
MATH97016/MATH97094
Computational Stochastic Processes

Urbain Vaes
u.vaes13@imperial.ac.uk

Imperial College London

Spring term 2019/2020

1 / 31

Welcome

Lectures:

Mondays, 13:00–14:00, Huxley 145
Tuesdays, 12:00–13:00, Huxley 140
Fridays, 17:00–18:00, Huxley 213 (Clore)

Office hours:

Tuesdays, 15:00–16:00, Huxley 737
or by appointment (send email)

Course material will be made available on Blackboard.

2 / 31

The course

This is an introductory course on computational stochastic processes, aimed
towards 4th year and MSc students in Applied Mathematics, Statistics and
Theoretical Physics.

Essential prerequisites:

Basic knowledge of probability: random variables, conditional expectation, law
of large numbers, central limit theorem (CLT), etc.
Basic knowledge of stochastic processes in discrete and continuous time.
Familiarity with a (preferably free and open-source) programming language:
Python, Julia, R, etc.

Desirable prerequisites:

Ideally, you will have had a module on Stochastic Processes or similar.
Basic knowledge of stochastic differential equations (SDEs).
Basic knowledge of partial differential equations (PDEs).
Basic knowledge of numerical methods for ordinary differential equations
(ODEs).

3 / 31

Lectures and Assesments

Lectures:

Mostly on whiteboard / visualizer and sometimes slides.
Numerical examples in Python or Matlab.
I will hand out 2 or 3 problem sheets.
There will be a few problems classes: 1h every 2 weeks, approximately.

Assessments:

Based on a coursework (25%) and a final exam (75%).
The coursework will be mostly computational and you will be free to use any
“reasonable” language (Python, Julia, R, etc.).
The exam will deal mainly with theoretical aspects.

4 / 31

Syllabus I

1. Introduction

1.1 Why study Computational Stochastic Processes?
1.2 Motivation and Applications

2. Monte Carlo simulation

2.1 Random number generation
2.2 Monte Carlo simulation
2.3 Variance reduction techniques

3. Simulation of continuous time Markov processes

3.1 Brownian motion and related stochastic processes, and their simulation
3.2 Gaussian stochastic processes
3.3 Karhunen-Loeve expansion and simulation of Gaussian processes

4. Numerical solution of stochastic differential equations

4.1 Stochastic integrals
4.2 The Itô formula

Course Outline 5 / 31

Syllabus II

4.3 The Euler-Maruyama and Milstein schemes

4.4 Theoretical issues: convergence, consistency, stability

5. Markov Chain Monte Carlo (MCMC)

5.1 Stationary processes, stationary distributions and ergodicity

5.2 The Metropolis-Hastings and MALA algorithms

5.3 Bias correction and variance reduction techniques

Assessed coursework handed out

6. Inference for stochastic differential equations

6.1 Inferring the diffusion coefficient

6.2 The maximum likelihood estimator of drift coefficients in SDEs

6.3 Nonparametric and Bayesian techniques

Course Outline 6 / 31

Bibliography

Books that cover (parts of) the contents of this course include the following:

pavliotis2011applied

MR1214374

MR3097957

MR2410254

MR2331321

Bibliography 7 / 31

Why study Computational Stochastic Processes?

Introducing randomness into mathematical models or in computer algorithms is an
extremely powerful and useful idea. It allows us to

Model uncertainty in the parameters of various models in science, engineering
and economics.

Reflect structural uncertainty (ignorance about part of the model / underlying
phenomena).

Reduce complexity of existing models – many deterministic problems can be
solved more efficiently using probabilistic techniques.

Devise efficient algorithms, e.g. to escape local minima in global optimization.

Motivations 8 / 31

Applications

Examples of applications that benefit from the addition of noise to their models
include

statistical physics

cell biology (motion and growth of cells)

epidemiology (spread of disease)

medicine

climate science (weather prediction)

economy and finance

Motivations 9 / 31

Stochastic Processes

We will focus on computational problems associated with stochastic processes,
which describe dynamical systems whose evolution is of a probabilistic nature.

Definition (Stochastic process)

Let T = N or T = [0,∞) and (Ω,F ,P) a probability space. A stochastic process is
a function X : T × Ω→ Rd such that X(t, •) is a random variable for each t ∈ T .

If T = Z or T = N: discrete-time stochastic process.

If T = R or T = R+: continuous-time stochastic process.

Motivations 10 / 31

Markov processes

We will be mostly interested in Markov processes.

Definition (Markov chain)

A discrete time stochastic process is a Markov process or Markov chain if

P[Xn = xn|Xn−1 = xn−1, . . . , X0 = x0] = P[Xn = xn|Xn−1 = xn−1].

This concept can be generalised to continuous time processes naturally.

The only continuous time Markov processes we will consider are diffusion
processes, i.e. solutions of an SDE of the type

dXt = b(Xt) dt+ σ(Xt) dWt.

Motivations 11 / 31

Motivating examples

1. Monte Carlo methods

Motivating example 1: Monte Carlo methods 12 / 31

Motivating example 1: Monte Carlo methods

When computing properties of statistical models, one frequently has to compute,
over a high-dimensional state-space D, integrals of the form

I = EX∼π[f(X)] :=

∫
D

f(x)π(x) dx.

Why do we need Monte Carlo methods?

Suppose that D = [0, 1]d and that we want to employ a numerical quadrature:

1. Choose mesh of grid points within state space, with mesh-size h.

2. Evaluate f(xi)π(xi) for every grid point xi.

3. Use quadrature scheme to approximate integral.

Motivating example 1: Monte Carlo methods 13 / 31

Why do we need Monte Carlo method

With the standard quadrature-based approaches,

the error is typically O(hk) for some k ≥ 2 (e.g., k = 2 for the midpoint rule);

the number of function evaluations scales as M = O(h−d).

Therefore, the error scales as O(M−k/d), i.e. the computational cost must grow
exponentially as d increases in order to maintain the same error.

This is known as the curse of dimensionality.

Motivating example 1: Monte Carlo methods 14 / 31

Monte Carlo Methods

However, suppose we can generate i.i.d. samples x1, x2, . . . with distribution π.
Then, using the Law of Large Numbers (LLN), we have

IN :=
1

N

N∑
i=1

f(xn)
N→∞−−−−→ E[f(X)] almost surely.

... so we can approximate I by IN !

The rate of convergence is O(N−1/2). This means that

error ∼ 1√
computational cost

.

This is very slow, but does not suffer from the curse of dimensionality!

Motivating example 1: Monte Carlo methods 15 / 31

Monte Carlo Methods

However, suppose we can generate i.i.d. samples x1, x2, . . . with distribution π.
Then, using the Law of Large Numbers (LLN), we have

IN :=
1

N

N∑
i=1

f(xn)
N→∞−−−−→ E[f(X)] almost surely.

... so we can approximate I by IN !

The rate of convergence is O(N−1/2). This means that

error ∼ 1√
computational cost

.

This is very slow, but does not suffer from the curse of dimensionality!

Motivating example 1: Monte Carlo methods 15 / 31

Some interesting questions

1. How can we generate i.i.d. samples from π? (Section 2)

2. How many samples do we need for a good approximation? (Section 2)

3. How do we measure performance of MC methods, and how to speed up
convergence? (Section 2)

4. What to do if we cannot generate i.i.d. samples from π? (Section 5 – MCMC)

Motivating example 1: Monte Carlo methods 16 / 31

Monte Carlo simulation: an example

Suppose that we want to estimate

π = 4

∫ 1

−1

∫ 1

−1

I{x2+y2≤1} (1/4)︸ ︷︷ ︸
π(x,y)

dxdy.

Motivating example 1: Monte Carlo methods 17 / 31

Motivating examples

2. Statistical Physics

Motivating example 2: Langevin dynamics 18 / 31

Motivation 2 – Statistical Physics

Consider a microscopic system of M particles.

Position described by q = (q1, . . . , qM).

Interactions are characterised by a potential V .

⇒ The evolution of the isolated system is governed by the Hamiltonian
dynamics

q̈(t) = −∇V (q).

Example

A simple model for liquids is the case when

V (q) =

M∑
i,j=1

Ψ(|qi − qj |), where Ψ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
.

This is called the Lennard–Jones potential.

Motivating example 2: Langevin dynamics 19 / 31

Statistical Physics: Langevin dynamics

The Langevin process is a model of a Hamiltonian system coupled to an infinite
reservoir of energy via a thermostat.

The model arises through model reduction of a more complex molecular system (e.g.
via Mori-Zwanzig formalism).

q̈t = −∇V (qt)− γq̇t +
√

2γβ−1Ẇt

where

- Wt is a 3M−dimensional Brownian motion.

- γ > 0 is the friction coefficient.

- β is the inverse temperature.

Motivating example 2: Langevin dynamics 20 / 31

Statistical Physics

We can write it as a system of coupled first order equations:dqt = pt dt ,

dpt = −∇qV (qt) dt − γpt dt+
√

2γβ−1 dWt .

→ Hamiltonian and fluctuation/dissipation parts.

in the γ →∞ limit, qγ(t) := q(γt) converges to Xt, where

dXt = −∇V (Xt) dt+
√

2β−1 dWt

(overdamped Langevin equation).

As t→∞, Law(Xt)→ π(dx) where

π(dx) =
1

Z
e−βV (x) dx, Z =

∫
e−βV (x) dx.

Computing Z typically involves integrating a 103 − 106 dimensional integral.

Motivating example 2: Langevin dynamics 21 / 31

Langevin dynamics: simulation examples

Figure: Langevin dynamics with friction γ = 1 (Inverse temperature β = 1)

Motivating example 2: Langevin dynamics 22 / 31

Langevin dynamics: underdamped regime

Figure: Langevin dynamics with friction γ = .1 (Inverse temperature β = 1)

Motivating example 2: Langevin dynamics 23 / 31

Langevin dynamics: overdamped regime

Figure: Langevin dynamics with friction γ = 10 (Inverse temperature β = 1)

Motivating example 2: Langevin dynamics 24 / 31

Some interesting questions

In Section 4 we will answer the following questions:

How do we simulate (qt, pt) and Xt? I.e., given a step size ∆t� 1, can we
derive numerical discretisations X(n) and (q(n), p(n)) which are good
approximations for Xn∆t and (qn∆t, pn∆t)?

What conditions do we need to assume in order to ensure that the
discretisation is stable?

How can we generate samples from π(dx)? Can we use X(n) to sample from
π and/or compute expectations? If not, can we modify X(n) in order to do so?

Motivating example 2: Langevin dynamics 25 / 31

Motivating examples

3. Inference

Motivating example 3: Inference 26 / 31

Motivation 3 – Inference

Suppose we have a statistical model for an experiment.

The model depends on a parameter θ, which is unknown.

By performing the experiment, we obtain observed data y.

In Section 6 we will answer the question of how to identify the parameter θ that
best explains y.

Examples of applications include

pharmacology (e.g., drug dosage)

imaging

...

Motivating example 3: Inference 27 / 31

Inference – Maximum Likelihood Estimator

From the model, we can assume that, for parameters θ, the data y is distributed
according to

`(y|θ).

This is called the likelihood function and is assumed to be completely known. It is
often viewed as a function of the parameters θ given the data samples.

The goal is to find the value(s) of θ that is most compatible with the observed data
y. The maximum likelihood estimator (MLE) is the solution of

θ̂ = argmaxθ∈Θ `(y|θ).

Motivating example 3: Inference 28 / 31

Inference – Bayesian approach

Another approach is based on Bayes’ rule:

View θ, y as a coupled pair of random variables with density π0(θ) `(y|θ).

π0(θ) is the θ-marginal distribution.
`(y|θ) is the conditional density of y given θ.

Bayes’ rule gives P(θ|y) = `(y|θ)π0(θ)
P(y) .

π0(θ) is the prior. It encodes prior beliefs about θ.

This methodology gives a lot more information about the estimator.

Problem: Have to deal with the denominator

P(y) =

∫
Θ

`(y|θ) π0(θ) dθ.

Motivating example 3: Inference 29 / 31

Bayesian approach

How to deal with the denominator?

Option 1: Clever choice of prior

Option 2: Use the mode of the posterior distribution as best guess. This is
known as Maximum a Posteriori estimator (MAP)

Option 3: Use MCMC to generate approximate samples of posterior
distribution.

Motivating example 3: Inference 30 / 31

Any questions?

Next week we will discuss Section 2:

Random number generation

Monte Carlo simulation

Variance reduction techniques

Motivating example 3: Inference 31 / 31

