
Variance Reduction by Conditioning

Once again, suppose we wish to estimate E[Z] for some random variable Z. Clearly, if Zc =

E[Z |W ] for some random variable W , then

E[Zc] = E[Z].

To compute the variance of the random variable Zc we use the law of total variance

Lemma 1. Let X and Y be random variables such that variance of Y is finite, then

Var [Y ] = EX [Var[Y |X]] + VarX (E [Y |X]) .

Proof.

Var[Y ] = E[Y 2]− (E[Y ])2

= E
[
E[Y 2 |X]

]
− (E [E[Y |X]])2 ,

using the law of total expectation. Now

E
[
E[Y 2 |X]

]
= E

[
Var[Y |X] + (E [Y |X])2

]
.

and using the fact that

Var [E[Y |X]] = E [E[Y |X]2]− (E[E [Y |X]])2 ,

then the result follows.

Applying the above lemma with Y = Z and X = W we obtain:

Var[Z] = Var(E(Z |W )) + E (Var [Z |W ])

= Var(Zc) + E (Var [Z |W ]) ≥ Var(Zc),

Thus by conditioning Z with respect to any random variable W we always get a reduction in
variance. This motivates the idea of carefully choosing W so that the conditional expectation is
computable and gives a signficant variance reduction.

Example 1. Consider the problem of approximating π, via monte carlo integration, using E[Z],
where Z = f(U1, U2) with

f(u1, u2) = 41{(u2
1 + u2

2 < 1}),

and where U1, U2 ∼ U(0, 1). Take

Zc = E[Z |U1] = 4P
(
U2

2 < 1− U2
1 |U1

)
= 4
√

1− U2
1 .

We’ll approximate the reduction of variance using this estimator in the worksheets. �
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Definition 2 (Indistinguishable processes). Two stochastic processes defined on the same
probability space (Ω,F ,P) are indistinguishable if

P(Xt = Yt for all t ∈ T ) = 1.

Remark 1. Indistinguishable processes are clearly also stochastically equivalent, but the converse
does not hold. Consider for examples the processes Xt = 0 and

Yt =

{
1 if t = U ,

0 otherwise,

where U ∼ U(0, 1). �

Stationary stochastic processes

Definition 3. A stochastic process is called (strictly) stationary if all FDDs are invariant under
time translation: for all k ∈ N, for all times ti ∈ T , and {Γi}ki=1 ⊂ G,

P(Xt1 ∈ Γ1, . . . , Xtk ∈ Γk) = P(Xs+t1 ∈ Γ1, . . . , Xs+tk ∈ Γk),

for s > 0 such that s+ ti ∈ T , for every i = 1, . . . k.

In particular, setting k = 1, Definition 3 implies that the law of Xt does not depend of t.
Stationary processes therefore describe phenomena which do not change in time. Let Xt be a
real-valued random process on the probability space (Ω,F ,P) with finite second moment (i.e.
Xt ∈ L2(Ω,P) for all t ∈ T ). Assume that Xt is strictly stationary. Then

E[Xt+s] = E[Xt], ∀s ∈ T,

from which we conclude that EXt = EX0 is constant, and moreover we have that

E [(Xt1+s − µ)(Xt2+s − µ)] = E [(Xt1 − µ)(Xt2 − µ)] , ∀s ∈ T.

This implies that the covariance function C(t, s) only depends on the difference t− s, that is
to say C(t, s) = C(t− s), which motivates the following definition.

Definition 4. A continuous time stochastic process {Xt}t∈T is wide sense stationary (WSS) or
second-order stationary or weakly stationary if it has finite first and second moments and

1. E(Xt) is constant, i.e. it does not depend on t;

2. cov(Xt, Xs) is a function of the difference t− s;

The function C(t− s) = cov(Xt, Xs) is the autocovariance function of the process X. Notice
that for mean-zero processes, C(t) = E(XtX0), whereas C(0) = EX2

t , which is finite, by
assumption. Since we have assumed that Xt is a real valued process, we have that C(t) = C(−t),
∀t ∈ R. From the discussion above, it is clear that a strictly stationary L2(Ω) random variable is
also wide-sense stationary. The converse is not true in general. An exception to this is the case
of Gaussian processes:
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Lemma 5. A Gaussian process (see definition below) is strictly stationary if and only if it is
weakly stationary.

Proof. Gaussian distributions are determined by their mean vector and covariance matrix. Since
the mean and covariance of a weakly stationary process do not change when the times are shifted,
this implies that the finite dimensional distributions are invariant under time shift.

If its autocovariance function C(·) is absolutely integrable, then a weakly stationary process
is ergodic in the following sense:

Theorem 6 (L2(Ω,P) (mean-square) ergodic theorem). Let {Xt}t≥0 be a weakly stationary
process with mean µ and autocovariance function C ∈ L1 (0,∞), i.e.∫ ∞

0
|C(t)| dt <∞.

Then

lim
T→∞

ET := lim
T→∞

E

(∣∣∣∣ 1

T

∫ T

0
Xs ds− µ

∣∣∣∣2
)

= 0.

Proof. Let I2 = [0, T ] × [0, T ]. We notice that, by applying Young’s inequality and using the
fact that Xt is mean-square integrable:∫
I2

∫
Ω
|Xs(ω)− µ| |Xt(ω)− µ|P(dω) d(s, t) ≤ 1

2

∫
I2

∫
Ω
|Xs(ω)− µ|2 + |Xt(ω)− µ|2 P(dω) d(s, t)

=

∫
I2
C(0) d(s, t) <∞.

We can therefore apply Fubini–Tonelli’s theorem, which implies that∫
I2
|Xs(ω)− µ| |Xt(ω)− µ|d(s, t) <∞ almost surely, (1)

and that the two integrals can be swapped:∫
I2

∫
Ω

(Xs(ω)− µ) (Xt(ω)− µ)P(dω) d(s, t) =

∫
Ω

∫
I2

(Xs(ω)− µ) (Xt(ω)− µ) d(s, t)P(dω).

By (1), we can apply Fubini–Tonelli’s theorem again to rewrite the integral on the right-hand
side as the triple integral∫

Ω

∫ T

0

∫ T

0
(Xs(ω)− µ) (Xt(ω)− µ) dsdtP(dω) =

∫
Ω

∣∣∣∣∫ T

0
(Xs(ω)− µ) ds

∣∣∣∣2 P(dω) = T 2ET ,

by definition of ET . (This level of detail for the application of Fubini–Tonelli’s theorem is not
necessary, but it was included here for completeness.)

We therefore obtain

ET =

∫
Ω

∣∣∣∣∫ T

0
(Xs(ω)− µ) ds

∣∣∣∣2 P(dω) =
1

T 2

∫
I2
E ((Xs − µ)(Xt − µ)) d(s, t) =

1

T 2

∫
I2
C(t−s) d(s, t).

By employing the fact that C(·) is an even function and by using the change of variables u = t−s,
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ν = t, we obtain

ET =
2

T 2

∫ T

0

∫ t

0
C(t− s) dsdt =

2

T 2

∫ T

0
(T − u)C(u) du ≤ 2

T

∫ ∞
0
|C(u)| du,

which, by letting T →∞, allows us to conclude the proof.
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Karhunen–Loève expansion

Theorem 7 (Mercer). Suppose that C(·, ·) is a continuous symmetric non-negative definite
function on [a, b]× [a, b], i.e.

n∑
i=1

n∑
i=1

C(ti, tj) ci cj ≥ 0 for all n ∈ N and ti, . . . , tn in [a, b],

and let KC : L2 (a, b)→ L2 (a, b) be the operator defined by

KCf(t) =

∫ b

a
C(s, t) f(s) ds.

Then

• There is an orthonormal basis {φn}n∈N of L2 (a, b) consisting of eigenfunctions of the
operator KC , the corresponding eigenvalues {λn}n∈N are nonnegative;

• The eigenfunctions corresponding to non-zero eigenvalues are continuous;

• C(·, ·) admits the representation

C(s, t) =
∞∑
n=1

λn φn(s)φn(t), (2)

where the convergence is absolute and uniform, i.e.

∞∑
n=1

|λn φn(s)φn(t)|,

seen as a sequence of functions on [a, b]× [a, b], converges uniformly.

The full proof of Mercer’s theorem is beyond the scope of this course, so in the partial proof
below (included for information purposes) we will restrict our attention to the first two claims.
To this end we will admit without proof two auxiliary results:

Theorem 8 (Arzelà–Ascoli). Consider a sequence of real-valued continuous functions {fn}n∈N,
defined on a closed and bounded interval [a, b]. If this sequence is uniformly bounded and
uniformly equicontinuous, then there exists a subsequence {fnk

}k∈N that converges uniformly.

Theorem 9 (Spectral theorem for compact self-adjoint operators). Suppose that K : H → H is a
compact self-adjoint operator on a separable infinite-dimensional Hilbert space. Then there exists
a basis {φn}n∈N of consisting of eigenfunctions of K. In addition, the corresponding eigenvalues
are real λn → 0 as n→ 0.

Partial proof of Mercer’s theorem. The operator KC is clearly self-adjoint in L2 (a, b) because,
denoting by 〈·, ·〉 the inner product on L2 (a, b) and employing Fubini’s theorem, we have

∀f, g ∈ L2 (a, b) , 〈KCf, g〉 =

∫ b

a

∫ b

a
C(s, t) f(s) g(t) ds dt = 〈f,KCg〉 .
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We now show that KC is compact, which will enable us to use the spectral theorem for compact
self-adjoint operators. To this end, let {fn}n∈N be sequence of functions bounded in L2 (a, b),
i.e. ‖fn‖ ≤ A < ∞ for all n, where ‖ · ‖ denotes the norm of L2 (a, b). We will show that
the mapped sequence {KCfn}n∈N is uniformly bounded and uniformly equicontinuous. Since
C(·, ·) is continuous on the compact set [a, b]× [a, b], it admits a maximum M <∞ on that set.
Therefore, for all n and all t ∈ [a, b] it holds that

|KCfn(t)| ≤
∫ b

a
|C(s, t) fn(s)| ds ≤M

∫ b

a
|fn(s)| × 1 ds ≤M ‖fn‖ ‖1‖ < M A ‖1‖,

which shows the uniform boundedness. (Here we employed the Cauchy–Schwarz inequality.) Let
us now denote by ω(·) the modulus of continuity of C(·, ·), i.e. ω(·) is such that

|C(s1, t1)− C(s2, t2)| ≤ ω(
√

(s2 − s1)2 + (t2 − t1)2) ∀(s1, t1), (s2, t2) ∈ [a, b]× [a, b].

With this notation, for any s, t ∈ [a, b] and any n it holds that

|KCfn(t)−KCfn(s)| ≤
∫ b

a
|C(u, t)− C(u, s)| |fn(u)|du

≤ ω(|t− s|) ‖fn‖ ‖1‖ < ω(|t− s|)A ‖1‖,
(3)

which shows the uniform equicontinuity. By Arzelà–Ascoli, there is therefore a subsequence
{KCfnk

}k∈N that converges uniformly, and thus also in L2 (a, b). We have thus shown that
for any bounded sequence in L2 (a, b), the mapped sequence contains a converging (in L2 (a, b))
subsequence, which implies that KC is compact, by definition.

The spectral theorem therefore implies the existence of an orthonormal basis {φn}n∈N of
L2 (a, b) consisting of eigenfunctions of KC . The eigenfunctions corresponding to non-zero
eigenvalues are uniformly continuous because, by (3),

|φn(t)− φn(s)| = 1

λn
|KCφn(t)−KCφn(s)| ≤ 1

λn
ω(|t− s|)A ‖1‖ ∀s, t ∈ [a, b].

Now notice that

λn = 〈KCφn, φn〉 =

∫ b

a

∫ b

a
C(s, t)φn(s)φn(t) ds dt.

Since the integrand is uniformly continuous, the integral can be approximated arbitrary well by
a (double) Riemann sum, and this sum is nonnegative by the assumption on C. Therefore, the
eigenvalues are nonnegative.

Now assume that Xt is a centered process (E[Xt] = 0) with continuous autocovariance
function C(·, ·). This latter assumption implies in particular that the paths of Xt are almost
surely in L2 (a, b). Indeed

E
[∫ b

a
X2

t dt

]
=

∫ b

a
E[X2

t ] dt =

∫ b

a
C(t, t) dt <∞.

If follows from this that, given a complete orthonormal basis {φn}n∈N of L2 (a, b), the following
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two statements hold almost surely:

(i) Zi :=

∫ b

a
Xt φi(t) dt ≤

√∫ b

a
X2

t dt

√∫ b

a
φi(t)2 dt =

√∫ b

a
X2

t dt <∞ ∀i ∈ N.

(ii) Sn :=

n∑
i=1

Zi φi(t) dt→ Xt in L2 (a, b) as n→∞.

Remark 2 (not examinable). The foregoing discussion shows that Sn :=
∑n

i=1 Ziφi, viewed as
a random variable with values in L2 (a, b), converges to Xt almost surely. On the other hand,
notice that

n∑
i=1

‖Ziφi‖2L2(Ω×(a,b)) =
n∑

i=1

E
[∫ b

a
Z2
i φi(t)

2 dt

]
=

n∑
i=1

E
[
Z2
i

]
= E

[
n∑

i=1

Z2
i

]
.

Here L2 (Ω× (a, b)) denotes as the L2 space on Ω× (a, b) equipped with the product measure
P× λ, with λ the Lebesgue measure on (a, b). By Bessel’s inequality, and since Xt is in L2 (a, b)

almost surely, the sum in the expectation is bounded from above by
∫ b
a X

2
t dt almost surely. We

deduce
n∑

i=1

‖Ziφi‖2L2(Ω×(a,b)) ≤ E
[∫ b

a
X2

t dt

]
<∞,

and so Sn =
∑n

i=1 Ziφi converges in L2 (Ω× (a, b)) to a limit Yt. To show that Yt = Xt, notice
that the convergence of SN to Yt in L2 (Ω× (a, b)) implies that ∆n := ‖Yt − Sn‖L2(a,b) (a real-
valued random variable) converges in L2(Ω) to 0. Therefore (this is a fundamental result in
functional analysis) there exists a subsequence ∆nk

that converges to 0 almost surely, i.e. almost
surely it holds that ‖Yt − Snk

‖L2(a,b) → 0 as k →∞, which shows that Yt = Xt by uniqueness
of the almost sure limit. We conclude that Sn(t) converges to Xt also in L2 (Ω× (a, b)). The
difference

‖Sn(t)−Xt‖L2(Ω×(a,b)) =

(∫ b

a
E|Sn(t)−Xt|2 dx

)1/2

=

∫ b

a
E

∣∣∣∣∣
∞∑

i=n+1

Zi φi(t)

∣∣∣∣∣
2

dx

1/2

.

is called the total mean square error between Sn and Xt. (Note that the square is inside the
expectation, i.e. when we write E| · |2 we mean E[| · |2]). �

The Karhunen–Loève theorem shows the convergence of Sn to Xt in a stronger sense.

Theorem 10 (Karhunen–Loève). Let Xt be a zero-mean square-integrable stochastic process
defined over a probability space (Ω,F ,P), and indexed over a closed and bounded interval [a, b].
Assume additionally that the autocovariance function of the process, denoted by C(·, ·), is contin-
uous on [a, b]× [a, b]. Then C(·, ·) satisfies the conditions of Mercer’s theorem and, denoting by
{φn}n∈N and λn the eigenfunctions and corresponding eigenvalues of the operator

KC : f →
∫ b

a
C(s, ·) f(s) ds,
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Xt admits the following representation

Xt =

∞∑
n=1

Znφn(t), Zn =

∫ b

a
Xt φn(t) dt,

where the convergence is in L2 (Ω,P) uniformly in t. Additionally, the random variables Zn have
zero mean, are uncorrelated and have variance λn.

Proof. Below we will make use of Fubini–Tonelli’s theorem without explicitly mentioning that
we do so. It follows from the definitions of Zn that

E[Zi] = E
[∫ b

a
Xt φi(t) dt

]
=

∫ b

a
E[Xt]φi(t) dt = 0, ∀i ∈ N.

Similarly, for all i, j ∈ N it holds that

E[Zi Zj ] = E
[∫ b

a
Xs φi(s) ds

∫ b

a
Xt φj(t) dt

]
= E

[∫ b

a

∫ b

a
XsXt φi(s)φj(t) ds dt

]
=

∫ b

a

∫ b

a
E[XsXt]φi(s)φj(t) dsdt =

∫ b

a

∫ b

a
C(s, t)φi(s)φj(t) dsdt

=

∫ b

a

∫ b

a
C(s, t)φi(s) ds φj(t) dt =

∫ b

a
λi φi(t)φj(t) dt = λi δij .

It remains to show the convergence, for which we will use the third statement in Mercer’s theorem,
which follows from E[Zi Zj ] = δij λi and the fact that {φn}n∈N are the eigenfunctions of KC :

E
[
|Xt − Sn(t)|2

]
= E

[
|Xt|2 + |Sn(t)|2 − 2Xt Sn(t)

]
= C(t, t) +

n∑
i=1

n∑
j=1

E[Zi Zj ]φi(t)φj(t)− 2

n∑
i=1

E[Xt Zi]φi(t)

= C(t, t) +
n∑

i=1

λi φi(t)φi(t)− 2
n∑

i=1

E
[∫ b

a
XtXs φi(s) ds

]
φi(t)

= C(t, t) +

n∑
i=1

λi φi(t)φi(t)− 2

n∑
i=1

∫ b

a
C(s, t)φi(s) ds φi(t)

= C(t, t)−
n∑

i=1

λi φi(t)φi(t).

By Mercer’s theorem, C(t, t)−
∑n

i=1 λi φi(t)φi(t) converges to 0 uniformly in time as n→∞,
which concludes the proof.

For Gaussian processes, the coefficients {Zn}n∈N in the Karhunen–Loève expansion are all
normally distributed. This is because the integral of a Gaussian process is a Gaussian random
variable (not examinable).

Exercise 1. Let Xt be a Gaussian process on [a, b] with continuous mean µ(t) and autocovariance
C(s, t), and with almost surely Riemann-integrable paths. Show that∫ b

a
Xt dt ∼ N

(∫ b

a
µ(t) dt,

∫ b

a

∫ b

a
C(s, t) ds dt

)
.
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Proof. By assumption, it holds almost surely that

I :=

∫ b

a
Xt dt = lim

n→∞
In =: lim

n→∞

(
b− a
n

) n−1∑
i=0

Xtni
, tni := a+

i

n
(b− a). (4)

The argument of the limit on the right-hand side, being a finite sum of normally distributed
random variable, is itself normally distributed, with mean and covariance given by:

E[In] =

(
b− a
n

) n−1∑
i=0

µ(tni ), E|In − E[In]|2 =

∣∣∣∣b− an
∣∣∣∣2 n−1∑

i=0

n−1∑
j=0

C(tni , t
n
j ).

Since µ and C are uniformly continuous, it is clear that

E[In]→
∫ b

a
µ(t) dt and E|In − E[In]|2 →

∫ b

a

∫ b

a
C(s, t) dsdt as n→∞,

and so (this is easy to check using one of the equivalent definitions of convergence in distribution
given by the Portmanteau lemma)

In
d−→ N

(∫ b

a
µ(t) dt,

∫ b

a

∫ b

a
C(s, t) ds dt

)
.

From (4), we also know that In converges to I almost surely and therefore also in distribution,
which leads to the conclusion by invoking the uniqueness of the limit in distribution.

The fact that the coefficients Zi of the Karhunen–Loève expansion are pairwise independent
for Gaussian processes (because uncorrelated Gaussians are also indepedent) means that we
can employ the expansion to simulate Gaussian processes, as is done in the Jupyter notebook
and in the problem sheet. The Karhunen–Loève expansion also enjoys the nice property that it
minimizes the total mean-square error:

Proposition 11. Let Xt be a zero-mean process with continuous autocovariance function C(·, ·),
and let {ψn}n∈N be a complete orthonormal basis of L2 (a, b). For any basis, we saw that the
process Xt may be approximated as

Xt ≈ Sn(t) :=

n∑
i=1

Ai ψi(t), Ai :=

∫ b

a
Xt ψi(t) dt,

and that the total mean-square error of the approximation tends to 0 as n→∞. We will now
show that, of all such approximations, the Karhunen–Loève expansion is the one that minimizes
the total mean square error, provided that the eigenvalue are arranged in decreasing order.

Proof. The mean-square error, which we denote by εn, admits the expression:

ε2
n = E

[∫ b

a
|Xt − Sn(t)|2 dt

]
= E

∫ b

a

∣∣∣∣∣
∞∑

i=n+1

Ai ψi(t)

∣∣∣∣∣
2

dt

 .
Employing the continuity of the inner product (or of the norm) on L2 (a, b) and the orthonormality
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of the basis {ψi}i∈N, we obtain

ε2
n = E

[ ∞∑
i=n+1

|Ai|2
]

=
∞∑

i=n+1

E|Ai|2.

To avoid infinite series, we will show that the Karhunen–Loève expansion maximizes

J∗(ψ1, . . . , ψn) = E
[∫ b

a
X2

t dt

]
− ε2

n =
n∑

i=1

E|Ai|2.

Employing Fubini–Tonelli’s theorem, we deduce

J∗(ψ1, . . . , ψn) =
n∑

i=1

∫ b

a

∫ b

a
C(s, t)ψi(s)ψi(t) ds dt.

A necessary condition for an orthonormal basis (ψ1, . . . , ψn) to maximize this functional is that
all the functional derivatives of the Lagrangian

J(ψ1, . . . , ψn) =
n∑

i=1

(∫ b

a

∫ b

a
C(s, t)ψi(s)ψi(t) ds dt− βi

(∫ b

a
ψi(t)

2 dt− 1

))
,

formed from the constraints that {ψi}i∈N have norm 1 in L2 (a, b), are zero at (ψ1, . . . , ψn). A
simple calculation shows that the functional derivatives (which are themselves functions on [a, b])
are given by:

δJ

δψi
(ψ1, . . . , ψn) = 2

(∫ b

a
C(s, t)ψi(s) ds− βi ψi(t)

)
, i = 1, . . . , n.

For these to be zero, we deduce that {ψi}ni=1 must be eigenfunctions of the operator KC . If this
is the case, and denoting by λi the corresponding eigenvalues, then

J∗(ψ1, . . . , ψn) =

n∑
i=1

λi,

which is maximized when the eigenpairs are arranged in such a way that the eigenvalues are
nonincreasing.
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