solution to (2.22) with initial conditions (m0, C0) ∈

Rd × Sd++. Then the following statements hold:

(i) Sampling mode λ = (1 + β)−1. For all t > 0,

|m(t)− a|A 6 max
(
1, k

λ/2
0

)
e−(1−λ)t |m0 − a|A ,

‖C(t)−A‖A 6 max
(
1, kλ0

)
e−2(1−λ)t ‖C0 −A‖A ,

(ii) Optimization mode λ = 1. For all t > 0, it holds

|m(t)− a|A 6

(
k0 + β

k0 + β + 2tβ

) 1
2

|m0 − a|A ,

C(t) 4

(
k0 + β

k0 + β + 2tβ

)
C0 .

Remark 2.3 (Discrete to Continuum). Notice that, by letting α = e−t/n in the convergence

results obtained for α ∈ (0, 1) in Proposition 2.5 and taking the limit n → ∞, we recover the

convergence results of the continuous-time setting, up to the constant prefactor.

Remark 2.4 (Sharpness). It is possible to show, using the lower bounds on the trend to equi-

librium provided by Lemmas A.1 and A.2, that the convergence rates we obtained in Proposi-

tions 2.5 and 2.6 are all sharp with respect to n and t respectively. Note that the argument

leading to Proposition 2.5 also applies to the case α = 0. However, the upper bounds we obtain

in Proposition 2.4 are stronger than those we would be able to obtain by applying Lemma A.1

for α = 0. Lower bounds for the sampling mode in the case α = 0 can be obtained the same way

as for α ∈ (0, 1). In optimization mode (λ = 1), we can derive lower bounds explicitly using the

expression from Lemma 2.3 as follows: for C̃n := βA−1/2CnA
−1/2, we have C̃0 4 ‖C̃0‖Id, so

C̃−1
n = C̃−1

0 + nId 4
(

1 + n‖C̃0‖
)
C̃−1

0 ⇒ Cn <

(
1

1 + βn‖C0‖A

)
C0.

The conclusion from the above observations is that all rates provided in Table 1 are sharp.

Remark 2.5 (Attractor). As a consequence of the above convergence results for linear objective

functions f , the steady state (a, A) is the unique attractor of the moment equations (2.18)

and (2.19) when taking an initial condition with C0 ∈ Sd++. Therefore, whilst the mean-field

dynamics (2.11) and (2.13) admit infinitely many steady states given by all Dirac distributions

in addition to the Gaussian steady state N(a, A), the solutions to the mean-field dynamics always

converge to the desired target measure N(a, A) when initialized at Gaussian initial conditions

with C0 ∈ Sd++, avoiding the manifold of Diracs along the evolution.

2.4 Particle Approximations

In this subsection we describe particle approximations of the mean field dynamics (2.1) and (2.3).

This leads to the implementable algorithms used in Section 4. The following is a discrete-time
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system of interacting particles in Rd with mean field limit given by (2.1):

θ
(j)
n+1 =Mβ(ρJn) + α

(
θ(j)
n −Mβ(ρJn)

)
+
√

(1− α2)λ−1Cβ(ρJn) ξ(j)
n , j = 1, . . . , J. (2.25)

Here ξ
(j)
n , for j ∈ {1, . . . , J} and n ∈ N, are independent N(0, Id) random variables, and ρJn is

the empirical measure associated with the particle system at iteration n,

ρJn :=
1

J

J∑
j=1

δ
θ
(j)
n
.

We note that

Mβ(ρJn) =

∑J
j=1 e−βf(θ

(j)
n ) θ

(j)
n∑J

j=1 e−βf(θ
(j)
n )

, (2.26a)

Cβ(ρJn) =

∑J
j=1

(
(θ

(j)
n −Mβ(ρJn))⊗

(
θ

(j)
n −Mβ(ρJn)

))
e−βf(θ

(j)
n )∑J

j=1 e−βf(θ
(j)
n )

. (2.26b)

The limit cases α = 0 and α→ 1 for fixed λ > 0 and β > 0 reduce to simpler systems. Indeed,

in the case where α = 0, the method simplifies to

θ
(j)
n+1 =Mβ(ρJn) +

√
λ−1Cβ(ρJn) ξ(j)

n , j = 1, . . . , J.

On the other hand, when α ≈ 1, the particle evolution (2.25) may be viewed as a time discretiza-

tion with timestep ∆t = − logα of the following continuous-time interacting particle system, in

which we generalize the notation (2.26) to continuous time in the obvious way:

θ̇(j) = −
(
θ(j) −Mβ(ρJt )

)
+
√

2λ−1 Cβ(ρJt ) Ẇ
(j)
, j = 1, . . . , J, (2.27)

where {W(j)}Jj=1 are independent standard Brownian motions in Rd. The formal mean field

limit of this equation is given by (2.3).

We note that the finite-dimensional particle systems (2.25) and (2.27) are both affine invari-

ant; the proof is similar to that given for the mean-field limit.

Remark 2.6. To improve algorithmic implementations it will be of value to develop a rigorous

understanding of the relationship between the number of particles J and the parameter β needed

to establish good performance of the method. Relatedly, it will also be useful to investigate

theoretically the rate of convergence to equilibrium in the setting where a cooling schedule is

employed for β. See Section 4 for numerical investigations in this direction.

3 Analysis Beyond The Gaussian Setting

In this section, we study the proposed method (2.1) in the case where the function f is not

necessarily quadratic, and so the target probability distribution may be non-Gaussian. We

begin, in Subsection 3.1, by presenting preliminary bounds on mβ(m, C) and Cβ(m, C) defined
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in (2.5), and then we analyze the optimization (λ = 1) and sampling (λ = (1 + β)−1) methods

in Subsections 3.2 and 3.3, respectively. The proofs of all results are presented in Section 5,

with the exception of Theorem 3.9 which is presented in-text.

The results in this section are based on the following two assumptions.

Assumption 1 (Convexity of the potential). The function f satisfies f ∈ C2(Rd) and D2 f(θ) <

L < `Id for all θ ∈ Rd, for some L ∈ Sd++ and some ` > 0.

Assumption 1 guarantees the existence of a unique global minimizer for f , which we will

denote throughout this section by

θ∗ := arg min
θ∈Rd

f(θ).

Assumption 2 (Bound from above on the Hessian). The function f satisfies f ∈ C2(Rd) and

D2 f(θ) 4 U 4 uId for all θ ∈ Rd, for some U ∈ Sd++ and some u > 0.

These assumptions are very similar to the ones made in [8] in order to show the convergence

of the CBO method [54] for global optimization. The convergence results we present in this

section are summarized in Table 2.

Sampling Optimization

Mean (d = 1) Covariance (d = 1) Mean (d = 1) Covariance (any d)

α = 0
(
k
β

)n (
k
β

)n
. log(n)

n
k̃0

k̃0+βn

α ∈ (0, 1)
(
α+ (1− α2) kβ

)n (
α+ (1− α2) kβ

)n . n−1/q

(not optimal)
k̃0+β

k̃0+β+β(1−α2)n

α = 1 e
−
(

1− 2k
β

)
t

e
−
(

1− 2k
β

)
t . t−1/q

(not optimal)
k̃0+β

k̃0+β+2βt

Table 2: Sharp upper bounds on the convergence rates for CBS in sampling and optimization
modes, in the case of a non-Gaussian target distribution and a Gaussian initial condition with
strictly positive definite covariance matrix C0. Here k is a positive constant independent of
n, t, α and β, and k̃0 :=

∥∥L1/2C−1
0 L1/2

∥∥, where L is the symmetric positive definite matrix
from Assumption 1, and q is any constant strictly greater than 2 max(2, u/`), where ` and u are
the constants from Assumption 1 and Assumption 2, respectively. Obtaining sharp convergence
rates for the mean in the non-Gaussian case for α 6= 0 in optimization mode is an open problem.

3.1 Preliminary Bounds

We first obtain sharp bounds on Cβ which, in the special case when f is quadratic, enable to

recover (2.7b). The first bound relies on a logarithmic Sobolev inequality for the probability

measure 1
Zβ

e−βf , where Zβ is the normalization constant.

Lemma 3.1 (Upper bound on weighted covariance). If Assumption 1 holds, then

∀(m, C) ∈ Rd × Sd++, Cβ(m, C) 4
(
C−1 + βL

)−1
.
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Remark 3.1. We note that, by the standard Holley–Stroock result, see e.g. [42, Theorem 2.11],

a similar bound could be obtained when f is of the type fc + fb, where fc satisfies the convexity

property Assumption 1 and fb is a bounded function.

The next lemma provides a bound from below on Cβ.

Lemma 3.2 (Lower bound on weighted covariance). If Assumption 2 holds, then

∀(m, C) ∈ Rd × Sd++, Cβ(m, C) <
(
C−1 + βU

)−1
.

We now obtain a crude bound on the weighted first moment mβ(m, C), which will be our

starting point for establishing the existence of a steady state for the sampling scheme. This

bound is useful because it shows that mβ(m, C) −−−→
β→∞

θ∗ for any fixed m and C > 0.

Lemma 3.3 (Bound on weighted mean). If Assumptions 1 and 2 hold, then there exists a

positive constant k = k(`, u, d) such that,

∀(m, C, β) ∈ Rd×Sd++×R>0, |mβ(m, C)− θ∗| 6
√
‖C−1‖
`β

|m− θ∗|+k

(
1

‖C‖ + β`

)−1/2

.

Unfortunately, this bound degenerates in the limit C → 0. In spatial dimension one, we will

obtain, in the proof of Proposition 3.7, a finer bound on the weighted mean that can be used

for proving convergence of the optimization scheme.

3.2 Analysis of the Optimization Scheme

In this subsection, we are concerned with the large-time convergence of the law of the solutions

to the mean-field evolution equations (2.1) and (2.3) when λ = 1 and under the following

assumption on the initial condition:

Assumption 3 (Non-degenerate Gaussian initial conditions). The initial condition for the

mean field evolution (2.11) (or (2.13), in the continuous time setting) is Gaussian with strictly

positive definite covariance matrix.

Under this assumption, following Lemma 2.2, the solutions are normally distributed for all

(discrete or continuous) times with the first and second moments evolving according to (2.18)

and (2.19), respectively. We will show that, under appropriate assumptions, the mean converges

to θ∗ and the covariance to zero.

Throughout this subsection, we denote by {(mn, Cn)}n∈N a solution to (2.18) with C0 < 0,

and by
{(

m(t), C(t)
)}

t∈[0,∞)
a solution to (2.19) with C(0) < 0. We also denote by ρn and ρt

solutions to (2.11) and (2.13), respectively.

We begin by showing that the covariance matrices decrease to zero with rates matching

those obtained in the case of quadratic f in Subsection 2.3, up to constant prefactors.

Proposition 3.4 (Collapse of the ensemble in optimization mode). Let λ = 1 and β > 0 and

assume that Assumption 1 holds. Then we have
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(i) Discrete time α = 0. If C0 ∈ Sd++, then

Cn 4

( ∥∥L−1/2C−1
0 L−1/2

∥∥∥∥L−1/2C−1
0 L−1/2

∥∥+ βn

)
C0. (3.1)

(ii) Discrete time α ∈ (0, 1). If C0 ∈ Sd++, then

Cn 4

( ∥∥L−1/2C−1
0 L−1/2

∥∥+ β∥∥L−1/2C−1
0 L−1/2

∥∥+ β + β(1− α2)n

)
C0. (3.2)

(iii) Continuous time α = 1. If C(0) ∈ Sd++, then

C(t) 4

( ∥∥L−1/2C(0)−1L−1/2
∥∥+ β∥∥L−1/2C(0)−1L−1/2

∥∥+ β + 2βt

)
C(0). (3.3)

Ideally, we would like to show that mn −−−→
n→∞

θ∗ and m(t) −−−→
t→∞

θ∗; however, we were

able to show this result only in the one-dimensional setting. In the multi-dimensional case, we

establish the following weaker result.

Theorem 3.5. Let λ = 1, β > 0, C0 ∈ Sd++, and suppose that Assumptions 1 and 2 hold. If

there exists θ̂ ∈ Rd such that mn −−−→
n→∞

θ̂ for some α ∈ [0, 1) or m(t) −−−→
t→∞

θ̂ for α = 1, then

θ̂ = θ∗ is the minimizer of f .

It follows from the identity

∀µ ∈ P2(Rd), W2(µ, δθ∗)
2 = |M(µ)− θ∗|2 + tr

(
C(µ)

)
, (3.4)

where W2 (•, •) denotes the quadratic Wasserstein distance, that Proposition 3.4 and Theo-

rem 3.5 can be combined in order to obtain convergence results for the solutions to the mean

field systems (2.11) and (2.13). For example, the following result holds in the discrete-time case.

Corollary 3.6. Suppose that Assumptions 1 to 3 hold. If there exists θ̂ such thatM(ρn) −−−→
n→∞

θ̂,

then W2 (ρn, δθ∗) −−−→n→∞
0.

In the one-dimensional case, it is possible to prove the convergence of mn and m(t) to the

minimizer θ∗ without the a priori assumption that mn and m(t) have a limit.

Proposition 3.7 (Convergence in the one-dimensional case). Let d = 1, λ = 1, β > 0,

C0 ∈ Sd++, and suppose that Assumptions 1 and 2 are satisfied. Then it holds that mn −−−→
n→∞

θ∗

for α ∈ [0, 1) and, likewise, m(t) −−−→
t→∞

θ∗ for α = 1.

As above, this result can be combined with Proposition 3.4 to obtain a convergence result

in Euclidean Wasserstein distance for the solution to (2.11) and (2.13), under Assumptions 1

to 3. When deriving this convergence result, we obtain non-optimal rates of order n−1/r for the

case α = 0, n−1/2r for α ∈ (0, 1) and t−1/2r for α = 1, with r = r(u, l) > 2.

To conclude this section, we present a convergence result for mn with an explicit sharp rate

in the particular case α = 0.
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Proposition 3.8 (Rate of convergence). Let d = 1, λ = 1, β > 0, α = 0, C0 ∈ Sd++ and

suppose that Assumptions 1 and 2 are satisfied. Suppose additionally that e−βf is, together with

all its derivatives, bounded from above uniformly in R. Then there exists a positive constant

k = k(m0, C0) such that, for sufficiently large n,

|mn − θ∗| 6 k

(
log n

n

)
.

The rate of convergence obtained in Proposition 3.8 is almost optimal in view of the fact

shown in Subsection 2.3 that |mn − θ∗| scales with n as O(1/n) in the case when f is quadratic.

We expect the result to extend to other values of α and to the continuous-time solution to (2.19),

but we focus on the case α = 0 in order to avoid overly lengthy and technical proofs. We

point out that, already in the Gaussian case, the argument to obtain an optimal decay rate

for α ∈ (0, 1] is quite technical. Finding a simplified argument to prove optimal rates in the

optimization setting is an interesting open problem, which we leave for future work.

3.3 Analysis of the Sampling Scheme

In this subsection, we investigate the existence of steady states and convergence for the mean

field dynamics associated with the consensus-based samplers, that is when used with λ =

(1 + β)−1. We consider both the iteration (2.11) (in the case α ∈ [0, 1)) and the nonlocal,

nonlinear Fokker–Planck equation (2.13) (in the case α = 1).

We begin by stating an existence result in the multi-dimensional setting. Since the corre-

sponding proof is very short, we include it in this section.

Theorem 3.9 (Existence of steady states). Let λ = (1 + β)−1, β > 0 and α ∈ [0, 1]. Sup-

pose Assumptions 1 and 2 are satisfied. Then there exists β such that, for all β > β, the

dynamics (2.11) and (2.13) admit a Gaussian steady state g
(
•; m∞(β), C∞(β)

)
satisfying

U−1 4 C∞(β) 4 L−1 and |m∞(β)− θ∗| = O
(

1√
β

)
.

Proof. By Lemma 2.1, a Gaussian g(•; m∞, C∞) is a steady state if and only if

m∞ = mβ(m∞, C∞) and C∞ = λ−1Cβ(m∞, C∞) ,

i.e. if and only if
(
m∞(β), C∞(β)

)
is a fixed point of the map

Φβ : (m, C) 7→
(
mβ(m, C), (1 + β)Cβ(m, C)

)
.

In order to prove the result, we show that Φβ(Sβ) ⊂ Sβ for all β sufficiently large, where

Sβ =
{

(m, C) : |m− θ∗| 6 Rβ−1/2 and U−1 4 C 4 L−1
}

and R = 2k/
√
`, with k = k(`, u, d) the constant from Lemma 3.3. Since Φβ is continuous, the

result then follows from Brouwer’s fixed point theorem. By Lemmas 3.1 and 3.2, it holds that

U−1 4 (1 + β)Cβ(m, C) 4 L−1 for any (m, C) ∈ Sβ, so we have to show only that there exist
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β such that

∀β > β, ∀(m, C) ∈ Sβ, |mβ(m, C)− θ∗| 6 Rβ−1/2.

If (m, C) ∈ Sβ, then by Lemma 3.3 there exists k = k(`, u, d) such that

∀β > 0, |mβ(m, C)− θ∗| 6
R

β

√
u

`
+ k (`+ β`)−1/2

6 Rβ−1/2

(√
u

β`
+
k

R

√
1

`

)
= Rβ−1/2

(√
u

β`
+

1

2

)

from where the statement follows easily with β = 4u
` .

This result shows that the sampling scheme admits a steady state whose mean is close to

the minimizer of f for large β, but it does not provide much information on the covariance of

the Gaussian steady state. In the one-dimensional setting, we can show that the steady state

is in fact unique and arbitrarily close to the Laplace approximation of the target distribution

provided that β is sufficiently large. By the Laplace approximation ρ̂ of the target distribution,

we mean the Gaussian probability distribution g
(
•; θ∗,D2 f(θ∗)

−1
)
, that is

ρ̂(θ) :=
e−f̂(θ)∫

Rd e−f̂(θ) dθ
, f̂(θ) := f(θ∗) +

1

2

(
(θ − θ∗)⊗ (θ − θ∗)

)
: D2 f(θ∗).

(Note that ρ̂ coincides with the target distribution when f is quadratic.) In order to establish

results in the one-dimensional setting, we make the following additional assumption on f .

Assumption 4. Let d = 1. The function f is smooth and, together with all its derivatives, it

is bounded from above by the reciprocal of a Gaussian, in the sense that for all i ∈ {0, 1, . . . }
there exists λi ∈ R such that ∥∥∥e−λit

2
f (i)(t)

∥∥∥
∞
<∞.

We let C∗ := 1/f ′′(θ∗) and denote by BR(m∗, C∗) the closed ball of radius R around (m∗, C∗).

Theorem 3.10 (Convergence to the steady state). Let d = 1 and λ = (1 + β)−1, and suppose

Assumptions 1 and 4 hold. For any R ∈ (0, C∗), there exists β = β(f,R) and k = k(f,R) such

that the following statements hold for all β > β:

• Steady state. There exists a pair
(
m∞(β), C∞(β)

)
, unique in BR(θ∗, C∗), such that the

Gaussian density ρ∞ = g(•;m∞, C∞) satisfies (2.15), and this pair satisfies∣∣∣∣∣
(
m∞(β)

C∞(β)

)
−
(
m∗

C0

)∣∣∣∣∣ 6 k

β
.

By Lemma 2.1, the density ρ∞ is a steady state of both the iterative scheme (2.11) with

any α ∈ [0, 1) and the nonlinear Fokker–Planck equation (2.13), corresponding to α = 1.

• Discrete time α ∈ [0, 1). If Assumption 3 holds and the moments of the initial (Gaus-

sian) law satisfy (m0, C0) ∈ BR(θ∗, C∗), then the solution to the iterative scheme (2.11)
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converges geometrically to the steady state ρ∞ provided that α + (1 − α2) kβ < 1. More

precisely,

∀n ∈ N,

∣∣∣∣∣
(
mn

Cn

)
−
(
m∞(β)

C∞(β)

)∣∣∣∣∣ 6
(
α+ (1− α2)

k

β

)n ∣∣∣∣∣
(
m0

C0

)
−
(
m∞(β)

C∞(β)

)∣∣∣∣∣ .
• Continuous time α = 1. If Assumption 3 holds and the moments of the initial (Gaus-

sian) law satisfy
(
m0, C0

)
∈ BR(θ∗, C∗), then the solution to the mean field Fokker Planck

equation (2.13) converges exponentially to the steady state ρ∞ provided that 1 − 2k
β > 0.

More precisely,

∀t > 0,

∣∣∣∣∣
(
m(t)

C(t)

)
−
(
m∞(β)

C∞(β)

)∣∣∣∣∣ 6 exp

(
−
(

1− 2k

β

)
t

) ∣∣∣∣∣
(
m0

C0

)
−
(
m∞(β)

C∞(β)

)∣∣∣∣∣ .
There is no conceptual obstruction to generalizing this result to the multi-dimensional set-

ting, but the associated calculations involving the Laplace’s method, on which the proof of

Theorem 3.10 relies, are significantly more technical than in the one-dimensional setting, so we

focus here on the one-dimensional case only.

4 Numerical Experiments

In this section, we present numerical experiments illustrating our method. The performance of

CBS in optimization mode is studied in Subsection 4.1. We then illustrate the efficacy of the

method for sampling in Subsection 4.2, where a simple inverse problem with low-dimensional

parameter and data is considered, and in Subsection 4.3, where a more realistic and challenging

example is examined. Video animations associated with the numerical experiments presented

in this section are freely available online [11].

4.1 General-Purpose Optimization

In this subsection, we study the efficacy of our method for solving optimization problems that

do not necessarily originate from a Bayesian context. We also show empirically how the con-

vergence of the algorithm can be improved by adapting the parameter β appropriately during

the simulation. Throughout the subsection, we consider the same non-convex test functions as

those taken in [54]: the translated Ackley function, defined for x ∈ Rd by

fA(x) = −20 exp

−1

5

√√√√1

d

d∑
i=1

|xi − b|2
− exp

(
1

d

d∑
i=1

cos
(
2π(xi − b)

))
+ e + 20, (4.1)

and the Rastrigin function, defined by

fR(x) =

d∑
i=1

(
(xi − b)2 − 10 cos

(
2π(xi − b)

)
+ 10

)
. (4.2)
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Both functions are minimized at x∗ = (b, . . . , b), where b ∈ R is a translation parameter. They

are depicted in Fig. 1.

Figure 1: Ackley (left) and Rastrigin (right) functions for d = 2 and b = 2; see (4.1) and (4.2).

In all simulations presented below, the initial particle ensemble members are drawn inde-

pendently from N(0, 3Id), and the simulation is stopped when
∣∣C(ρJn)

∣∣
F
< 10−12 for the first

time; here ρJn denotes the empirical measure associated with the ensemble at iteration n.

4.1.1 Dynamic Adaptation of β

In this paragraph, we show numerically that adapting β dynamically during a simulation can

be advantageous for convergence. We consider the following simple adaptation scheme with

parameter η ∈
(

1
J , 1
)
: denoting by {θ(j)

n }Jj=1 the ensemble at step n, the parameter β employed

for the next iteration is obtained as the positive solution to the following equation:

Jeff(β) :=

(∑J
j=1 ωj

)2

∑J
j=1 |ωj |2

= ηJ, ωj := e−βf(θ
(j)
n ) . (4.3)

Employing the notation fj = f(θ
(j)
n ), we calculate

J ′eff(β) = −2β

(∑J
j=1 ωj

)(∑J
j=1 fjωj

)
−
(∑J

j=1 fj |ωj |2
)

(∑J
j=1 |ωj |2

)2 6 0,

so Jeff is a continuous, non-increasing function with Jeff(0) = J and limβ→∞ Jeff(β) = 1.

Consequently, equation (4.3) admits a unique solution in (0,∞). The left-hand side of (4.3) is

known in statistics as an effective sample size, which motivates the notation Jeff . When this

approach is employed, the parameter β is generally small in the early stage of the simulation

as long as the initial ensemble has large enough spread, and it increases progressively as the

simulation advances and the ensemble spread decreases. In other words, this cooling schedule

for β ensures that roughly always the same proportion η of particles contribute to the weighted

sums in the scheme. This adaptation approach is useful for a two primary reasons:

• On the one hand, provided that η and J are sufficiently large, adapting β according to (4.3)

ensures that situations where the ensemble quickly collapses to a very narrow distribution
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do not arise. An early collapse of the ensemble is not desirable as the scheme may then

get stuck in local minima of the objective function f , or in the case when the collapse is

not complete, the convergence is slowed down considerably. This issue is especially critical

when the scheme (2.25) is employed with α = 0: in this case, if β is not sufficiently small

at the beginning of the simulation, it is often the case that the weighted covariance of

the initial ensemble is very close to zero, in which case the ensemble collapses nearly to a

point in a single step.

• On the other hand, increasing β in the later stage of the simulation significantly accel-

erates convergence to the minimizer. Indeed, when a fixed value of β is employed, the

weights {ωj}Jj=1 all converge to the same value as the simulation progresses and the ensem-

ble collapses, and so the influence of the objective function on the dynamics diminishes.

By increasing β dynamically, we strengthen the bias of the dynamics towards areas of

small f , thereby accelerating convergence.

In the remainder of this section, we consider for simplicity only the choice η = 1
2 . A more

detailed analysis of the efficiency of this approach, through both theoretical and numerical

means, is left for future work. More generally, an interesting open question is whether it is

possible to determine an optimal cooling schedule for β taking the above considerations into

account. We illustrate in Table 3 the performance of CBS in optimization mode, with both fixed

and adaptive β, for finding the minimizer of the Ackley function with b = 0 in dimension 2. The

data presented in each cell are calculated from 100 independent runs of the method. For all the

values of J and α considered, using the adaptive strategy based on (4.3) provides a significant

advantage, in terms of both the number of iterations required for convergence and the accuracy

of the approximate minimizer.

Adapt? α J = 50 J = 100 J = 200

no 0 100% | 511 | 8.73× 10−3 100% | 966 | 4.34× 10−3 100% | 1767 | 2.5× 10−3

no .5 100% | 611 | 1.22× 10−2 100% | 1191 | 6.87× 10−3 100% | 2141 | 3.38× 10−3

no .9 100% | 2028 | 1.6× 10−2 100% | 3693 | 8.31× 10−3 100% | 7259 | 5.22× 10−3

yes 0 100% | 31 | 1.86× 10−7 100% | 31 | 1.09× 10−7 100% | 31 | 8.44× 10−8

yes .5 100% | 49 | 2.86× 10−7 100% | 48 | 2.0× 10−7 100% | 48 | 1.43× 10−7

yes .9 100% | 251 | 2.27× 10−6 100% | 242 | 4.36× 10−7 100% | 238 | 2.87× 10−7

Table 3: Performance of the CBS in optimization mode for the Ackley function in spatial
dimension d = 2, without and with adaptive β. The three data presented in each cell are
respectively the success rate of the method, the average number of iteration until the stopping
criterion is met, and the average (over the successful runs) error at the final iteration, computed
as the infinity norm between the minimizer and the ensemble mean. Our definition of the success
rate is very similar to that used in [54]: a run is considered successful if the ensemble mean is
within .25, in infinity norm, of the minimizer at the final iteration.

4.1.2 Low-dimensional Optimization Problem: d = 2

The performance of CBS in optimization mode is illustrated in Tables 4 and 5, for the Ackley

and Rastrigin functions respectively, in spatial dimension d = 2. We make a few observations:
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• Influence of α: The simulations corresponding to α = 0 consistently require fewer itera-

tions to converge than those corresponding to α = 1
2 , and they have a better success rate

for the Rastrigin function.

• Influence of J : For the Rastrigin function, a high number of particles, i.e. a large value of

J , correlates with a better success rate. With only 50 particles, the method often converges

to the wrong local minimizer, but with 200 particles the ensemble almost always collapses

at the global minimizer.

• Influence of b: For the Rastrigin function, a low value of b correlates with better perfor-

mance. This behavior, which was observed also for CBO in [54], is not surprising because,

when b = 0, the minimizer is centered with respect to the initial ensemble.

We also note that, like CBO [54], our method performs markedly better for the Ackley function

than for the Rastrigin function. Snapshots of the particles are presented in Fig. 2 for the

parameters α = 0 and J = 100.

b α J = 50 J = 100 J = 200

0 0 100% | 31 | 1.86× 10−7 100% | 31 | 1.09× 10−7 100% | 31 | 8.44× 10−8

0 .5 100% | 49 | 2.86× 10−7 100% | 48 | 2.0× 10−7 100% | 48 | 1.43× 10−7

1 0 100% | 31 | 1.83× 10−7 100% | 31 | 1.16× 10−7 100% | 31 | 7.91× 10−8

1 .5 100% | 49 | 3.23× 10−7 100% | 49 | 2.05× 10−7 100% | 49 | 1.47× 10−7

2 0 100% | 31 | 1.86× 10−7 100% | 32 | 1.1× 10−7 100% | 32 | 8.61× 10−8

2 .5 100% | 51 | 3.03× 10−7 100% | 50 | 1.92× 10−7 100% | 50 | 1.38× 10−7

Table 4: Performance of the CBS in optimization mode for the Ackley function in spatial
dimension d = 2. See the caption of Table 3 for a description of the data presented.

b α J = 50 J = 100 J = 200

0 0 83% | 41 | 1.73× 10−7 99% | 45 | 1.19× 10−7 100% | 45 | 8.43× 10−8

0 .5 77% | 74 | 3.39× 10−4 98% | 69 | 2.21× 10−7 100% | 66 | 1.56× 10−7

1 0 84% | 42 | 1.85× 10−7 99% | 44 | 1.03× 10−7 100% | 45 | 7.8× 10−8

1 .5 72% | 68 | 6.03× 10−7 91% | 68 | 2.23× 10−7 100% | 68 | 1.56× 10−7

2 0 79% | 42 | 1.84× 10−7 96% | 44 | 1.12× 10−7 100% | 45 | 7.78× 10−8

2 .5 58% | 80 | 4.14× 10−4 74% | 75 | 3.52× 10−5 96% | 74 | 1.54× 10−7

Table 5: Performance of the CBS in optimization mode for the Rastrigin function in spatial
dimension d = 2. See the caption of Table 3 for a description of the data presented.

4.1.3 Higher-Dimensional Optimization Problem: d = 10

In this paragraph, we repeat the numerical experiments of the previous section in higher di-

mension d = 10. We employ an adaptive β in all the simulations, as this approach was shown

in the previous subsection to perform much better. The associated results are presented in

Tables 6 and 7, which show that the method performs better for small α and large J for this

case as well. Overall, the method seems to require a larger ensemble size than CBO in order to

guarantee a similar success rate. A fair comparison of the computational expenses required by
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Figure 2: Illustration of the convergence of CBS in optimization mode for the Ackley (left)
and Rastrigin (right) functions in dimension 2, for the parameters J = 100, α = 0 and with
adaptive β. The black cross denotes the unique global minimizer, and the red cross shows the
ensemble mean.
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both methods is difficult, however, because the number of time steps employed in CBO is not

documented in [54].

b α J = 100 J = 500 J = 1000

0 0 100% | 95 | 4.19× 10−4 100% | 77 | 9.81× 10−8 100% | 78 | 6.97× 10−8

0 .5 100% | 248 | 1.27× 10−2 100% | 109 | 1.71× 10−7 100% | 110 | 1.13× 10−7

1 0 100% | 100 | 1.34× 10−3 100% | 78 | 1.04× 10−7 100% | 78 | 6.79× 10−8

1 .5 98% | 278 | 3.27× 10−2 100% | 111 | 1.72× 10−7 100% | 111 | 1.13× 10−7

2 0 98% | 125 | 7.72× 10−3 100% | 78 | 9.71× 10−8 100% | 79 | 6.85× 10−8

2 .5 65% | 306 | 6.53× 10−2 100% | 113 | 1.7× 10−7 100% | 113 | 1.13× 10−7

Table 6: Performance of the CBS in optimization mode for the Ackley function in dimen-
sion 10. See the caption of Table 3 for a description of the data presented.

b α J = 100 J = 500 J = 1000

0 0 6% | 222 | 2.1× 10−2 95% | 107 | 9.69× 10−8 100% | 111 | 6.62× 10−8

0 .5 10% | 331 | 6.68× 10−2 99% | 150 | 1.88× 10−7 100% | 155 | 1.14× 10−7

1 0 4% | 224 | 4.61× 10−2 94% | 108 | 9.66× 10−8 100% | 111 | 6.97× 10−8

1 .5 0% | 334 | − 74% | 165 | 5.75× 10−7 99% | 162 | 1.18× 10−7

2 0 0% | 224 | − 74% | 113 | 9.82× 10−8 99% | 114 | 7.07× 10−8

2 .5 0% | 333 | − 19% | 190 | 1.17× 10−4 69% | 189 | 1.24× 10−7

Table 7: Performance of the CBS in optimization mode for the Rastrigin function in dimen-
sion 10. See the caption of Table 3 for a description of the data presented.

4.2 Sampling: Low-Dimensional Parameter Space

We first consider an inverse problem with low-dimensional parameter space that was first pre-

sented in [22] and later employed as a test problem in [32, 26]. In this problem, the forward

model maps the unknown (u1, u2) ∈ R2 to the observation
(
p(x1), p(x2)

)
∈ R2, where x1 = 0.25

and x2 = 0.75 and where p(x) denotes the solution to the boundary value problem

− eu1 p′′ = 1, x ∈ [0, 1], (4.4)

with boundary conditions p(0) = 0 and p(1) = u2. This problem admits the following explicit

solution [32]:

p(x) = u2x+ e−u1
(
−x

2

2
+
x

2

)
.

We employ the same parameters as in [26]: the prior distribution is N(0, σ2I2) with σ = 10, and

the noise distribution is N(0, γ2I2) with γ = 0.1. The observed data is y = (27.5, 79.7).

We now investigate the efficiency of (2.25) for sampling from the posterior distribution. To

this end, we use the parameters α = β = 1
2 and J = 1000 particles. The ensemble after 100

iterations is depicted in Fig. 3, together with the true posterior. It appears from the figure

that the Gaussian approximation of the posterior provided by scheme (2.25) is close to the true

posterior, and indeed we can verify that the mean and covariance of the true and approximate
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posterior distributions, which are given respectively by

mp =

(
−2.714...

104.346...

)
Cp =

(
0.0129... 0.0288...

0.0288... 0.0808...

)

and

m̃p

(
−2.712...

104.356...

)
C̃p =

(
0.0135... 0.0302...

0.0302... 0.0829...

)
,

are fairly close.

−3 −2 −1

103

104

105

106

Figure 3: Left: Particles at iteration n = 100 for fixed α = β = 1
2 . Middle: Gaussian

density with the same mean and covariance as the empirical distribution associated with these
particles. Right: True Bayesian posterior.

4.3 Sampling: Higher-Dimensional Parameter Space

In this section, we consider the more challenging inverse problem of finding the permeability

field of a porous medium from noisy pressure measurements in a Darcy flow; for other meth-

ods applied to this problem, see [17, 26, 52]. Assuming Dirichlet boundary conditions and

scalar permeability for simplicity, we consider the forward model mapping the logarithm of the

permeability, denoted by a(x), to the solution of the PDE

−∇ ·
(

ea(x)∇p(x)
)

= f(x), x ∈ D, (4.5a)

p(x) = 0, x ∈ ∂D. (4.5b)

Here D = [0, 1]2 is the domain and f(x) = 50 represents a source of fluid. We assume that noisy

pointwise measurements of p(x) are taken at a finite number equispaced points in D, given by

xij =

(
i

M
,
j

M

)
, 1 6 i, j 6M − 1,

and that these measurements are perturbed by Gaussian noise with distribution N (0, γ2IK),

where γ = 0.01 and K = (M − 1)2. For the prior distribution, we employ a Gaussian measure
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on L2 (D) with mean zero and precision (inverse covariance) operator given by

C−1 = (−∆ + τ2I)r,

equipped with Neumann boundary conditions on the space of mean-zero functions. Here r

and τ are parameters controlling the smoothness and characteristic inverse length scale of sam-

ples drawn from the prior, respectively. The eigenfunctions and eigenvalues of the covariance

operator are

ψ`(x) = cos
(
π(`1x1 + `2x2)

)
, λ` =

(
π2 |`|2 + τ2

)−r
, ` ∈ N2.

By the Karhunen–Loève (KL) expansion [51], it holds for any a ∼ N (0, C) that

a(x) =
∑
`∈N2

(a, ψ`)ψ`(x) =:
∑
`∈N2

√
λ` θ` ψ`(x) , (4.6)

for independent coefficients θ` ∼ N (0, 1), and where (•, •) denotes the L2-inner product.

In order to approach the problem numerically, we take as object of inference a finite number

of terms {θ`}|`|∞6N in the KL expansion of the log-permeability, which may be ordered as a

linear vector given an ordering of {0, . . . , N}2. The associated prior distribution is given by the

finite-dimensional Gaussian N (0, Id), where d = (N + 1)2. At the numerical level, the forward

model is evaluated as follows: for a given vector of coefficients θ ∈ Rd, a log-permeability field

is calculated by summation as a(•; θ) :=
∑
|`|∞6N

√
λ` θ` ψ`(•), and the corresponding solution

to (4.5) is approximated with a finite element method (FEM). Linear shape functions over a

regular mesh with 100 subdivisions per direction are employed for the finite element solution.

For the numerical experiments presented below, a true value θ† ∈ Rd for the vector of

coefficients is drawn from N (0, Id) and employed in order to construct the true permeability

field which, in turn, is used with the FEM described above in order to generate the data. In

particular, we employ only (N+1)2 terms in the KL expansion of the true permeability. We note

that, with this approach, the resulting random field should be viewed only as an approximate

sample from N (0, C). Our aim is to study the performance of CBS, not the effect of FEM

discretization and truncation of the KL series on the solution of the inverse problem.

The ensemble obtained after 100 iterations of CBS with adaptive β, with α = 0 and with

J = 512 is depicted in Fig. 4, along with the marginals of the Gaussian distribution with the

same first and second moments as the empirical measure associated with the ensemble. The

particles forming the initial ensembles were drawn independently from N(0, 9Id). In order to

validate our results, we use as point of reference the solution provided by the ensemble Kalman

sampling method [26], combined with the adaptive time-stepping scheme from [40]. It appears

from the simulations that the agreement between the posterior distribution obtained by CBS

and that obtained by ensemble Kalman sampling is very good, and both approximate posteriors

are in good agreement with the true solution.

Using the final ensemble as initial condition for (2.25) in optimization mode, and running 50

more iterations of the algorithm, one obtains an approximation of the MAP estimator, whose

associated permeability field is illustrated in Fig. 5. Here we use as point of comparison the
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solution provided by the ensemble Kalman inversion approach [35]. We present below the values

of the first 9 Karhunen–Loève coefficients of (i) the true permeability, (ii) the MAP estimator

obtained by CBS, and (iii) the MAP estimator obtained by ensemble Kalman inversion:

(u†)T =
(

1.19 −2.52 2.07 −0.97 −0.10 −1.54 0.10 −0.00 1.01 . . .
)
,

(uCBS
MAP)T =

(
1.17 −2.48 2.04 −0.73 −0.23 −1.65 −0.22 −0.02 0.23 . . .

)
,

(uEKI
MAP)T =

(
1.17 −2.48 2.04 −0.73 −0.23 −1.65 −0.23 −0.02 0.24 . . .

)
.

(All the numbers displayed here were rounded to two decimals.) The agreement between the

MAP estimators as approximated by ensemble Kalman inversion and by our method is very

good, and both vectors are close to the KL series of the logarithm of the true permeability.

(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 0) (1, 2) (2, 1) (2, 2) (0, 3) (3, 0) (1, 3) (3, 1) (2, 3) (3, 2) (3, 3)

−4
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Truth

MAP CBS

MAP EKI

Figure 4: Approximate posterior samples produced by (2.25) with α = 0 and adaptive β.
Here, the labels on the x-axis denote the multi-indices associated with the KL coefficients of
the permeability. The (non-normalized) solid curves represent the marginals of the Gaussian
distribution whose mean and covariance are calculated from the samples produced by CBS. The
(non-normalized) dashed curves are the marginal distributions obtained by kernel density esti-
mation using Gaussian kernels from the samples produced by ensemble Kalman sampling [26].
The black crosses denote the true values of the KL coefficients, i.e. the values employed to
generate the data.

4.4 Discussion

We draw the following conclusions from the numerical experiments presented in this section.

• It is crucial to dynamically adapt the parameter β during a simulation for our method

to be competitive, both for optimization and sampling tasks. We obtained very good

numerical results with the adaptation scheme based on the effective sample size in (4.3).
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Figure 5: Logarithms of true (left) and approximate permeability profiles (right). The ap-
proximate permeability profile was constructed from the approximation of the MAP estimator
provided by (2.25) with α = 0, adaptive β and λ = 1 (optimization mode), with J = 512
particles.

• For optimization tasks, our method generally requires more particles than CBO [54] in

order to consistently find the global minimizer when the number of local minima is large.

Relatedly, for a given number of particles, the probability of converging to (a small neigh-

borhood) of the correct minimizer appears to be better for CBO.

• For sampling tasks, our numerical experiments suggest that the CBS method is competi-

tive with the ensemble Kalman sampling scheme [26]. The number of iterations required

by both methods in order to reach equilibrium is of the same order of magnitude, and the

quality of the posterior approximation appears similar in the test cases we considered.

In future work, we will aim to give our proposed β-adaptation scheme a theoretical footing,

and to investigate other adaptation strategies. It will also be worthwhile to more precisely

compare our method with discretizations of CBO and EKS in terms of computational cost,

especially for PDE-based inverse problems, where evaluations of the forward model are typically

the predominant computational cost. Finally, it would be interesting, both for optimization and

sampling tasks, to investigate whether ideas from [37, 50, 27] could be leveraged in order to

improve the performance of our method when the number of particles is of the same order of

magnitude as the dimension of the parameter space.

5 Proof of the Main Results

Throughout this section, for a given m ∈ Rd and C ∈ Rd×d, we will use the notation

ρβ(θ; m, C) =
1

Zβ
e−Vβ(θ) , Vβ(θ; m, C) :=

1

2
|θ −m|2C + βf(θ) , (5.1)
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where Zβ = Zβ(m, C) is the normalization constant. When the parameters m, C are clear from

the context, we will often write just ρβ(θ) and Vβ(θ) for conciseness.

5.1 Proof of the Convergence Estimates in the Gaussian Setting

Proof of Proposition 2.4. Consider first the sampling case λ = (1 + β)−1. Using the same

notation as in the proof of Lemma 2.3, we have

C̃−1
n − β−1Id = λn

(
C̃−1

0 − β−1Id

)
. (5.2)

Rearranging the equation, we obtain

C̃n − βId = (C̃nC̃
−1
0 )λn

(
C̃0 − βId

)
.

Since C̃n commutes with C̃−1
0 from (5.2), the matrix C̃nC̃

−1
0 is symmetric and positive definite.

By (5.2), the eigenvalues {`i} of C̃nC̃
−1
0 are of the form

`i =
1

β−1mi + λn(1− β−1mi)
6 max

{
β

mi
, 1

}
6 max {1, k0} ,

where {mi} denote the eigenvalues of C̃0. Hence,

‖Cn −A‖A = β−1‖C̃n − βId‖ = λnβ−1
∥∥∥(C̃nC̃−1

0

)(
C̃0 − βId

)∥∥∥
6 λn‖C̃nC̃−1

0 ‖β−1‖C̃0 − βId‖ 6 λn max (1, k0) ‖C0 −A‖A .

This shows the convergence result of the covariance, and the convergence result for the mean

follows similarly using Lemma 2.3:

|mn − a|A = |m̃n| = λn|C̃nC̃−1
0 m̃0| 6 λn‖C̃nC̃−1

0 ‖|m̃0|
6 λn max (1, k0) |m̃0| = λn max (1, k0) |m0 − a|A .

In the optimization case λ = 1, we have using the definition of k0 that

C̃−1
n = C̃−1

0 + nId <

(
1 +

βn

k0

)
C̃−1

0 ⇒ C̃n 4

(
k0

k0 + βn

)
C̃0.

This shows the convergence result for the covariance, which directly implies the convergence

estimate for the mean.

Proof of Proposition 2.5. Notice that the right-hand side of (2.20b) commutes with C̃n, so there

exists an orthogonal matrix Q such that Ĉn := QTC̃nQ is diagonal for all n ∈ N. Introducing

m̂n = QTm̃n, we can check that m̂n and Ĉn solve again (2.20). Therefore, for all i ∈ {1, . . . , d},
it holds that (ui,n, vi,n) :=

(
(m̂n)i, (Ĉn)ii

)
solves the discrete-time equation (2.21) with initial

conditions which depend on i. The convergence of the solution for the two-dimensional difference

equation (2.21) is then given by Lemma A.1. Note that vi,0 > β/k0 for all i ∈ {1, . . . , d}, because
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by definition k0 = β‖C̃−1
0 ‖ = β‖Ĉ−1

0 ‖. In the sampling case, we have

|mn − a|A = |m̂n| 6 max(1, k0)
1

1+α
(
(1− α)λ+ α

)n|m̂0|

= max(1, k0)
1

1+α
(
(1− α)λ+ α

)n|m0 − a|A .

On the other hand, it holds for any 1 6 i 6 d that

|(Ĉn)ii − β| 6 max(1, k0)
(
(1− α2)λ+ α2

)n |(Ĉ0)ii − β|.

From this, we deduce

‖Ĉn − βId‖ 6 max(1, k0)
(
(1− α2)λ+ α2

)n ‖Ĉ0 − βId‖.

Since
∥∥QMQT

∥∥ = ‖M‖ for any symmetric matrix M and orthogonal matrix Q, we deduce

‖C̃n − βId‖ 6 max(1, k0)
(
(1− α2)λ+ α2

)n ‖C̃0 − βId‖.

The statement then follows because ‖Cn − C∞‖A = β−1‖C̃n − βId‖ by definition of ‖•‖A. An

analogous argument, using the estimates (A.3a) and (A.3b) in Lemma A.1 and noting that the

function s 7→ (s+ 1)/
(
s+ 1 + (1− α2)n

)
is strictly decreasing for s > 0, yields the bounds for

the optimization case λ = 1.

Proof of Proposition 2.6. Letting m̃(t) = A−1/2(m(t) − a) and C̃(t) = βA−1/2C(t)A−1/2, we

can verify that m̃ and C̃ solve

˙̃m = −C̃
(
Id + C̃

)−1
m̃,

˙̃
C = −2C̃

(
Id + C̃

)−1
(
C̃ −

(
1− λ
λ

)
Id

)
.

It is then straightforward to show the result by employing the same reasoning as in the discrete-

time case and using Lemma A.2, which characterizes the convergence to equilibrium for the

following ODE system with u, v scalar functions:

u̇ = −
(

v

1 + v

)
u, v̇ = −2

(
v

1 + v

)
(v − v∞) , v∞ =

1− λ
λ

. (5.4)

We leave the details to the reader.

5.2 Proof of the Preliminary Bounds

Proof of Lemma 3.1. Recall notation (5.1), and let θ̃ denote the unique global minimizer of

Vβ(θ). The function g defined by

g(θ) = f(θ)−
(
f(θ̃) +∇f(θ̃)T(θ − θ̃) +

1

2
|θ − θ̃|2L−1

)
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is such that g(θ̃) = ∇g(θ̃) = 0 and D2 g(θ) < 0 for all θ ∈ Rd, by the convexity assumption on

the function f . We denote

Ṽβ(θ) :=
1

2
|θ|2 + βg̃(θ) , g̃(θ) := g

(
θ̃ +

(
C−1 + βL

)−1/2
θ
)
,

and define ρ̃β(θ) = 1

Z̃β
e−Ṽβ(θ) where Z̃β is the normalization constant. By a change of variables,

it holds

Cβ(m, C) = C(ρβ) =
(
C−1 + βL

)−1/2 C(ρ̃β)
(
C−1 + βL

)−1/2
,

It remains to show C(ρ̃β) 4 Id or, equivalently, that for every unit vector a ∈ Rd it holds

aTC(ρ̃β)a =

∫
Rd

∣∣∣∣aTθ −
∫
Rd

(aTθ) ρ̃β(θ)dθ

∣∣∣∣2 ρ̃β(θ) dθ 6 1, (5.5)

Clearly g̃(0) = ∇g̃(0) = 0 and D2 g̃ < 0, so D2 Ṽβ < Id. Therefore, by the Bakry-Emery

criterion [42, Theorem 2.10], the probability distribution dµ(θ) := ρ̃β(θ)dθ satisfies a logarithmic

Sobolev inequality, and thus also a Poincaré inequality by [42, Proposition 2.12], with the factor

on the right equal to 1. That is, it holds

∀u ∈ H1(µ),

∫
Rd

∣∣∣∣u− ∫
Rd

u dµ

∣∣∣∣2 dµ 6
∫
Rd

|∇u|2 dµ.

Applying this inequality with u(θ) = aTθ gives (5.5).

Proof of Lemma 3.2. Let θ̃ denote again the unique global minimizer of Vβ(θ), where Vβ is given

in (5.1). The function g defined by

g(θ) = f(θ)−
(
f(θ̃) +∇f(θ̃)T(θ − θ̃) +

1

2
|θ − θ̃|2U−1

)
is such that g(θ̃) = ∇g(θ̃) = 0 and D2 g(θ) 4 0 for all θ ∈ Rd, by Assumption 2. By a change

of variables, it holds

Cβ(m, C) = C(ρβ) =
(
C−1 + βU

)−1/2 C(ρ̃β)
(
C−1 + βU

)−1/2
,

where ρ̃β(θ) = 1

Z̃β
e−Ṽβ(θ), with Z̃β the normalization constant and

Ṽβ(θ) :=
1

2
|θ|2 + βg̃(θ) , g̃(θ) := g

(
θ̃ +

(
C−1 + βU

)−1/2
θ
)
.

It remains to show that C(ρ̃β) < Id. To this end, let θ̄ =M(ρ̃β) for brevity and, for a given unit

vector a ∈ Rd, let ∂a = aT∇ and so ∂aρ̃β = −(∂aṼβ)ρ̃β. By the Cauchy–Schwarz inequality,

∫
Rd

∂aṼβ(θ) aT(θ − θ̄) ρ̃β(θ) dθ 6

√∫
Rd

∣∣∣∂aṼβ(θ)
∣∣∣2 ρ̃β(θ) dθ

√∫
Rd

∣∣aT(θ − θ̄)
∣∣2 ρ̃β(θ) dθ.

34



After rearranging and using integration by parts, this gives

aTC(ρ̃β)a >

(∫
Rd ∂aṼβ(θ) aT(θ − θ̄) ρ̃β(θ) dθ

)2

∫
Rd

∣∣∣∂aṼβ(θ)
∣∣∣2 ρ̃β(θ) dθ

=

(∫
Rd aT(θ − θ̄) ∂aρ̃β(θ) dθ

)2
−
∫
Rd ∂aṼβ(θ)∂aρ̃β(θ) dθ

=
1∫

Rd ∂2
aṼβ(θ)ρ̃β(θ) dθ

,

where we denote ∂2
ah(θ) = aTD2h(θ)a. Since D2 Ṽβ 4 Id because D2 g̃ 4 0, it follows immedi-

ately that C(ρ̃β) < Id.

Proof of Lemma 3.3. Let θ̃ denote again the unique global minimizer of Vβ(θ) given by (5.1).

We first show a bound on θ̃ − θ∗. By the assumptions on f , it holds

Vβ(θ) >
1

2
|θ −m|2C +

`β

2
|θ − θ∗|2 + βf(θ∗) >

`β

2
|θ − θ∗|2 + βf(θ∗).

Likewise, it holds Vβ(θ∗) 6 1
2

∥∥C−1
∥∥ |θ∗ −m|2 + βf(θ∗), so we obtain

Vβ(θ)− Vβ(θ∗) >
`β

2
|θ − θ∗|2 −

1

2

∥∥C−1
∥∥ |θ∗ −m|2 .

In particular, for any θ such that

|θ − θ∗| >
(∥∥C−1

∥∥
`β

)1/2

|θ∗ −m| =: R,

it holds Vβ(θ)− Vβ(θ∗) > 0, implying that |θ̃ − θ∗| 6 R. Now,

|mβ(m, C)− θ̃| = |M(ρβ)− θ̃| =
∣∣∣∣∫

R
(θ − θ̃)ρβ(θ) dθ

∣∣∣∣
6

√∫
Rd

|θ − θ̃|2 ρβ(θ) dθ =

√√√√∫Rd |θ − θ̃|2 e−Vβ(θ) dθ∫
Rd e−Vβ(θ) dθ

. (5.6)

Since Vβ(θ) is minimized at θ = θ̃, it holds

Vβ(θ̃) +
1

2
|θ − θ̃|2(C−1+βL)−1 6 Vβ(θ) 6 Vβ(θ̃) +

1

2
|θ − θ̃|2(C−1+βU)−1

Using these inequalities, we can obtain an upper bound for the numerator in (5.6) and a lower

bound for the denominator in (5.6), respectively:∫
Rd

|θ − θ̃|2 e−Vβ(θ) dθ 6 e−Vβ(θ̃) tr
((
C−1 + βL

)−1
)

det
(
C−1 + βL

)−1/2
(2π)d/2∫

Rd

e−Vβ(θ) dθ > e−Vβ(θ̃) det
(
C−1 + βU

)−1/2
(2π)d/2.

Combining these inequalities, writing the determinant as a product of eigenvalues, and using
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the inequality 1+x
1+y 6 x

y for all 0 < y 6 x, we deduce

|mβ(m, C)− θ̃| 6
√

tr
(

(C−1 + βL)−1
)det

(
C−1 + βU

)1/4
det (C−1 + βL)1/4

6
√
d ‖(C−1 + βL)−1‖det

(
C−1 + βuId

)1/4
det (C−1 + β`Id)

1/4
6
√
d ‖(C−1 + βL)−1‖

(u
`

)d/4
.

The statement then follows from the triangle inequality,

|mβ(m, C)− θ∗| 6 |θ∗ − θ̃|+ |mβ(m, C)− θ̃|,

and from the fact that
∥∥(C−1 + βL)−1

∥∥ 6
∥∥(C−1 + β`Id)

−1
∥∥ 6

(
‖C‖−1 + β`

)−1
.

5.3 Proof of Proposition 3.4 and Theorem 3.5

Proof of Proposition 3.4. Let x = α2 for simplicity. It holds by (2.6b) and Lemma 3.1 that

Cn+1 4 xCn + (1− x)(C−1
n + βL)−1.

Therefore, introducing C̄n = βL1/2CnL
1/2, it holds

C̄n+1 4 xC̄n + (1− x)(C̄−1
n + Id)

−1.

Let D̄n denote the solution to the discrete-time equation

D̄n+1 = xD̄n + (1− x)(D̄−1
n + Id)

−1, D̄0 = C̄0.

It is clear that C̄n 4 D̄n for all n > 0. Indeed, this is true for n = 0, and if C̄n 4 D̄n then

D̄n+1 − C̄n+1 < x(D̄n − C̄n) + (1− x)
(
(D̄−1

n + Id)
−1 − (C̄−1

n + Id)
−1
)

< (1− x)
(
(D̄−1

n + Id)
−1 − (C̄−1

n + Id)
−1
)

By [3, Proposition V.1.6], the function R 3 s 7→ −1/s is operator monotone on (0,∞), meaning

that if two symmetric positive definite matrices M1 and M2 are such that M1 < M2, then it

holds that M−1
1 4M−1

2 . Therefore

C̄n 4 D̄n ⇒ C̄−1
n < D̄−1

n ⇒ C̄−1
n + Id < D̄−1

n + Id ⇒ (C̄−1
n + Id)

−1 4 (D̄−1
n + Id)

−1,

which shows that D̄n+1 − C̄n+1 < 0. Now note that D̄n satisfies the same equation as C̃n

in (2.20b), so we deduce by a reasoning similar to the proof of Proposition 2.5 that D̄n satisfies

D̄n 4

( ∥∥C̄−1
0

∥∥+ 1∥∥C̄−1
0

∥∥+ 1 + (1− x)n

)
C̄0,
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which implies the statement for the discrete-time case α ∈ (0, 1). If α = 0, then it follows from

Proposition 2.4 that

D̄n 4

( ∥∥C̄−1
0

∥∥∥∥C̄−1
0

∥∥+ n

)
C̄0.

Similarly in the continuous-time case, let C̄(t) = βL1/2C(t)L1/2 and let D̄(t) denote the

solution to the equation

d

dt
D̄(t) = −2D̄(t) + 2

(
D̄(t)−1 + Id

)−1
, D̄(0) = C̄(0).

We have by (2.17b) and Lemma 3.1 that

d

dt
C̄(t) 4 −2C̄(t) + 2

(
C̄(t)−1 + Id

)−1
.

Using the same reasoning as in the discrete-time case, we derive that

d

dt

(
D̄(t)− C̄(t)

)
< −2

(
D̄(t)− C̄(t)

)
⇔ d

dt

(
e2t
(
D̄(t)− C̄(t)

))
< 0,

and so C̄(t) 4 D̄(t) for all t > 0. Employing a reasoning similar to that in Proposition 2.6, we

obtain the statement.

We show a similar result establishing a lower bound on Cn.

Lemma 5.1 (Lower bound on the covariance in optimization mode). Let λ = 1, β > 0 and α ∈
[0, 1), and assume that Assumption 2 holds. Then, for any solution {(mn, Cn)}n∈N to (2.18a)

and (2.18b) with C0 ∈ Sd++, it holds that

Cn <
(
C−1

0 + n(1− α2)βU
)−1

. (5.7)

Likewise, for any solution
{(
m(t), C(t)

)}
t∈R>0

to (2.19a) and (2.19b) with C(0) ∈ Sd++, the

following inequality holds:

C(t) <
(
C(0)−1 + 2tβU

)−1
. (5.8)

Proof. Let us now use the notation Ĉn = βU1/2CnU
1/2. It holds by Lemma 3.2

Ĉn+1 < xĈn + (1− x)(Ĉ−1
n + Id)

−1.

Defining P̂n = Ĉ−1
n for n ∈ {0, 1, . . . } we have

P̂n+1 4 (xId + P̂n)−1(Id + P̂n)P̂n = P̂n + (1− x)(Id + xP̂−1
n )−1 4 P̂n + (1− x)Id,

so we deduce (5.7). For the continuous-time case, we employ the notation Ĉ(t) = βU1/2C(t)U1/2

and P̂ (t) = Ĉ(t)−1. By (2.19b) and Lemma 3.2, we have that

d

dt
Ĉ(t) < −2Ĉ(t) + 2(Ĉ(t)−1 + Id)

−1

= −2(Ĉ(t)−1 + Id)
−1
[
(Ĉ(t)−1 + Id)Ĉ(t)− Id

]
= −2Ĉ(t)

(
Ĉ(t) + Id

)−1
Ĉ(t) .
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Hence,
d

dt
P̂ (t) = −Ĉ(t)−1 d

dt
Ĉ(t)Ĉ(t)−1 4 2

(
Id + Ĉ(t)

)−1
4 2Id,

leading to the statement.

Remark 5.1. A simple corollary of Proposition 3.4 and Lemma 5.1 is that the condition number

cond(Cn) = ‖Cn‖‖C−1
n ‖

of Cn remains bounded as n→∞, and similarly in continuous time.

In order to prove Theorem 3.5, we first show the following auxiliary result.

Lemma 5.2. Let β > 0 and suppose f satisfies Assumptions 1 and 2. Then there exists a

constant K = K(β, d, `, u) > 0 such that the following inequality holds

|mβ(m, C)−m + βC∇f(m)| 6 eβf(m) Kβ |C∇f(m)| ‖C‖+K ‖C‖3/2
1−K eβf(m) ‖C‖ ,

for all (m× C) ∈ Rd × Sd++ such that the denominator is positive.

Proof. By Taylor’s theorem, there exists for all (θ,m) ∈ Rd ×Rd a point ξ = ξ(θ,m) ∈ Rd on

the straight segment between θ and m such that

e−βf(θ) = e−βf(m)− e−βf(m) β∇f(m) · (θ −m)

+
1

2
e−βf(ξ)

(
β2
(
∇f(ξ)⊗∇f(ξ)

)
− βD2 f(ξ)

)
:
(
(θ −m)⊗ (θ −m)

)
=: e−βf(m)− e−βf(m) β∇f(m) · (θ −m) +R(θ; m).

By Assumption 1 and Assumption 2, it is clear that

1

2
sup
ξ∈Rd

(
e−βf(ξ)

(
β2 |∇f(ξ)|2 + β

∥∥D2 f(ξ)
∥∥

F

))
<∞,

where ‖•‖F denote the Frobenius norm. Consequently, there exists a constant M such that

∀(θ,m) ∈ Rd ×Rd, |R(θ; m)| 6M |θ −m|2 . (5.9)

We therefore deduce∫
Rd

g(θ; m, C) e−βf(θ) dθ = e−βf(m) +R0(m, C), (5.10a)∫
Rd

(θ −m) g(θ; m, C) e−βf(θ) dθ = − e−βf(m) βC∇f(m) +R1(m, C), (5.10b)

with remainder terms satisfying the bounds

∀(m, C) ∈ Rd × Sd++,

{
|R0(m, C)| 6 K ‖C‖ ,
|R1(m, C)| 6 K ‖C‖3/2 .

(5.11)
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The second bound holds because, by (5.9) and a change of variable, we have

|R1(m, C)| 6M

∫
Rd

|θ −m|3 g(θ; m, C) dθ

= M

∫
Rd

|C1/2u|3 g(u; 0, Id) du 6M‖C‖3/2
∫
Rd

|u|3g(u; 0, Id) du.

Using (5.10a) and (5.10b), we obtain

mβ(m, C)−m =
− e−βf(m) βC∇f(m) +R1(m, C)

e−βf(m) +R0(m, C)
.

In view of (5.11), it therefore holds

|mβ(m, C)−m + βC∇f(m)| =
∣∣∣∣βC∇f(m)R0(m, C) +R1(m, C)

e−βf(m) +R0(m, C)

∣∣∣∣
6 eβf(m) Kβ |C∇f(m)| ‖C‖+K ‖C‖3/2∣∣1 + eβf(m)R0(m, C)

∣∣ .

Using the bound on R0(m, C) given in (5.11), we obtain the statement.

Proof of Theorem 3.5. For a contradiction, assume mn → θ̂ and θ̂ 6= θ∗, where θ∗ denotes the

global minimizer of f . Then, by the convexity assumption on f , it holds that |∇f(θ̂)| > 0.

By Proposition 3.4, it holds Cn → 0, and by Remark 5.1, the condition number of Cn satisfies

cond(Cn) 6 κ for some κ > 0 and all n ∈ {0, 1, . . . }. By continuity of ∇f at θ̂, we have that

for any ε > 0, there is δ = δ(ε) > 0 such that

∀m ∈ Bδ(θ̂),
∣∣∣∇f(θ̂)−∇f(m)

∣∣∣ 6 ε

κ

∣∣∣∇f(θ̂)
∣∣∣ (5.12)

Fix 0 < ε� 1 and let δ = δ(ε). From Lemma 5.2, there exists K > 0 such that the inequality

|mβ(m, C)−m + βC∇f(m)| 6 Kβ eβf(m) |C∇f(m)| ‖C‖+K eβf(m) ‖C‖3/2
1−K eβf(m) ‖C‖ (5.13)

is satisfied for all (m, C) ∈ (Rd × Sd++) such that the denominator is positive. We claim that

there exists c̃ > 0 such that the following inequalities are satisfied for all m ∈ Bδ(θ̂) and all

matrices 0 < C 6 c̃Id such that cond(C) 6 κ:

∣∣∣1−K eβf(m) ‖C‖
∣∣∣ > 1

2
,

Kβ eβf(m) ‖C‖ 6 ε

4
,

K eβf(m) ‖C‖3/2 6
ε

4
|C∇f(m)| .

(5.14)

Indeed, it suffices to choose

c̃ = min

 I

2K
,
εI

4Kβ
,

(
εI

4Kκ
inf

m∈Bδ(θ̂)
|∇f(m)|

)2
 , where I = inf

m∈Bδ(θ̂)
e−βf(m) .
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Here the arguments of the minimum guarantee that each of the three inequalities in (5.14) are

satisfied, respectively. We note that infm∈Bδ(θ̂) |∇f(m)| > 0 by (5.12) and the fact that ε/κ < 1.

To justify that the third inequality in (5.14) is indeed satisfied for this choice of c̃, notice that

|C∇f(m)| > λmin(C) |∇f(m)| > cond(C)−1 |∇f(m)| ‖C‖ .

Substituting the three inequalities in (5.14) into the estimate (5.13) from Lemma 5.2, we obtain

that, for all m ∈ Bδ(θ̂) and all 0 < C 6 c̃Id such that cond(C) 6 κ, it holds

|mβ(m, C)−m + βC∇f(m)| 6 ε |C∇f(m)| . (5.15)

Now since (mn, Cn) → (θ̂, 0) as n → ∞ by assumption, there exists N sufficiently large such

that mn ∈ Bδ(θ̂) and 0 < Cn 6 c̃Id and cond(Cn) 6 κ for all n > N . By (2.6), we have that

for any n > N it holds

mn+1 −mn = (1− α)
(
mβ(mn, Cn)−mn

)
= −(1− α)

(
βCn∇f(mn) + r(mn, Cn)

)
,

where r(mn, Cn) is the remainder term, bounded by (5.15). Taking the inner product of both

sides with ∇f(θ̂) and using (5.15), we deduce

−(mn+1 −mn)T∇f(θ̂) > β(1− α)
(
∇f(θ̂)TCn∇f(mn)

)
− ε(1− α) ‖Cn‖ |∇f(mn)| |∇f(θ̂)|.

For any (x,y) ∈ Rd ×Rd with |x− y| 6 ζ |x|, it holds

xTCny = xTCnx− xTCn (x− y)

> xTCnx−
√

xTCnxT

√
(x− y)TCn (x− y) > λmin(Cn) |x|2 (1− cond(Cn) ζ) .

Together with (5.12), this implies

∀n > N, −(mn+1 −mn)T∇f(θ̂) >β(1− α)(1− ε)λmin(Cn)|∇f(θ̂)|2

− ε
(

1 +
ε

κ

)
(1− α)λmax(Cn)|∇f(θ̂)|2.

By repeating this reasoning with a smaller ε if necessary, we can ensure

∀n > N, −(mn+1 −mn)T∇f(θ̂) > Kλmin(Cn)|∇f(θ̂)|2, (5.16)

with a constant K independent of n. Since λmin(Cn) > λ
n by (5.7), for some other constant λ

independent of n, we conclude that for any n > N , it holds

−(mn+1 −mN )T∇f(θ̂) >

(
n∑

s=N

1

s

)
Kλ

∣∣∣∇f(θ̂)
∣∣∣2 −−−→

n→∞
∞,

which is a contradiction because we assumed mn → θ̂. A similar reasoning applies in the

continuous-time setting.
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5.4 Proof of Propositions 3.7 and 3.8

For simplicity, we introduce the “dimensionless” notation m̃ =
√
`β(m− θ∗) and C̃ = `βC. We

also introduce

m̃β(m̃, C̃) =
√
`β

(
mβ

(
θ∗ +

m̃√
`β
,
C̃

`β

)
− θ∗

)
=
√
`β
(
mβ (m,C)− θ∗

)
,

C̃β(m̃, C̃) = `β Cβ

(
θ∗ +

m̃√
`β
,
C̃

`β

)
= `β Cβ(m,C) .

We begin by obtaining auxiliary results.

Lemma 5.3 (Bound on the weighted mean). Let d = 1 and β > 0. If Assumption 1 is satisfied,

then it holds

∀(m̃, C̃) ∈ R×R>0, |m̃β(m̃, C̃)| 6 |m̃|
1 + C̃

1 + 2

φ

(
|m̃|√
C̃(1+C̃)

)
|m̃|√
C̃(1+C̃)

 , (5.17)

with φ the probability density function of the standard normal distribution, i.e. φ = g(•; 0, 1).

Proof. Let ρ+(θ) := 1
Z+

1[θ∗,∞)(θ)ρβ(θ) and ρ−(θ) := 1
Z−

1(−∞,θ∗)(θ)ρβ(θ), where ρβ is defined as

in (5.1) and Z+, Z− are the normalization constants. It is clear that

M(ρ−) 6M(ρβ) 6M(ρ+) and M(ρ−) 6 θ∗ 6M(ρ+).

For example, we have

M(ρ+)− θ∗ =

∫∞
θ∗

(θ − θ∗)ρβ(θ)∫∞
θ∗
ρβ(θ)

>

∫∞
θ∗

(θ − θ∗)ρβ(θ)∫∞
−∞ ρβ(θ)

>

∫∞
−∞(θ − θ∗)ρβ(θ)∫∞

−∞ ρβ(θ)
=M(ρβ)− θ∗.

Now notice that, since f(θ) = f(θ∗) + `
2 |θ − θ∗|2 + g(θ) for a function g that is nondecreasing

on [θ∗,∞) and such that g(θ∗) = g′(θ∗) = 0, it holds by Lemma A.3 that

M(ρ+)− θ∗ =

∫∞
θ∗

(θ − θ∗) exp
(
− (θ−m)2

2C − βf(θ)
)

dθ∫∞
θ∗

exp
(
− (θ−m)2

2C − βf(θ)
)

dθ

6

∫∞
θ∗

(θ − θ∗) exp
(
− (θ−m)2

2C − β`
2 |θ − θ∗|2

)
dθ∫∞

θ∗
exp

(
− (θ−m)2

2C − β`
2 |θ − θ∗|2

)
dθ

.

Completing the square in the last expression, we obtain

M(ρ+)− θ∗ 6

∫∞
θ∗

(θ − θ∗) exp

(
−1

2

(
1
C + β`

) (
θ −

m
C

+`βθ∗
1
C

+`β

)2
)

dθ

∫∞
θ∗

exp

(
−1

2

(
1
C + β`

) (
θ −

m
C

+`βθ∗
1
C

+`β

)2
)

dθ

=: D(m,C).

We claim that D(•, C), which is the mean of a truncated Gaussian up to the additive
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constant θ∗, is a nondecreasing function for fixed C. Indeed, let us introduce the function

µ : (m,C) 7→ m/C+`βθ∗
1/C+`β . Since µ(m,C) is an increasing function of m for fixed C, it is sufficient

to show that the function

µ 7→
∫∞
θ∗

(θ − θ∗) exp
(
−1

2

(
1
C + β`

)
(θ − µ)2

)
dθ∫∞

θ∗
exp

(
−1

2

(
1
C + β`

)
(θ − µ)2

)
dθ

(5.18)

is nondecreasing for fixed C. To this end, assume that µ1 6 µ2 and note that

exp

(
−1

2

(
1

C
+ β`

)
|θ − µ1|2

)
∝ exp

(
−1

2

(
1

C
+ β`

)
|θ − µ2|2

)
exp

(
−
(

1

C
+ β`

)
(µ2 − µ1) θ

)
.

Since the second factor is decreasing for θ ∈ [θ∗,∞), we deduce by Lemma A.3 that the function

defined in (5.18) is nondecreasing, and therefore D(•, C) is also nondecreasing.

Using the standard formula for the mean of a truncated normal distribution, we deduce

D(m,C) = µ(m,C)− θ∗ +
φ
(√

1
C + `β

(
θ∗ − µ(m,C)

))
1− Φ

(√
1
C + `β

(
θ∗ − µ(m,C)

)) 1√
1
C + `β

,

where Φ denotes the CDF of the standard normal distribution. Using the notation introduced

at the beginning of this section and the fact that Φ(x) + Φ(−x) = 1, this rewrites

√
`βD(m,C) =

1

1 + C̃

m̃+

φ

(
m̃√

C̃(1+C̃)

)
Φ

(
m̃√

C̃(1+C̃)

)√C̃(1 + C̃)

 =: D̃(m̃, C̃).

Since D(•, C) is nondecreasing, we deduce that√
`β
(
M(ρ+)− θ∗

)
6 D̃(|m̃|, C̃).

Employing the same reasoning for M(ρ−), we obtain similarly√
`β(M(ρ−)− θ∗) > −D̃(|m̃|, C̃).

Using the fact that Φ(x) > Φ(0) = 1/2 for all x > 0, and√
`β(M(ρ−)− θ∗) 6 m̃β(m̃, C̃) 6

√
`β
(
M(ρ+)− θ∗

)
,

we obtain the statement.

In order to establish Proposition 3.8, we prove the following technical result.

Lemma 5.4 (Bound on the ratio of weighted moments). Let d = 1 and β > 0. If Assumptions 1
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and 2 are satisfied, then there exists for all ε ∈ (0, 1) a constant γ = γ(`, u, ε) > 0 such that

∀(m̃, C̃) ∈ R×R>0,

∣∣∣m̃β(m̃, C̃)
∣∣∣

C̃β(m̃, C̃)
1
r

6 max

(
γ,
|m̃|
C̃

1
r

)
,

where r = max
(
u
` , (2 + ε)

)
.

Proof. Using Lemma 3.2 and Lemma 5.3, we deduce

∣∣∣∣∣ m̃β(m̃, C̃)

C̃β(m̃, C̃)
1
r

∣∣∣∣∣ 6
∣∣∣∣∣∣∣∣∣
m̃β(m̃, C̃)(

C̃

1+u
`
C̃

) 1
r

∣∣∣∣∣∣∣∣∣ 6
|m̃|
C̃

1
r

(
1 + rC̃

) 1
r

1 + C̃

1 + 2

φ

(
|m̃|√
C̃(1+C̃)

)
|m̃|√
C̃(1+C̃)

 =: B(m̃, C̃). (5.19)

If |m̃| > γC̃1/r for some γ > 0, then it holds that

(
1 + rC̃

) 1
r

1 + C̃

1 + 2

φ

(
|m̃|√
C̃(1+C̃)

)
|m̃|√
C̃(1+C̃)

 6

(
1 + rC̃

) 1
r

1 + C̃

1 + 2

φ

(
γC̃

1
r√

C̃(1+C̃)

)
γC̃

1
r√

C̃(1+C̃)

 (5.20)

since φ(z)/z is non-increasing. We claim that, for γ sufficiently large, the right-hand side of

this inequality is bounded from above by 1 for all C̃ > 0. Checking this claim is technical but

not difficult, so we postpone the proof to Lemma A.4 in the appendix. For such a value of γ, it

holds by (5.19) that if |m̃| > γC̃1/r, then∣∣∣m̃β(m̃, C̃)
∣∣∣

C̃β(m̃, C̃)
1
r

6
|m̃|
C̃

1
r

.

On the other hand, sinceB(•, C̃) is increasing for fixed C̃ (because the function x 7→ x+2φ(x)

is increasing), it holds that, if |m̃| 6 γC̃1/r, then B(|m̃| , C̃) 6 B(γC̃1/r, C̃) 6 γ by Lemma A.4

again, which proves the result.

Proof of Proposition 3.7. Let us first assume that α = 0. Then, by (2.18), since the moments

of successive iterates are related by

m̃n+1 = m̃β(m̃n, C̃n) and C̃n+1 = C̃β(m̃n, C̃n)

for this value of α, it holds by Lemma 5.4 that

|m̃n+1|
C̃

1/r
n+1

6 max

(
γ,
|m̃n|
C̃

1/r
n

)
6 . . . 6 max

(
γ,
|m̃0|
C̃

1/r
0

)
, (5.21)

which gives directly the convergence of m̃n to 0, in view of the fact that C̃n → 0 by Propo-

sition 3.4. In the case where α ∈ (0, 1), the moments of successive iterates are related by the
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equations

m̃n+1 = (1− α)m̃β(m̃n, C̃n) + αm̃n,

C̃n+1 = (1− α2)C̃β(m̃n, C̃n) + α2C̃n,

so clearly

|m̃n+1| 6 (1− α)
∣∣∣m̃β(m̃n, C̃n)

∣∣∣+ α |m̃n|

6 (1− α)
∣∣∣m̃β(m̃n, C̃n)

∣∣∣+ αmax
(
|m̃n| , γC̃1/r

n

)
=: m̂n+1.

We will now use the technical Lemma A.5 in the appendix with parameters

(Ĉβ, Ĉn, m̂β, û) =
(
C̃β(m̃n, C̃n), C̃n,

∣∣∣m̃β(m̃n, C̃n)
∣∣∣ ,max

(
|m̃n| , γC̃1/r

n

))
.

Using Lemma 5.4, we check that the assumptions of Lemma A.5 are satisfied:

m̂β

Ĉ
1/r
β

=

∣∣∣m̃β(m̃n, C̃n)
∣∣∣

C̃
1/r
β

6 max

(
γ,
|m̃n|
C̃

1/r
n

)
=

û

Ĉ
1/r
n

,

so we deduce that, for q = 2r,

|m̃n+1|
C̃

1/q
n+1

6
m̂n+1

C̃
1/q
n+1

6
û

Ĉ
1/q
n

=
max

(
|m̃n| , γC̃1/r

n

)
C̃

1/q
n

= max

(
|m̃n|
C̃

1/q
n

, γC̃1/r−1/q
n

)
.

Since C̃n 6 C̃0 by Proposition 3.4, this implies

|m̃n+1|
C̃

1/q
n+1

6 max

(
|m̃n|
C̃

1/q
n

, γC̃
1/r−1/q
0

)
6 . . . 6 max

(
|m̃0|
C̃

1/q
0

, γC̃
1/r−1/q
0

)
,

implying the convergence of m̃n → 0 with rate n−1/q.

A similar reasoning can be employed to show the convergence in continuous time; the details

are omitted for conciseness.

Proof of Proposition 3.8. Let us now obtain a convergence rate in the case where α = 0. To this

end, the main idea is to express that, close to equilibrium, i.e. when Cn � 1 and |mn − θ∗| � 1,

the algorithm behaves similarly to how it would in a quadratic potential. Employing the same

reasoning as in the derivation of (5.10a) and (5.10b), now using Taylor’s theorem up to higher

orders, we deduce∫
R
g(θ;m,C) e−βf(θ) dθ = e−βf(m)

(
1 +

(
β2
∣∣f ′(m)

∣∣2 − βf ′′(m)
) C

2

)
+R0(m,C), (5.22a)∫

R
(θ −m) g(θ;m,C) e−βf(θ) dθ = − e−βf(m) βCf ′(m) +R1(m,C), (5.22b)∫

R
(θ −m)2 g(θ;m,C) e−βf(θ) dθ = e−βf(m)C

(
1 +

(
β2
∣∣f ′(m)

∣∣2 − βf ′′(m)
) 3C

2

)
+R2(m,C),

44



with remainder terms (different from the ones in the proof of Theorem 3.5) satisfying

∀m ∈ (θ∗ − 1, θ∗ + 1), ∀0 < C 6 1,


|R0(m,C)| 6 K |C|2 ,
|R1(m,C)| 6 K |C|2 ,
|R2(m,C)| 6 K |C|3 ,

for an appropriate constant K. We claim that

mβ(m,C)− θ∗ =
(
C−1 + βf ′′(m)

)−1
C−1(m− θ∗) +Rm(m,C) (5.23a)

Cβ(m,C) =
(
C−1 + βf ′′(m)

)−1
+RC(m,C), (5.23b)

with Rm and RC satisfying

∀m ∈ (θ∗−m, θ∗+m), ∀0 < C < C

 |Rm(m,C)| 6 K
(
C2 + C2 |m− θ∗|+ C |m− θ∗|2

)
,

|RC(m,C)| 6 K |C|3 ,

for a possibly different constant K independent of m and C and appropriate positive constants

m and C. For completeness, let us present the details of the proof of (5.23a). To simplify the

notation, we will write u(m,C) = O
(
v(m,C)

)
to mean that there exist constants K, m̃ and C̃

such that |u(m,C)| 6 K v(m,C) for all m ∈ (θ∗ − m̃, θ∗ + m̃) and for all 0 < C < C̃. It holds,

by a Taylor expansion of the function x 7→ (1 + x)−1 around x = 0,

(
C−1 + βf ′′(m)

)−1
C−1(m− θ∗) = m− θ∗ − Cβf ′′(m)(m− θ∗) +O(C2 |m− θ∗|)

= m− θ∗ − Cβf ′(m) +O(C2 |m− θ∗|+ C |m− θ∗|2)

= mβ(m,C)− θ∗ +O(C2 + C2 |m− θ∗|+ C |m− θ∗|2).

In the second line, we used that f ′′(m)(θ∗−m) = f ′(θ∗)− f ′(m)− 1
2f
′′′(ξ)|θ∗−m|2 by Taylor’s

theorem, for some appropriate ξ. Moreover, the third line is a consequence of the estimate

|mβ(m,C)−m+ Cβf ′(m)| = O(C2)

due to (5.22a)-(5.22b). Equation (5.23b) can be shown using a similar approach, so we will

omit its derivation. Combining (5.23a) and (5.23b), we deduce

Cβ(m,C)−1
(
mβ(m,C)− θ∗

)
=

(
C−1 + βf ′′(m)

)−1
C−1(m− θ∗) +Rm(m,C)

1
C−1+βf ′′(m)

+RC(m,C)

=
C−1(m− θ∗) +

(
C−1 + βf ′′(m)

)
Rm(m,C)

1 +
(
C−1 + βf ′′(m)

)
RC(m,C)

= C−1(m− θ∗) +O(C + C |m− θ∗|+ |m− θ∗|2).

Now let (mn, Cn) denote the iterates of the optimization scheme. In view of the definition of

the O notation, and since we already showed that Cn 6 Kn−1 and |mn− θ∗| 6 Kn−
1
r for some

positive constant K and some r > 2 due to (5.21), the previous equation implies that there
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exists another constant K and an index k sufficiently large such that, for all n > k,

∣∣C−1
n (mn − θ∗)− C−1

k (mk − θ∗)
∣∣ 6 K

n−1∑
i=k

(
Ci + Ci |mi − θ∗|︸ ︷︷ ︸

summable

+ |mi − θ∗|2
)
. (5.24)

All the summands are bounded from above by the worst decay given by the last summand i−
2
r ,

up to a constant factor. Since

n−1∑
i=k

i−
2
r 6

∫ n−1

k−1
x−

2
r dx 6 K̃n1− 2

r , (5.25)

with K̃ a constant independent of n changing from occurrence to occurrence, we deduce that

the right-hand side of (5.24) is controlled by K̃
(

1 + n1− 2
r

)
. Therefore, using the fact that

Cn → 0 with rate 1/n, we obtain

∀n > k, |mn − θ∗| 6
(
K̃

n

)
C−1
k (mk − θ∗) + K̃

(
n−1 + n−

2
r

)
.

We have thus upgraded the convergence rate to n−
2
r . This procedure can be repeated until only

the first term in the sum on the right-hand side of (5.24) is non-summable, leading finally to

the estimate

|mn − θ∗| 6 K̃

(
log n

n

)
,

by a similar argument as in (5.25) applied to the decay 1/i.

5.5 Proof of Theorem 3.10

In this section, we analyze the mean-field dynamics (2.11) and (2.13). We show, in the convex

one-dimensional case, the existence and uniqueness of a steady state close to the Laplace ap-

proximation of the Bayesian posterior at the MAP estimator. We begin by showing a version

of Laplace’s method, which is based on reducing all information about the objective function f

into the unique smooth and increasing function τ : R→ R satisfying

∀θ ∈ R, f
(
θ∗ + τ(θ)

)
= f(θ∗) + θ2. (5.26)

with τ(0) = 0. For details, see Lemma A.7.

Proposition 5.5 (Laplace’s method). Let d = 1. Suppose Assumptions 1 and 4 hold, and

assume additionally that ϕ is a smooth function such that

∀i ∈ {0, . . . , 2N + 2}, ‖ϕ(i)‖∞ 6Mϕ <∞, (5.27)

for some N ∈ N and some Mϕ > 0. Then, introducing the function ψ(θ) = ϕ
(
θ∗ + τ(θ)

)
τ ′(θ),
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where τ is the map provided by Lemma A.7, it holds

Iβ :=

∫
R

e−βf(θ) ϕ(θ) dθ = e−βf(θ∗)

(
N∑
n=0

ψ2n
Γ(n+ 1/2)

βn+1/2
+Rβ

)
, ψ2n :=

ψ(2n)(0)

(2n)!
,

and the remainder Rβ satisfies the bound

|Rβ| 6
KMϕ

(β − β0)N+3/2
,

for some constants K = K(f,N) > 0 and β0 = β0(f,N) > 0.

Proof. Applying Lemma A.7, we can use the change of variable θ 7→ θ∗ + τ(θ) to obtain

∀ϕ ∈ C∞(R),

∫
R

e−βf(θ) ϕ(θ) dθ = e−βf(θ∗)

∫
R

e−βθ
2
ϕ(θ∗ + τ(θ)) τ ′(θ) dθ =: e−βf(θ∗) Ĩβ.

By Faà di Bruno’s formula (generalized chain rule), we have

∀n ∈ N,
dn

dθn

(
ϕ
(
θ∗ + τ(θ)

)
τ ′(θ)

)
=

n∑
i=0

ϕ(i)
(
θ∗ + τ(θ)

)
Bn+1,i+1

(
τ ′(θ), . . . , τ (n−i+1)(θ)

)
,

where, for n ∈ N, the functions {Bn,i}i∈{0,...,n} are polynomials (more precisely, Bell polynomi-

als) of degree 0 to n. By Lemma A.7, there exist a constant λ = λ(f,N) > 0 such that

∀i ∈ {0, . . . , 2N + 3}, ‖ e−λθ
2
τ (i)(θ)‖∞ <∞.

It is clear, therefore, that

∀n ∈ {0, . . . , 2N + 2}, ∀i ∈ {0, . . . , n},∥∥∥e−(i+1)λθ2 Bn+1,i+1

(
τ ′(θ), . . . , τ (n−i+1)(θ)

)∥∥∥
∞
<∞.

Combining this inequality with (5.27), we deduce that there exists K = K(f,N) such that

∀n ∈ {0, . . . , 2N + 2},
∥∥∥∥e−

(
(2N+3)λ

)
θ2 dn

dθn

(
ϕ
(
θ∗ + τ(θ)

)
τ ′(θ)

)∥∥∥∥
∞

6 KMϕ <∞.

It follows that, in particular, the assumptions of Lemma A.6 are satisfied for the function ψ(θ),

with the parameters M = KMϕ and β0 = (2N + 3)λ. By Lemma A.6, it holds that

Ĩβ =

N∑
n=0

ψ2n
Γ(n+ 1/2)

βn+1/2
+Rβ, ψ2n :=

ψ(2n)(0)

(2n)!
,

where the remainder Rβ satisfies the bound

|Rβ| 6
M

(2N + 2)!

Γ(N + 3/2)

(β − β0)N+3/2
,

which concludes the proof.
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In order to prove Theorem 3.10, let us now introduce the following map on R×R>0:

Φβ :

(
m

C

)
7→
(

mβ(m,C)

λ−1Cβ(m,C)

)
, λ = (1 + β)−1. (5.28)

In view of Lemma 2.1, existence of a fixed point of Φβ implies the existence of a steady state

solution both for the iterative scheme (2.11) with any α ∈ [0, 1) and for the nonlinear Fokker–

Planck equation (2.13). In order to prove the existence of a fixed point of Φβ we will apply

Laplace’s method Proposition 5.5, and therefore need to calculate the coefficients ψ2n, which

requires the calculation of the derivatives of the smooth function τ at 0. This can be achieved

by implicit differentiation of the equation (5.26). For example, differentiating twice, we obtain

τ ′(0) = ±
√

2

f ′′(θ∗)
.

Since, τ refers here to the unique increasing function such that (5.26) holds, only the positive

solution is retained. Differentiating (5.26) again we obtain

τ ′′(0) = − f
′′′(θ∗)

3f ′′(θ∗)

∣∣τ ′(0)
∣∣2 .

The following result therefore implies the existence of steady state close to the Laplace

approximation of the target distribution both for the iterative scheme (2.11) with any α ∈ [0, 1)

and for the nonlinear Fokker–Planck equation (2.13).

Proposition 5.6 (Existence of a fixed point of Φβ). Let d = 1 and assume that Assumptions 1

and 4 hold. Then there exist k̃ = k̃(f) and β̃ = β̃(f) such that, for all β > β̃, there exists a

fixed point
(
m∞(β), C∞(β)

)
of Φβ satisfying

|m∞(β)− θ∗|2 + |C∞(β)− C∗|2 6

∣∣∣∣∣ k̃β
∣∣∣∣∣
2

.

Proof. It is clear from the definitions of mβ and Cβ that the map Φβ is continuous. Our

approach in order to show the existence of a fixed point is to use Brouwer’s fixed point theorem.

To this end, let us define

ϕj(θ) = (θ − θ∗)j g(θ;m,C), j = 0, 1, . . . , J.

Introducing the function θ̂ : R 3 u 7→ m +
√
Cu, and using the notation g(u) := g(u; 0, 1) for

conciseness, we calculate

ϕ̂j(u) := ϕj
(
θ̂(u)

)
=

1√
C

(m− θ∗ +
√
Cu)j g(u; 0, 1)

= C
j−1
2

(
m− θ∗√

C
+ u

)j
g(u; 0, 1) = C

j−1
2

j∑
k=0

(
j

k

)(
m− θ∗√

C

)k
uj−kg(u; 0, 1),
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so we deduce

∥∥∥ϕ̂(n)
j

∥∥∥
∞

6 Kj,nC
j−1
2

(
1 +

∣∣∣∣m− θ∗√
C

∣∣∣∣j
)

= Kj,n

(
C
j−1
2 + C−

1
2 |m− θ∗|j

)
,

for some constant Kj,n independent of m and C. Since ϕ
(n)
j (θ) = C−n/2ϕ̂

(n)
j

(
C−1/2(θ −m)

)
,

this directly implies ∥∥∥ϕ(n)
j

∥∥∥
∞

6 Kj,n

(
C
j−n−1

2 + C−
n+1
2 |m− θ∗|j

)
. (5.29)

Let us take any R ∈ (0, C∗) and introduce the notation u(β,m,C) = OR
(
v(β)

)
for any functions

u(β,m,C) and v(β) to mean that there exist constants c and β̃ such that

∀(m,C) ∈ BR(θ∗, C∗), ∀β > β̃, |u(β,m,C)| 6 cv(β),

where BR(θ∗, C∗) denotes the closed ball of radius R centered at (θ∗, C∗). Since R < C∗, it is

clear that, for all j ∈ N and N ∈ N, the right-hand side of (5.29) is bounded from above by

a constant over BR(θ∗, C∗), uniformly in m, C and n ∈ {0, . . . , 2N + 2}. Thus, we can apply

Laplace’s method, Proposition 5.5. Letting ψj(θ) = ϕj
(
θ∗ + τ(θ)

)
τ ′(θ), we calculate

ψj(0) = ϕj(θ∗)τ
′(0) = ϕj(θ∗)

√
2

f ′′(θ∗)
,

ψ′′j (0) = ϕ′′j (θ∗)τ
′(0)3 + 3ϕ′j(θ∗) τ

′′(0) τ ′(0) + ϕj(θ∗) τ
′′′(0).

Note that only the first term in the expression of ψ′′2(0) is nonzero. Therefore, Laplace’s method

applied with N = 0 or N = 1 gives

eβf(θ∗)

∫
R

e−βf g(θ;m,C) dθ = g(θ∗;m,C) Γ(1/2)
τ ′(0)

β1/2
+OR

(
1

β3/2

)
, (5.31a)

eβf(θ∗)

∫
R

(θ − θ∗) e−βf g(θ;m,C) dθ = OR
(

1

β3/2

)
, (5.31b)

eβf(θ∗)

∫
R

(θ − θ∗)2 e−βf g(θ;m,C) dθ = g(θ∗;m,C) Γ(3/2)
τ ′(0)3

β3/2
+OR

(
1

β5/2

)
. (5.31c)

Further, g(θ∗;m,C) is bounded above and below on BR(θ∗, C∗) by positive constants. Hence,

equation (5.31b) leads to

mβ(m,C) =

∫
R θ e−βf(θ) g(θ;m,C) dθ∫
R e−βf(θ) g(θ;m,C) dθ

= θ∗ +OR
(
β−1

)
. (5.32)

For the covariance term, note that

Cβ(m,C) =

∫
R(θ − θ∗)2 e−βf(θ) g(θ;m,C) dθ∫

R e−βf(θ) g(θ;m,C) dθ
−
(
mβ(m,C)− θ∗

)2
,
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which by (5.31c) and the equality Γ(1/2) = 2Γ(3/2), leads to

λ−1Cβ(m,C) =
1 + β

β

(
Γ(3/2)

Γ(1/2)

∣∣τ ′(0)
∣∣2 +OR(β−1)

)
+OR(β−2) =

1

f ′′(θ∗)
+OR(β−1).

Consequently, we deduce by definition of OR that there exist constants β† and k̃ such that

∀β > β†, sup
(m,C)∈BR(θ∗,C∗)

|Φβ(m,C)− (θ∗, C∗)| 6
k̃

β†
,

where |•| denotes the Euclidean norm. That is, it holds that Φβ

(
BR(θ∗, C∗)

)
⊂ B

k̃/β
(θ∗, C∗)

for any β > β†. If additionally β > k̃/R, we have B
k̃/β

(θ∗, C∗) ⊂ BR(θ∗, C∗) and so

Φβ

(
B
k̃/β

(θ∗, C∗)
)
⊂ Φβ

(
BR(θ∗, C∗)

)
⊂ B

k̃/β
(θ∗, C∗).

Consequently, in this case Brouwer’s theorem implies the existence of a fixed point of Φβ

in B
k̃/β

(θ∗, C∗). This proves the statement with β̃ = max(β†, k̃/R).

Next, we show that the map Φβ given in (5.28) is a contraction for sufficiently large β.

Proposition 5.7 (Φβ is a contraction). Under the same assumptions as in Proposition 5.6 and

for any R ∈ (0, C∗), there exists a constant β̂ = β̂(f,R) and k̂ = k̂(f,R) such that, for all

β > β̂, the map Φβ is a contraction with constant k̂/β for the Euclidean norm over the closed

ball of radius R centered at (θ∗, C∗): for all (m1, C1) and (m2, C2) in BR(θ∗, C∗), it holds that

|Φβ(m1, C1)− Φβ(m2, C2)| 6 k̂

β

∣∣∣∣∣
(
m2

C2

)
−
(
m1

C1

)∣∣∣∣∣ .
Proof. We assume without loss of generality that θ∗ = 0, which is justified because the method

is affine-invariant, discussed in Subsection 2.2, and we recall that Φβ relates the moments of

successive iterates from (2.1) with α = 0 when this scheme is initialized at a Gaussian density.

Let us introduce the notation

Jβ(ϕ) =

∫
R
ϕ(θ) exp

(
−|θ −m|

2

2C

)
e−βf(θ) dθ.

Using the fact that

mβ(m,C) =
Jβ(θ)

Jβ(1)
, Cβ(m,C) =

Jβ(θ2)

|Jβ(1)| − |mβ(m,C)|2 =
Jβ(θ2)Jβ(1)− |Jβ(θ)|2

|Jβ(1)|2
,

and noting that

∂mJβ(ϕ) =
Jβ
(
ϕ(θ)(θ −m)

)
C

, ∂CJβ(ϕ) =
Jβ
(
ϕ(θ)|θ −m|2

)
2C2

,
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we calculate

∂mmβ =
1

C |Jβ(1)|2
(
Jβ
(
θ2
)
Jβ(1)− |Jβ(θ)|2

)
,

∂Cmβ =
1

2C2 |Jβ(1)|2
(
Jβ
(
θ|θ −m|2

)
Jβ(1)− Jβ

(
|θ −m|2

)
Jβ(θ)

)
=

1

2C2 |Jβ(1)|2
[
Jβ
(
θ3
)
Jβ(1)− Jβ

(
θ2
)
Jβ(θ)− 2m

(
Jβ
(
θ2
)
Jβ(1)− Jβ(θ)2

)]
,

∂mCβ =
1

C |Jβ(1)|2
(
Jβ
(
θ3
)
Jβ(1)− Jβ(θ)Jβ(θ2)

)
− 2mβ ∂mmβ ,

∂CCβ =
1

2C2 |Jβ(1)|2
(
Jβ
(
θ2|θ −m|2

)
Jβ(1)− Jβ

(
|θ −m|2

)
Jβ(θ2)

)
− 2mβ ∂Cmβ

=
1

2C2 |Jβ(1)|2
[
Jβ
(
θ4
)
Jβ(1)− Jβ(θ2)2 − 2m

(
Jβ
(
θ3
)
Jβ(1)− Jβ(θ2)Jβ(θ)

)]
− 2mβ ∂Cmβ .

Applying Laplace’s method, and noting that dn

dθn

(
θjg(θ;m,C)

)
vanishes at θ = θ∗ = 0 for all

n < j, we obtain that

eβf(θ∗)

∫
R
θ3 e−βf g(θ;m,C) dθ = OR

(
1

β5/2

)
,

eβf(θ∗)

∫
R
θ4 e−βf g(θ;m,C) dθ = OR

(
1

β5/2

)
.

Combining these estimates with (5.31a) to (5.31c) and (5.32), and using the same notation as

in the proof of Proposition 5.6, we deduce

∂mmβ(m,C) = OR(β−1), ∂Cmβ(m,C) = OR(β−1),

∂mCβ(m,C) = OR(β−2), ∂CCβ(m,C) = OR(β−2).

It easily follows that

DΦβ :=

(
∂mΦm

β ∂CΦm
β

∂mΦC
β ∂CΦC

β

)
=

(
OR(β−1) OR(β−1)

OR(β−1) OR(β−1)

)
. (5.33)

Therefore, for all (m1, C1) ∈ BR(θ∗, C∗) and (m2, C2) ∈ BR(θ∗, C∗), it holds

|Φβ(m1, C1)− Φβ(m2, C2)| =
∣∣∣∣∣
∫ 1

0
DΦβ

(
mt, Ct

) (m2 −m1

C2 − C1

)
dt

∣∣∣∣∣
6
∫ 1

0

∥∥DΦβ

(
mt, Ct

)∥∥ dt

∣∣∣∣∣
(
m2

C2

)
−
(
m1

C1

)∣∣∣∣∣ ,
where (mt, Ct)

T =
(
m1 + t(m2 −m1), C1 + t(C2 − C1)

)T
. Since ‖DΦβ‖ = OR(β−1), by (5.33),

this concludes the proof of the statement.

The proof of Theorem 3.10 is now a simple consequence of Propositions 5.6 and 5.7.

Proof of Theorem 3.10. Let β̃ and β̂, as well as k̃ and k̂, be as given in the statements of
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Propositions 5.6 and 5.7, respectively. Let β(f,R) and k(f,R) be defined by

β = max

(
β̃(f), β̂(f,R),

k̃

R

)
, k(f,R) = max

(
k̃(f), k̂(f,R)

)
.

By Proposition 5.6, there exists for all β > β a fixed point of Φβ in B
k̃/β

(θ∗, C∗) ⊂ BR(θ∗, C∗).

Since Φβ is a contraction over BR(θ∗, C∗) for such value of β by Proposition 5.7, this fixed point

is unique in BR(θ∗, C∗). Let us now show the convergence to the fixed point in the discrete and

continuous-time cases.

(i) Case α ∈ [0, 1). We consider the iteration (2.6),

mn+1 = αmn + (1− α)mβ(mn, Cn),

Cn+1 = α2Cn + (1− α2)λ−1Cβ(mn, Cn),

Denoting the fixed point by (m∞, C∞)T, we rewrite this system as

mn+1 −m∞ = α(mn −m∞) + (1− α)
(
mβ(mn, Cn)−mβ(m∞, C∞)

)
,

Cn+1 − C∞ = α2(Cn − C∞) + (1− α2)λ−1
(
Cβ(mn, Cn)− Cβ(m∞, C∞)

)
,

and so, by the triangle inequality,∣∣∣∣∣
(
mn+1

Cn+1

)
−
(
m∞

C∞

)∣∣∣∣∣ 6 α

∣∣∣∣∣
(
mn

Cn

)
−
(
m∞

C∞

)∣∣∣∣∣+ (1− α2) |Φβ(mn, Cn)− Φβ(m∞, C∞)|

6

(
α+ (1− α2)

k

β

) ∣∣∣∣∣
(
mn

Cn

)
−
(
m∞

C∞

)∣∣∣∣∣ ,
from where the statement follows easily.

(ii) Case α = 1. Similarly, in the continuous-time setting, we can rewrite the equations (2.17)

for the moments as

ṁ(t) = −(m(t)−m∞) +
(
mβ

(
m(t), C(t)

)
−mβ(m∞, C∞)

)
,

Ċ(t) = −2(C(t)− C∞) + 2λ−1
(
Cβ
(
m(t), C(t)

)
− Cβ(m∞, C∞)

)
.

Therefore

1

2

d

dt

∣∣∣∣∣
(
m(t)

C(t)

)
−
(
m∞

C∞

)∣∣∣∣∣
2

6 −
∣∣∣∣∣
(
m(t)

C(t)

)
−
(
m∞

C∞

)∣∣∣∣∣
2

+ 2 |Φβ(mn, Cn)− Φβ(m∞, C∞)|
∣∣∣∣∣
(
m(t)

C(t)

)
−
(
m∞

C∞

)∣∣∣∣∣
6 −

(
1− 2k

β

) ∣∣∣∣∣
(
mn

Cn

)
−
(
m∞

C∞

)∣∣∣∣∣
2

,

which leads to the statement by Grönwall’s inequality.
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A Auxiliary Technical Results

Lemma A.1. Let (un, vn) denote the solution to the recurrence relation (2.21)

un+1 =
[
α+ (1− α)(1 + vn)−1

]
un, (A.1a)

vn+1 =
[
α2 + (1− α2)λ−1(1 + vn)−1

]
vn, (A.1b)

with initial condition (u0, v0) and v0 > 0. Denote v∞ = (1 − λ)/λ. We separate the sampling

and optimization cases.

(i) Case λ ∈ (0, 1). It holds, for all n ∈ N, that

min

(
1,
v∞
v0

) 1
1+α

((1− α)λ+ α)n 6

∣∣∣∣unu0

∣∣∣∣ 6 max

(
1,
v∞
v0

) 1
1+α (

(1− α)λ+ α
)n
, (A.2a)

min

(
1,
v∞
v0

)(
(1− α2)λ+ α2

)n
6

∣∣∣∣vn − v∞v0 − v∞

∣∣∣∣ 6 max

(
1,
v∞
v0

)(
(1− α2)λ+ α2

)n
;

(A.2b)

(ii) Case λ = 1. For all n ∈ N, it holds that

(
1

1 + v0(1− α2)n

) 1
1+α

6

∣∣∣∣unu0

∣∣∣∣ 6 ( 1 + v0

1 + v0 + v0(1− α2)n

) 1
1+α

(A.3a)

and (
1

1 + v0(1− α2)n

)
6
vn
v0

6

(
1 + v0

1 + v0 + v0(1− α2)n

)
. (A.3b)

Proof. Case λ ∈ (0, 1). Rearranging the equation for {vn}n=0,..., we obtain

vn+1 − v∞ = γ(vn)(vn − v∞), γ(s) :=
1 + α2s

1 + s
. (A.4)

If v0 > v∞, then clearly v0 > vn > v∞ for all n ∈ N. Therefore, since 0 < γ(•) < 1 is a

strictly decreasing function on [0,∞
)
, it holds that 0 6 vn+1 − v∞ 6 γ(v∞)(vn − v∞) which

leads directly to the convergence estimate

|vn − v∞| 6 γ(v∞)n|v0 − v∞|.

Similarly, for v0 < v∞, we obtain v0 < vn < v∞ for all n ∈ N, which leads to the lower bound
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|vn − v∞| > γ(v∞)n|v0 − v∞|. For the opposite bounds, we calculate using (A.4) that

v−1
n+1(vn+1 − v∞)

v−1
n (vn − v∞)

=

(
1 + α2vn
1 + vn

)
vn

v∞ + 1+α2vn
1+vn

(vn − v∞)

=
1 + α2vn

(1− α2)v∞ + 1 + α2vn
=

1 + α2v∞ + α2(vn − v∞)

1 + v∞ + α2(vn − v∞)
.

Hence, if v0 > v∞, then

v−1
n+1(vn+1 − v∞)

v−1
n (vn − v∞)

> γ(v∞) =⇒ |vn+1 − v∞|
vn+1

> γ(v∞)
|vn − v∞|

vn
,

with the inequalities reversed in the case v0 < v∞. Iterating the last inequality, combining the

above estimates and noting that γ(v∞) = (1− α2)λ+ α2 gives (A.2b).

Next, notice that the equation for un can be rewritten as

un+1 = γ̃(vn)un , γ̃(s) :=
1 + αs

1 + s
, (A.5)

where γ̃ is strictly decreasing on [0,∞). Clearly, if v0 > v∞, then we have

|un| 6 γ̃(v∞)n |u0| , (A.6)

with the reversed inequality holding for v0 < v∞. Noting that un and vn − v∞ do not change

sign with n, we calculate by analogy with the continuous-time case Lemma A.2 that

|un+1|
|un|

( |vn − v∞|
|vn+1 − v∞|

) 1
1+α

=
un+1

un

(
vn − v∞
vn+1 − v∞

) 1
1+α

=

(
1 + αvn
1 + vn

)(
1 + vn

1 + α2vn

) 1
1+α

=: hα(vn). (A.7)

Since h′α(s) > 0 for all α ∈ (0, 1) and all s > 0, we deduce for v0 < v∞,

|un+1|
|un|

( |vn − v∞|
|vn+1 − v∞|

) 1
1+α

6 hα(v∞),

and iterating this inequality, then using (A.2b), we have

|un| 6 |u0|hα(v∞)n
( |vn − v∞|
|v0 − v∞|

) 1
1+α

6 |u0|
(
v∞
v0

) 1
1+α (

hα(v∞)γ(v∞)
1

1+α

)n
= |u0|

(
v∞
v0

) 1
1+α

γ̃(v∞)n .

with reversed inequality of v0 > v∞. Since γ̃(v∞) = (1 − α)λ + α, this concludes the proof

of (A.2a).

Case λ = 1. Rearranging the equation for vn, we have

v−1
n+1 =

(
1 + vn

1 + α2vn

)
v−1
n = γ(vn)−1v−1

n . (A.8)
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Since clearly

∀(x, y) ∈ R2
+,

1 + x

1 + y
6 1 + |x− y| , (A.9)

we have

v−1
n+1 6

(
1 + (1− α2)vn

)
v−1
n 6 v−1

n + (1− α2),

so we obtain a lower bound on vn:

∀n ∈ N, v−1
n 6 v−1

0 + (1− α2)n =: v−1
n . (A.10)

In order to obtain an upper bound for vn, we note that

vn+1 =

(
1 + α2vn
1 + vn

)
vn 6

(
1 + α2vn
1 + vn

)
vn =

(
v−1

0 + n(1− α2) + α2

v−1
0 + n(1− α2) + 1

)
vn.

Therefore we deduce

vn 6
n−1∏
k=0

(
1− 1− α2

v−1
0 + k(1− α2) + 1

)
v0 =: Πn−1v0

Using log(1− ε) 6 −ε for all ε ∈ (0, 1), we have

log Πn−1 6 −
n−1∑
k=0

1− α2

v−1
0 + k(1− α2) + 1

6 −
∫ n

0

1− α2

v−1
0 + x(1− α2) + 1

dx

= − log

(
v−1

0 + n(1− α2) + 1

v−1
0 + 1

)
,

so we conclude that the upper bound in (A.3b) holds. A similar reasoning with the inequality

|un+1| 6
(

1 + αvn
1 + vn

)
|un|

can be employed in order to show the upper bound on un in (A.3a). To obtain the lower bound

on un, we use the fact that hα is increasing to estimate from (A.7) that

∣∣∣∣un+1

un

∣∣∣∣ ∣∣∣∣ vnvn+1

∣∣∣∣ 1
1+α

= hα(vn) > hα(0) = 1 ⇔ |un+1|
v

1
1+α

n+1

>
|un|
v

1
1+α
n

.

By iterating this inequality and using (A.10), we conclude

∣∣∣∣unu0

∣∣∣∣ > ∣∣∣∣vnv0

∣∣∣∣ 1
1+α

>

(
1

1 + v0(1− α2)n

) 1
1+α

,

which is the result.

Lemma A.2. Let λ ∈ (0, 1], and let
(
u(t), v(t)

)
denote the unique global solution to the ODE

system (5.4) with initial condition (u0, v0) and v0 > 0.
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(i) Case λ ∈ (0, 1). It holds that

min

(
1,

(
v∞
v0

)λ/2)
e−(1−λ)t 6

∣∣∣∣u(t)

u0

∣∣∣∣ 6 max

(
1,

(
v∞
v0

)λ/2)
e−(1−λ)t, (A.11a)

min

(
1,

(
v∞
v0

)λ)
e−2(1−λ)t 6

∣∣∣∣v(t)− v∞
v0 − v∞

∣∣∣∣ 6 max

(
1,

(
v∞
v0

)λ)
e−2(1−λ)t . (A.11b)

(ii) Case λ = 1. For all t > 0, it holds that

(
1

1 + 2v0t

) 1
2

6

∣∣∣∣u(t)

u0

∣∣∣∣ 6 ( 1 + v0

1 + v0 + 2v0t

) 1
2

(A.12a)

and

1

1 + 2v0t
6
v(t)

v0
6

1 + v0

1 + v0 + 2v0t
. (A.12b)

Proof. Note that solutions to (5.4) are unique, and exist globally in time.

Case λ ∈ (0, 1). We begin with the sampling case (i) when λ 6= 1, The second equation in

(5.4) can be rewritten as

d

dt
(v − v∞) = −2

(
v

v + 1

)
(v − v∞) .

For x = v/v∞, we obtain

ẋ = −2

(
(x− 1)x

v−1
∞ + x

)
= −2

(
1 + v−1

∞
x− 1

− v−1
∞
x

)−1

= −2(1− λ)

( −1

1− x −
λ

x

)−1

.

We can rewrite this equation as

d

dt

(
log
(
1− x(t)

)
− λ log

(
x(t)

))
= −2(1− λ), (A.13)

leading to

|1− x(t)| =
(
x(t)

x(0)

)λ
e−2(1−λ)t |1− x(0)|.

Since v(t) is decreasing if v0 > v∞ and increasing if v0 < v∞, estimate (A.11b) directly follows.

Next, we consider the first equation in (5.4), and note that it can be rewritten as

u̇

u
=

1

2

(
1

v − v∞

)
d

dt
(v − v∞).

This implies

log

(
u(t)

u0

)
=

1

2
log

(
v(t)− v∞
v0 − v∞

)
, (A.14)

where it is not difficult to verify that the arguments of the logarithms are positive for all times.

Applying (A.11b), we conclude that (A.11a) holds.
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Case λ = 1. The argument follows analogously; the second equation in (5.4) reads

v̇ = −2

(
v

v + 1

)
v, (A.15)

Since the right-hand is bounded from below by −2v2, we directly deduce that

∀t > 0, v(t) >
1

v−1
0 + 2t

:= v(t). (A.16)

Now, since the function s 7→ s
1+s is increasing, it is clear that v(t) satisfies

v̇(t) 6 −2

(
v(t)

v(t) + 1

)
v(t).

Using Grönwall’s inequality, we obtain the upper bound in (A.12b).

The bounds on u(t) are then obtained from (A.14) and the bounds on v(t).

Remark A.1. Notice that, by letting α = e−t/n in the bounds obtained in Lemma A.1 and

taking the limit n→∞, we recover the bounds in Lemma A.2.

Remark A.2. It is possible to slightly improve the upper bounds in (A.3b) and (A.12b).

• In the discrete-time case, rearranging the equation for vn+1 and using that log(1+ε) > ε
1+ε

for all ε > 0, we have

v−1
n+1 − log(vn+1)− v−1

n + log(vn)

=
1− α2

1 + α2vn
+ α2 log

(
1 + vn

1 + α2vn

)
=

1− α2

1 + α2vn
+ log

(
1 +

(1− α2)vn
1 + α2vn

)
>

1− α2

1 + α2vn
+

(1− α2)vn
1 + vn

> (1− α2)

(
1

1 + α2vn
+

vn
1 + vn

)
> 1− α2. (A.17)

Since vn is decreasing with n, this directly implies, using the lower bound (A.10),

v−1
n > v−1

0 + n(1− α2) + log

(
vn
v0

)
> v−1

0 + (1− α2)n− log
(
1 + v0(1− α2)n

)
.

so we deduce the following inequality:

vn
v0

6
1

1 + v0(1− α2)n− v0 log (1 + v0(1− α2)n)

which holds for n ∈ N large enough to ensure that the right-hand side is strictly positive.

• In the continuous-time case, one may rewrite (A.15) as

d

dt

(
log v(t)− 1

v(t)

)
= −2
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Integrating, rearranging and taking reciprocals, we obtain

v(t) =
1

v−1
0 + 2t+ log

(
v
v0

) .
Using the lower bound (A.16) to bound the argument of the logarithm, we obtain

v(t) 6
v0

1 + 2v0t− v0 log(1 + 2v0t)
.

Though slightly better in the long time limit, these bounds are more cumbersome to manipulate

than the ones presented in Lemmas A.1 and A.2.

Lemma A.3. Assume that µ is a probability measure on
(
R,B(R)

)
, with B(R) the Borel

σ-algebra on R, and that f : R → R is a positive and nondecreasing (resp. nonincreasing)

function. Let µ̃ be the probability measure defined by

µ̃ : B(R) 3 A 7→
∫
A f(x)dµ(x)∫
R f(x) dµ(x)

.

Then it holds EX∼µ̃(X) > EX∼µ(X) (resp. EX∼µ̃(X) 6 EX∼µ(X)).

Proof. Let us assume that f is nondecreasing, and let us denote the cumulative distribution

functions (CDFs) by F (x) := PX∼µ(X 6 x) and F̃ (x) := PX∼µ̃(X 6 x). For any probability

measure ν with CDF Fν , it holds

EX∼ν(X) =

∫ ∞
0

1− Fν(x)− Fν(−x) dx,

so it is sufficient to show F̃ (x) 6 F (x) for all x ∈ R. If F̃ (x) = 0, this inequality is clearly

satisfied, so let us verify the inequality for any x such that F̃ (x) > 0. For such a value of x,

employing the fact that f is nondecreasing, we obtain

1− F̃ (x)

F̃ (x)
=

∫
(x,∞) f(y) dµ(y)∫

(−∞,x] f(y) dµ(y)
>

∫
(x,∞) f(x) dµ(y)∫

(−∞,x] f(x) dµ(y)
=

µ
(
(x,∞)

)
µ
(
(−∞, x]

) =
1− F (x)

F (x)
.

Applying the function y 7→ 1
1+y to both sides of this inequality, and flipping the direction of the

inequality accordingly (because this function is decreasing over [0,∞)), we obtain the desired

inequality F̃ (x) 6 F (x).

Lemma A.4. Let r > 2 be given. There exists γ > 0 sufficiently large such that

∀C̃ > 0, h(C̃; γ) :=

(
1 + rC̃

) 1
r

1 + C̃

1 + 2

φ

(
γC̃

1
r√

C̃(1+C̃)

)
γC̃

1
r√

C̃(1+C̃)

 6 1,

where φ denotes the density of the standard normal distribution, i.e. φ = g(•; 0, 1).
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Proof. If C̃ > 1, then

h(C̃, γ) 6

(
1 + rC̃

) 1
r

1 + C̃

1 + 2
φ (0)

γC̃
1
r√

C̃(1+C̃)

 6

(
1 + rC̃

) 1
r

1 + C̃
+

2φ(0)

γ

(
1 + rC̃

) 1
r

C̃
1
r

√
C̃

1 + C̃
.

By concavity of C̃ 7→ (1 + rC̃)
1
r , and the fact that the first term is strictly decreasing, we have

h(C̃, γ) 6
(1 + r)

1
r

2
+

2φ(0)

γ

(
1 + (rC̃)

1
r

C̃
1
r

)
6

(1 + r)
1
r

2
+

2φ(0)

γ

(
1 + r

1
r

)
.

Since the first term is strictly less than 1, there exists γ sufficiently large such that the right-hand

side is bounded from above by 1.

If 0 < C̃ < 1, on the other hand, we have

h(C̃, γ) 6

(
1 + rC̃

) 1
r

1 + C̃

(
1 +

4

γ
φ

(
γC̃

1
r√

2C̃

))
.

Therefore,

log
(
h(C̃, γ)

)
6

1

r
log(1 + rC̃)− log(1 + C̃) + log

(
1 +

4

γ
φ

(
γC̃

1
r√

2C̃

))
.

The sum of the first two terms is bounded as follows (where we employ that C̃ 6 1):

1

r
log(1 + rC̃)− log(1 + C̃) =

∫ C̃

0

(
1

1 + rx
− 1

1 + x

)
dx

6 −(r − 1)

∫ C̃

0

x

2(1 + r)
dx = −1

4

(
r − 1

r + 1

)
C̃2.

Employing this estimate together with the elementary bound log(1 + ε) 6 ε, we have

log
(
h(C̃, γ)

)
6 −1

4

(
r − 1

r + 1

)
C̃2 +

4

γ
φ

(
γ√
2
C̃−

r−2
2r

)
.

Clearly, there exists K such that φ(x) 6 K(1 + x)−
4r
r−2 uniformly, so we deduce

log
(
h(C̃, γ)

)
6 −1

4

(
r − 1

r + 1

)
C̃2 +

4K

γ

(√
2

γ

) 4r
r−2

C̃2.

It is possible to choose γ sufficiently large such that the right-hand side of this equation is

bounded from above by 0 for C̃ ∈ (0, 1], and the statement then follows easily.

Lemma A.5. Assume that α ∈ [0, 1] and that Ĉβ, Ĉn, m̂β and û are nonnegative real numbers

satisfying 0 < Ĉβ 6 Ĉn and
m̂β

Ĉ
1/r
β

6
û

Ĉ
1/r
n
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for some r > 2. Then (m̂n+1, Ĉn+1) defined by

m̂n+1 = (1− α)m̂β + αû,

Ĉn+1 = (1− α2)Ĉβ + α2Ĉn

satisfy
m̂n+1

Ĉ
1/2r
n+1

6
û

Ĉ
1/2r
n

.

Proof. Letting mn+1 = m̂n+1/û, Cn+1 = Ĉn+1/Ĉn, mβ = m̂β/û, and Cβ = Ĉβ/Ĉn, we can

rewrite the equations for m̂n+1 and Ĉn+1 as

mn+1 = (1− α)mβ + α,

Cn+1 = (1− α2)Cβ + α2.

By the assumptions, it holds that Cβ 6 1 and mβ 6 C
1/r
β , and so

m2r
n+1

Cn+1
=

(
(1− α)mβ + α

)2r
(1− α2)Cβ + α2

6

(
(1− α)x+ α

)2r
(1− α2)xr + α2

=: h(x, α), x := C
1/r
β ∈ (0, 1].

We claim that

∀(y, α) ∈ (0, 1]× [0, 1), ∂xh(y, α) > 0. (A.18)

This will imply that h(x, α) = h(1, α) −
∫ 1
x ∂xh(y, α) dy 6 h(1, α) = 1 and thus m2r

n+1 6 Cn+1,

giving the statement. Let us now prove (A.18). A simple calculation gives

sign
(
∂xh(y, α)

)
= sign

(
2r(1− α)

(
(1− α2)yr + α2

)
− r(1− α2)yr−1

(
(1− α)y + α

))
= sign

(
2
(
(1− α2)yr + α2

)
− (1 + α)yr−1

(
(1− α)y + α

))
= sign

(
α2
(
2− yr − yr−1

)
− αyr−1 + yr

)
=: sign

(
g(y, α)

)
.

The argument of the sign function in the last line, i.e. g(y, α), is a quadratic function of α with

a minimizer at α∗(y) = 1
2y

r−1(2 − yr − yr−1)−1. If α∗(y) > 1, then g(y, α) > g(y, 1) > 0. On

the other hand, for any y such that α∗(y) 6 1, it holds

∀α ∈ [0, 1], g(y, α) > g(y, α∗) = yr

(
1− 1

2y

(
1
2y

r−1

2− yr − yr−1

))
.

If y ∈ (0, 1
2 ], a direct bound of the right-hand side of the previous equation shows that

g(y, α∗) > 0, and if y > 1/2 we have by the constraint α∗(y) 6 1 that

g(y, α) > g(y, α∗) > yr
(

1− 1

2y

)
> 0,

which concludes the proof of (A.18).

Lemma A.6 (Generalization of Watson’s lemma with bound on remainder). Assume that φ is
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a smooth function satisfying

M :=
∥∥∥e−β0θ

2
φ(2N+2)(θ)

∥∥∥
∞
<∞. (A.19)

for some constant β0 ∈ R and N ∈ N. Then for β > β0 it holds

Iβ :=

∫ ∞
−∞

e−βθ
2
φ(θ) dθ =

N∑
n=0

φ2n
Γ(n+ 1/2)

βn+1/2
+Rβ, φ2n :=

φ(2n)(0)

(2n)!
,

where the remainder Rβ satisfies the bound

|Rβ| 6
M

(2N + 2)!

Γ(N + 3/2)

(β − β0)N+3/2
.

Proof. We follow here the approach of [47, Chapter 2]. We first notice that

Iβ = 2

∫ ∞
0

e−βθ
2

(
φ(θ) + φ(−θ)

2

)
dθ =: 2

∫ ∞
0

e−βθ
2
ψ(θ) dθ .

The function ψ is even and smooth, all its odd derivatives vanish at θ = 0. Therefore, by

Taylor’s theorem, for any θ > 0 there exists ξ(θ) ∈ [0, θ] such that

ψ(θ) =

N∑
n=0

φ2n θ
2n +

ψ(2N+2)
(
ξ(θ)

)
(2N + 2)!

θ2N+2.

With a change of variables σ = θ2, this leads to

Iβ =

N∑
n=0

φ2n

∫ ∞
0

e−βσ σn−1/2 dσ +Rβ =

N∑
n=0

φ2n
Γ(n+ 1/2)

βn+1/2
+Rβ,

where, by (A.19) and for β > λ0, the remainder term is bounded from above as follows:

|Rβ| 6
M

(2N + 2)!

∫ ∞
0

e−(β−β0)σ σN+1/2 dσ =
M

(2N + 2)!

Γ(N + 3/2)

(β − β0)N+3/2
,

which concludes the proof.

Lemma A.7. Suppose that Assumptions 1 and 4 are satisfied. Then there exists a unique

smooth and increasing function τ(θ) such that

∀θ ∈ R, f
(
θ∗ + τ(θ)

)
= f(θ∗) + θ2.

In addition, the function τ and all its derivatives are bounded from above by the reciprocal of a

Gaussian, in the sense that for all i ∈ {0, 1, 2, . . . } there exists µi ∈ R such that∥∥∥e−µiθ
2
τ (i)(θ)

∥∥∥
∞
<∞.

Proof. Introducing g(θ) := f(θ + θ∗) − f(θ∗), we must prove the existence of a function τ
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satisfying

∀θ ∈ R, g
(
τ(θ)

)
= θ2. (A.20)

By assumption g′′(θ) > `, so g(θ) > ` θ2/2 and |g′(θ)| > `|θ| for all θ ∈ R. This implies that the

preimage set g−1(θ2) contains exactly two elements for any value of θ 6= 0, a positive one g−1
+ (θ2)

and a negative one g−1
− (θ2). Further, the preimage g−1(0) is simply {0}. If τ satisfies (A.20)

and is increasing, then it holds necessarily that

τ(θ) =


g−1
− (θ2) if θ < 0,

0 if θ = 0,

g−1
+ (θ2) if θ > 0.

By the inverse function theorem, we observe that g−1
+ and g−1

− are smooth on (0,+∞), because g

is smooth and strictly monotonic over (−∞, 0) and (0,∞), and consequently τ is smooth on

(−∞, 0) and (0,∞). Therefore, in order to show that τ is a smooth function over R, it is

sufficient to verify that τ is also infinitely differentiable in a neighborhood of θ = 0. To this

end, we define, analogously to [47, Chapter 3],

G(u, θ) =


g(uθ)
θ2
− 1 if θ 6= 0,

u2

2 g
′′(0)− 1 if θ = 0.

The function G is smooth over R2 and it is simple to verify that G(u∗, 0) = 0 for u∗ =
√

2/g′′(0)

and ∂uG(u∗, 0) = u∗g′′(0) > 0. Therefore, the implicit function theorem implies the existence

of a unique smooth function û(θ), defined on an interval (−ε, ε), such that û(0) = u∗ and

G
(
û(θ), θ

)
= 0 for any θ ∈ (−ε, ε). Since the function τ̂ : (−ε, ε) 3 θ 7→ û(θ)θ satisfies

g(τ̂(θ)) = θ2 by construction, and since it is increasing for ε sufficiently small because û(0) > 0,

this function must necessarily coincide with τ on the interval (−ε, ε), implying that τ is indeed

smooth over R.

Now note that, since the function f and its derivatives are bounded by the reciprocal of

a Gaussian by assumption, then clearly so are the function g and its derivatives; for any i ∈
{0, 1, 2, . . . }, there exists ri such that∥∥∥e−riθ

2
g(i)(θ)

∥∥∥
∞
<∞.

Differentiating (A.20) repeatedly, we obtain

g′
(
τ(θ)

)
τ ′(θ) = 2θ (A.21a)

g′′(τ(θ))
∣∣τ ′(θ)∣∣2 + g′

(
τ(θ)

)
τ ′′(θ) = 2, (A.21b)

pi

(
g′
(
τ(θ)

)
, . . . , g(i)(τ(θ)), τ ′(θ), . . . , τ (i−1)(θ)

)
+ g′

(
τ(θ)

)
τ (i)(θ) = 0, i = 3, . . . (A.21c)

where pi are polynomials. Recalling that |g′(θ)| > `|θ| for all θ ∈ R, we can therefore divide the

equations in (A.21) by g′(τ(θ)) in order to obtain expressions for the derivatives τ (i)(θ) which

are valid when θ 6= 0. From these expressions, it is then easy to obtain the desired bounds. For
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example, if we have already shown that
∥∥∥e−µ1θ

2
τ ′
∥∥∥
∞
< ∞, which follows from (A.21a), then

from (A.21b) we obtain, using the fact that θ2 = g(τ(θ)) > `
2 |τ(θ)|2,

∣∣τ ′′(θ)∣∣ 6 2 + |g′′(τ(θ))| |τ ′(θ)|2
|g′(τ(θ))| 6

2 + C er2|τ(θ)|2 e2µ1θ2

` |τ(θ)|

6
2 + C e

2r2
`
θ2 e2µ1θ2

` |τ(θ)| 6 C e

(
2r2
`

+2µ1
)
θ2

if |θ| > 1,

where C is a constant changing from occurrence to occurrence. The last inequality is justified

because max|θ|>1 |τ(θ)| > 0. Since τ ′′ is continuous and the set {θ : |θ| 6 1} is compact, this

shows the existence of µ2 ∈ R that ‖τ ′′(θ) e−µ2θ
2 ‖∞ <∞.
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[42] T. Lelièvre and G. Stoltz. Partial differential equations and stochastic methods in molecular

dynamics. Acta Numer., 25:681–880, 2016.

[43] T. M. Liggett. Interacting particle systems. Classics in Mathematics. Springer-Verlag,

Berlin, 2005. Reprint of the 1985 original.

[44] Y. Lu, J. Lu, and J. Nolen. Accelerating langevin sampling with birth-death. arXiv e-prints,

1905.09863, 2019.

[45] Y. Lu, A. Stuart, and H. Weber. Gaussian approximations for probability measures on Rd.
SIAM/ASA J. Uncertain. Quantif., 5(1):1136–1165, 2017.

[46] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation

of state calculations by fast computing machines. J. Chem. Phys., 21(6):1087–1092, 1953.

[47] P. D. Miller. Applied asymptotic analysis, volume 75 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, RI, 2006.

[48] S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Rev.,

56(4):577–621, 2014.
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