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Testing the uniform distribution hypothesis

Several tests can be employed to assess random or pseudorandom number generators: the
Kolmogorov–Smirnov (KS) test, the χ2 test, the Diehard tests, and many more. A detailed
discussion of theses tests is beyond the scope of this course, so here we include only a brief
discussion of the KS test for the sake of illustration. We will then employ the KS test to assess
the performance of the Linear Congruential Generator (LCG) with the parameters employed in
the glibc library.

The KS test is based on a comparison between the expected cumulative distribution function
(CDF) and an empirical CDF constructed from the numbers given by our generator. Let us
assume that {Xi}i∈N is a sequence of independent, identically distributed (i.i.d.) real-valued
random variables with CDF F , and let us define the empirical CDF associated to {Xi}ni=1 by

FN (x) =
1

N

N∑
i=1

I(−∞,x](Xi),

where IA denotes the indicator function of the set A. By the strong law of large numbers (SLLN),
for all x ∈ R it holds that

FN (x) =
1

N

N∑
i=1

I(−∞,x](Xi)→ E
[
I(−∞,x](Xi)

]
= P [Xi ≤ x] = F (x) a.s. when N →∞. (1)

This means that for all x ∈ R, the event Ax := {limN→∞ FN (x) = F (x)} has probability one. A
good PRNG should therefore produce numbers such that, for any x, the empirical CDF at x
converges to F (x) with probability 1 as the number of samples increases.

Remark 1. Equation (1) is not sufficient to deduce that FN converges pointwise (in x) to F almost
surely. Indeed, let us denote by Nx the complement (in the underlying sample space Ω) of Ax,
i.e. Nx is the event that FN (x) does not converge to F (x). The event “limN→∞ FN (x) = F (x)

for all x ∈ R”, which we denote by B, has probability P[B] = 1− P[Bc] = 1− P
[⋃

x∈RNx

]
, and

since an uncountable union of events with probability 0 does not necessarily have probability
zero, we cannot conclude that P[B] = 1. �

Fortunately, the following theorem shows that, in fact, FN does converge to F almost surely,
pointwise (in x) and even uniformly.

Theorem 1 (Glivenko–Cantelli). With the same notations and assumptions as above,

DN := sup
x∈R
|FN (x)− F (x)| → 0 a.s. when N →∞.

Proof. For simplicity, we consider only the case where F is continuous. Let −∞ = x0 < x1 <

· · · < xm = +∞ be such that F (xi) = 1
m (this is possible because F is continuous). For any

x ∈ R, there exists j ∈ {0, . . . ,m − 1} such that x ∈ [xj , xj+1]. Since both F and FN are
nondecreasing,

FN (x)− F (x) ≤ FN (xj+1)− F (xj) = FN (xj+1)− F (xj+1) +
1

m
,

FN (x)− F (x) ≥ FN (xj)− F (xj+1) = FN (xj)− F (xj)−
1

m
.

(2)
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Let now MN := maxj∈{0,...,m} |FN (xj)− F (xj)|. It follows from Eq. (2) and the fact that x was
arbitrary that

DN = sup
x∈R
|FN (x)− F (x)| ≤MN +

1

m
.

Since MN , being the maximum of a finite number of random variables that converge a.s. to 0 as
N →∞, also converges a.s. to 0 as N →∞, we deduce from the previous inequality that

L := lim sup
N→∞

DN ≤
1

m
a.s.

To conclude, note that {L > 0} =
⋃∞

m=1{L >
1
m}, so by countable subadditivity

P[L > 0] ≤
∞∑
i=1

P
[
L >

1

m

]
= 0,

i.e. L = 0 a.s.

With this result, we can refine our expectations of a good random number generator: a good
generator should produce samples such that the empirical CDF converges uniformly to F with
probability 1. The Glivenko–Cantelli theorem, however, is of little practical use for us, because it
does not contain any information on the speed of convergence of Dn to 0. To build the KS test
statistic, we need the following stronger result:

Theorem 2 (Kolmogorov). With the same notations and assumptions as above,

√
N DN

d−→ K,

where K is the Kolmogorov distribution, with CDF

P[K ≤ x] = 1− 2
∞∑
k=1

(−1)k−1e−2k
2x2
.

In its simplest form, the Kolmogorov–Smirnov test is based on the approximation that
√
NDN

follows the Kolmogorov distribution even when N is finite: For large enough N ,

P[
√
N DN ≥ ε] ≈ lim

N→∞
P[
√
N DN ≥ ε] = P[K ≥ ε]. (3)

Remark 2. We emphasize that, while it is necessary for a good PRNG to pass the KS test, it
is far from sufficient, and in practice many other tests should be employed before coming to a
conclusion. Consider the following example:

import numpy as np
import scipy.stats as stats
x = np.linspace(0, 1, 10**6)
print(stats.kstest(x, ’uniform ’))

Our sequence is clearly not random, yet SciPy returns a p-value of 1. In this context, the p-value
is the approximate probability in Eq. (3). �
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