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This assignment counts for 25% of the total assessment.

Handed out : 28 Feb 2020.

Deadline for handing in : 23 Mar 2020.

Please submit a document that starts with a declaration that the content is your own work unless referenced

appropriately. The coursework should be submitted via Blackboard. Some important details:

1. You may use a programming language and plotting tools of your choice. If you use software that is

not easily available online, document the steps required to obtain the software.

2. You may use any software libraries that you find convenient, such as NumPy and SciPy.

3. For this assignment, feel free to reuse without mention any of the code examples presented in class.

4. Return your solutions in the form of a Jupyter notebook, a LATEX report with all code included, or a

zip or tar archive with a combination of both. Marks are allocated for clarity, including code.

5. Ensure that your results are reproducible, for example by fixing the seed with np.random.seed(0).

6. The three problems will be weighed equally in the calculation of the final mark, and in each problem

all the non-bonus subquestions are also weighed equally. The bonus points will enter the calculation

of the final mark (/40) as follows:

m =

⌊
40

21
min(21,m1 +m2 +m3 + b1 + b2 + b3) +

1

2

⌋
,

where mi (/7) denote the marks for the problems, not including the bonus questions, and bi (/1) are

the marks for the bonus questions. In words, the bonus points are worth 1/7th, the final mark is out

of 40, and this mark is rounded to the nearest integer.

7. If you’re unclear on the questions or would like some clarification, do not hesitate to ask or email me.

If you decide to use Python, favor

import numpy as np

import matplotlib.pyplot as plt

np.sum (...)

plt.plot (...)

over

from numpy import sum

from matplotlib.pyplot import *

sum (...)

plot (...)

Though more verbose, this helps prevent naming conflicts (e.g., sum is both a built-in function and a NumPy

function) and it improves readability – it makes it clear what module a non-builtin function comes from.
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Problem 1 (Mean-square stability of a numerical integrator).

Consider the following scalar stochastic differential equation (SDE):

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = 1.

The θ Milstein scheme with time step ∆t is given by

X∆t
n+1 = X∆t

n +
(
θ bn+1 + (1− θ) bn

)
∆t+ σn ∆Wn +

1

2
σnσ

′
n

(
(∆Wn)2 −∆t

)
, (1)

where θ ∈ [0, 1], bn = b(X∆t
n ), σn = σ(X∆t

n ) and σ′n = σ′(X∆t
n ). Consider the SDE

dXt = µXt dt+ σXt dWt, µ, σ ∈ C. (2)

1. Obtain a formula for E[|Xt|2] = E[XtXt] where Xt denotes the complex conjugate of Xt. Show that

Xt is mean-square stable provided that

2 Re(µ) + |σ|2 < 0.

2. Show that the θ Milstein scheme, when applied to the test equation (2), can be written in the form

X∆t
n+1 = G(∆t,∆Wn, µ, σ, θ)X

∆t
n

and obtain a formula for G(∆t, µ, σ, θ). Let Z∆t
n = E[|X∆t

n |2]. Use the previous calculation to obtain

an equation of the form

Z∆t
n+1 = R(∆t, µ, σ, θ)Z∆t

n .

3. Investigate the region of mean-square stability for the θ Milstein scheme in the case where µ, σ ∈ R.

Plot the stability region for θ = 0, .25, .5, .75, 1.

4. A numerical scheme is said to be (mean-square) A-stable provided that it is mean-square stable for

any choice of parameters µ, σ such that the test problem (1) is mean-square stable and any ∆t > 0.

Are there values of θ for which the θ Milstein scheme is A-stable?

5. For θ = .25, µ = −1 and σ = 1, show that the θ Milstein scheme is mean-square stable if and only if

the time step satisfies ∆t < ∆t∗ := 1. To verify this, implement the method for these parameters and

generate 105 replicas of the numerical solution over 100 time steps, with ∆t = 2∆t∗ and ∆t = ∆t∗/2.

In both cases, print an estimation of E|X∆t
100|2 and comment.

+1 (Bonus question): Consider the weak Euler θ method:

X∆t
n+1 = X∆t

n +
(
θ bn+1 + (1− θ) bn

)
∆t+ σn ξn

√
∆t, (3)

with the same notations as in (1) and where ξn are i.i.d. random variables coming from a two point

point distribution with P[ξn = 1] = P[ξn = −1] = 1/2. Calculate the region of asymptotic stability

for this scheme in the case of the test equation (2) and comment on your results. (You do not need to

examine the limiting case, which requires employing the law of iterated logarithms.)
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Problem 2 (Inference for SDEs). Consider the Ornstein–Uhlenbeck equation

dXt = −θ(Xt − µ) dt+ σ dWt, X0 = 1 + x, (4)

with the parameters µ = −1, θ = 1, σ =
√

2 and where x ∼ U(0, 1).

1. Calculate the solution to (4) analytically and compute E[X2
T ] for T = 1.

2. Show that, for any smooth function f ∈ C∞([0, T ]) and any T ≥ 0,

I :=

∫ T

0

f(s) dWs ∼ N

(
0,

∫ T

0

|f(s)|2ds

)
. (5)

You may find it useful to use the notations

fN (s) = f

(⌊
s

∆N

⌋
∆N

)
, ∆N = T/N, IN =

∫ T

0

fN (s) dWs.

You can take for granted that

• As N →∞ it holds that fN → f in L2([0, T ]), because f is smooth;

• The sum of normally distributed random variables is normally distributed;

• Convergence of a sequence of random variables in L2(Ω) implies convergence in distribution to

the same limit.

3. Using your answers to the previous questions, devise an iterative numerical scheme for (4) of the from

X∆t
n+1 = µ+ a(∆t) (X∆t

n − µ) + b(∆t) ξ, ξ ∼ N (0, 1), (6)

such that the associated weak error is zero for any observable.

4. Generate 105 replicas of the numerical solution with ∆t = .01 and T = 1, and calculate a 99%

confidence interval for E := E[X2
T ] based on these. Comment your results and plot 20 trajectories of

the numerical solution.

5. Let X̂ = (Xt0 , . . . , XtN ), with tk = k∆t and ∆t = .1, be discrete observations of the solution to (4).

Write down the probability distribution function (PDF) of X̂ ∈ RN+1.

6. Use the numerical scheme (6) to generate one long sequence of discrete observations with ∆t = .1 and

N = 107, and calculate numerically the value of the maximum likelihood estimator (MLE) for θ based

on this sequence. To this end, assume that the values of µ and σ are known.

7. Assume now that prior knowledge is available for the drift coefficient θ, considered unknown for the

sake of this exercise, that was employed to generate the data: θ was drawn from N (2, 1). Write

down the joint PDF fθ,X̂(ϑ, x0, . . . , xN ) of (θ, X̂0, . . . , X̂N ), viewed as a random vector in RN+2, as

well as the conditional probability distribution fθ|X̂(ϑ|x0, . . . , xN ) of θ given the discrete observations

(X̂0, . . . , X̂N ). You do not need to calculate the integral

IN (x0, . . . , xN ) :=

∫
R
fθ,X̂(ϑ, x0, . . . , xN ) dϑ.

Plot, up to a constant factor, the conditional distribution of θ given the observations generated in

the previous item. In Bayesian terms, this distribution is known as the posterior distribution. The

maximum a posteriori estimator, usually abbreviated MAP, is defined as the maximizer of the posterior

distribution. Calculate the value of this estimator and compare it with that of the MLE.

+1 (Bonus question) Based on the posterior distribution found above, calculate a 99% confidence

interval for θ and comment.
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The following Python functions may be useful for the last two items:

• scipy.interpolate.interp1d for interpolation.

• scipy.integrate.solve ivp for solving ordinary differential equations / integrals.

• scipy.optimize.fminbound for finding the minimum of a function.

• scipy.optimize.brentq for finding the root of a function.
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fminbound.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html


Problem 3 (Numerical method for a Stratonovich SDE). The Stratonovich integral of a stochastic process

Xt with respect to a Brownian motion Wt, denoted by∫ T

0

Xt ◦ dWt,

is defined as the limit in mean-square as N →∞ of

N−1∑
j=0

XtNj
+XtNj+1

2
(WtNj+1

−WtNj
), tNj = j∆tN , ∆tN =

T

N
.

1. Let Xt be the stochastic process given by

Xt =

∫ t

0

b(s, ω) ds+

∫ t

0

σ(s, ω) ◦ dWs,

For any twice continuously differentiable function h : R→ R, it can be shown that Yt := h(Xt) satisfies

Yt − Y0 =

∫ t

0

h′(Xs) b(s, ω) ds+

∫ t

0

h′(Xs)σ(s, ω) ◦ dWs, (7)

like the chain rule of classical calculus – this is the Stratonovich counterpart of Itô’s formula. Show

this for the function h(x) = x2 in the particular case where b(t, ω) = 0 and σ(t, ω) = 1, i.e. show that∫ t

0

Ws ◦ dWs =
W 2
t

2
,

based on the definition of the Stratonovich integral. Using (7), calculate∫ t

0

Wm
s ◦ dWs, m ∈ N>0.

2. Calculate the solution of the Stratonovich SDE

dXt = µXt dt+ σXt ◦ dWt, X0 = 1, (8)

which is a short-hand way of writing the integral equation

Xt = 1 +

∫ t

0

µXt dt+

∫ t

0

σXt ◦ dWt. (9)

3. In order to define a numerical scheme for Stratonovich SDEs, we introduce the notation, for any

n ∈ N>0, any multi-index α ∈ {0, 1}n and any two times s ≤ t,

Js,tα =

∫ t

s

∫ u1

s

· · ·
∫ un−1

s

1 ◦ dV α1
un . . . ◦ dV α2

u2
◦ dV αnu1

,

with the convention that ◦ dV 0
t = dt and ◦ dV 1

t = ◦ dWt. Using the fact that (7) holds mutatis

mutandis for vector-valued Stratonovich SDEs, show that the following identities hold almost surely:

(t− s) Js,t(1) = Js,t(0,1) + Js,t(1,0),

(t− s) Js,t(1,1) = Js,t(1,1,0) + Js,t(1,0,1) + Js,t(0,1,1).

4. We now consider the Stratonovich SDE

dXt = b(Xt) dt+ σ(Xt) ◦ dWt, X0 = x0. (10)
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Like Taylor iterative schemes for Itô SDEs, Taylor methods for Stratonovich SDEs are based on

truncated stochastic Taylor expansions. Let us use the notations

L0f(x) = b(x) f ′(x), L1f(x) = σ(x) f ′(x),

and let us also introduce, for any n ∈ N>0 and any multi-index α ∈ {0, 1}n, the notation

fα(x) = Lα1 . . .Lαnι(x), where ι : R→ R, x 7→ x.

Show that

Xt −Xs = Js,t(0) f(0)(Xs) + Js,t(1) f(1)(Xs)

+ Js,t(0,0) f(0,0)(Xs) + Js,t(0,1) f(0,1)(Xs) + Js,t(1,0) f(1,0)(Xs) + Js,t(1,1) f(1,1)(Xs) + · · · ,

where “· · · ” are integrals of higher multiplicity.

5. In general, it can be shown that the iteration

X∆t
n+1 = X∆t

n +
∑
α∈Aγ

J tn,tn+1
α fα(X∆t

n ),

where the index set Aγ is defined by

Aγ =

{
α ∈ {0, 1}n : n > 0 and

∑
i

(2− αi) ≤ 2γ

}
,

defines a numerical scheme for (10) of strong order γ. Write down the scheme of strong order 2 for (9).

6. Implement the scheme for µ = −1 and σ = 1 and verify the order of strong convergence via numerical

experiments.

+1 (Bonus question) Based on your knowledge of the exact solution, find an alternative manner of

guessing the numerical scheme obtained above, and show rigorously that the scheme has weak order

of convergence 2 for the observable f(x) = x.
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