
This part is based on the notes from 2016, Section 4.4.1. The convention used below for circulant
matrices is slightly different from the one employed in the notes, but the two approaches are
equivalent. Here we follow the convention employed here. Remark 1 and Exercise 1 were not covered
during the lecture; they were included here for information purposes, but are not examinable.

Simulating Stationary Gaussian Processes

While the methods seen last week are applicable for simulating general Gaussian processes on general
meshes t0 < t1 < . . . < tn−1 they are computationally expensive, since they ultimately will require
O(n3) floating point operations to generate a single sample. However, in the particular case where we
wish to simulate a stationary Gaussian process on a regular mesh {0,∆t, 2∆t, . . . , (n− 1)∆t}, then
we can reduce the problem to a discrete Fourier transform and obtain an almost magical speedup by
employing a Fast-Fourier Transform.

Indeed, suppose we wish to simulate a stationary Gaussian process X(t) with mean µ = 0 and
covariance C(t, s) = C(t − s). Then given timesteps {0,∆t, 2∆t, . . . , n∆t}, the random vector
(X(t0), X(t2), . . . , X(tn−1)) has a covariance matrix of the form:

Σ =


c0 c1 · · · cn−1

c1
. . .

. . .
. . .

...
. . .

. . .
. . .

cn−1
. . .

. . .
. . .

,

where the
. . . indicate that the entries of Σ are constant along each diagonal: Σ is Toeplitz matrix.

Definition 1 (Toeplitz matrix). A matrix Σ is said to be a Toeplitz matrix, if each diagonal takes
a constant value, that is

Σi,j = Σi+1,j+1,

for all i, j ∈ {0, . . . , n− 2}.

A particularly important subclass of Toeplitz matrices is that of circulant matrices.

Definition 2. A circulant matrix is a matrix of the form:

B =


b0 b1 · · · bn−1

bn−1
. . .

. . .
. . .

...
. . .

. . .
. . .

b1
. . .

. . .
. . .

, (1)

A circulant matrix is constructed by starting with a vector b = (b0, . . . , bn−1) as the first row,
and obtaining the each row by a periodic right shift of the previous row. The important observation
that we shall make use of is that we can embed Σ in a N ×N symmetric circulant matrix, where
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N = 2n− 2, as follows:

Π =



c0 c1 · · · cn−1 cn−1 cn−2 · · · c1

c1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

cn−2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

cn−1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

cn−2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

c1
. . .

. . .
. . .

. . .
. . .

. . .
. . .



,

Unfortunately, this matrix will not be nonnegative definite in general, which we require, however
this will hold under some additional assumptions.

Lemma 3. Suppose that c0 ≥ c1 ≥ · · · ≥ cn−1 ≥ 0 and

2ck ≤ ck−1 + ck+1,

for k = 1, . . . , n− 2, then Π is a covariance matrix, i.e. Π is nonnegative definite.

Why are we interested in this representation? At first glance this might seem like a futile exercise,
however the importance of this embedding arises from the connection between circulant matrices
and the discrete Fourier transform.

Definition 4. Given a vector x = (x0, . . . , xN−1)> ∈ CN , the discrete Fourier transform of x is the
vector

(Fx)j =
N−1∑
k=0

e−(2πi/N)jkxk =
N−1∑
k=0

ωjkxk,

for j = 0, . . . , N − 1 where ω = e−2πi/N .

Therefore computing discrete Fourier transform of x is equivalent to computing Fx, where

F =



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

...
...

...
...

...
...

...
...

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)2

.

Exercise 1. Show that F−1 = F/N .

Proof. This follows from the fact that the columns (or lines) of F are orthogonal in CN :

N−1∑
k=0

Fki F̄kj =

N−1∑
k=0

ωki ω−kj =

N−1∑
k=0

(ω(i−j))k =

{
N if i = j

1−ω(i−j)N

1−ω(i−j) = 0 otherwise,

from the definition of ω and the formula for the sum of the first n terms of a geometric series.
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Normally, computing the matrix-vector produce Fx would require O(N2) operations, however
using a Fast Fourier Transform reduces this to O(N logN) steps. The connection to circulant
matrices is the following. Let b = (b0, b1, . . . , bN−1)> be a complex valued vector, and let B be the
circulant matrix generated by b, i.e. the same matrix as in (1) (except that here the dimension is
labeled N). We then have the following fundamental result:

Lemma 5. The circulant matrix B is diagonalized by the DFT matrix F . More specifically,

B = FDF−1,

where D is a diagonal matrix containing the eigenvalues of B, λ0, . . . , λN−1,

λj = (Fb)j .

Proof. We calculate:

(BF )jk =

N−1∑
`=0

Bj` F`k =

N−1∑
`=0

b(`−j)%n ω
`k.

Since the argument of the sum, seen as a function of `, is periodic with period n, we can shift the
bounds of the summation:

(BF )jk =

N−1+j∑
`=j

b(`−j)%n ω
`k =

N−1∑
m=0

bm%n ω
(m+j)k = ωjk

N−1∑
m=0

bm ω
mk = Fjk(Fb)k = Fjk λk.

In matrix form, this is exactly BF = FD.

This factorization is very commonly exploited in both numerical PDE schemes, as well as methods
to perform efficient matrix-vector multiplication. Our objective is to generate a sample from the
Gaussian distribution N (0,Π), which entails computing a square root of the matrix Π. If C(·) is
such that the assumption of Lemma 3 is satisfied, then Π is a nonnegative definite matrix and
Lemma 5 implies, denoting by c the vector associated with Π:

Π = F diag(λ/N)F ∗ =
(
F diag(

√
λ/N)

) (
F diag(

√
λ/N)

)∗
=: EE∗, λ = Fc.

Here
√

λ/N is simply the vector (
√
λ0/N, . . . ,

√
λN−1/N)T . Therefore, E is the square root of Π

in CN×N . The last ingredient we need is a simple extension of a result we covered in week 1:

Lemma 6. Assume that Π = EE∗, where Π ∈ RN×N is a symmetric nonnegative definite matrix
and E ∈ CN×N is a complex matrix, and let Z1,Z2 ∈ RN be independent N (0, IN ) random variables.
Then Re[E(Z1 + iZ2)] ∼ N (0,Π).

Proof. Let us write E = E1 + iE2 for real valued matrices. Then

EE∗ = E1E
>
1 + E2E

>
2 + i(E2E

>
1 − E1E

>
2 ),

and since Π is real-valued, it follows that Π = E1E
>
1 +E2E

>
2 . Now let X = E(Z1 + iZ2), and notice

that X = (E1 Z1 − E2 Z2) + i(E2 Z1 + E1 Z2). Letting X1 = Re[X], then

E[X1] = 0, Var(X1) = Var(E1 Z1 − E2 Z2) = E1E
>
1 + E2E

>
2 = Π.

which concludes the proof.
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This give us a method for sampling a stationary Gaussain process at equidistant intervals.

Algorithm 7 (Generating a stationary Gaussian process). Assume µ(t) = 0 and that we are given
covariance C(·) and let ti = i∆t, i = 0, . . . , n− 1.

1. Set c = (c0, c1, . . . , cn−2, cn−1, cn−2, . . . , c1), where ci = C(t0, ti), and let N = 2n− 2.

2. Set λ = Fc using FFT.

3. Generate Z = Z1 + iZ2, where Z1,Z2 ∼ N (0, IN ).

4. Compute V =
√

diag(λ/N)Z.

5. Compute V = FY using FFT.

6. Output X = Re(V0, . . . , Vn−1)>.

If we performed naive matrix-vector multiplications this algorithm would cost O(N2), however
using the FFT, the algorithm is O(N logN). So what happens when the embedding circulant matrix
is not nonnegative definite? Then we cannot use this approach directly. However, there are two
possible approaches to generate a sample in this case:

1. Embed the symmetric Toeplitz in an even larger circulant matrix.

2. Use only the positive part of the circulant matrix.

It is typically always possible choose an large circulant matrix which is nonnegative definite. In this
case, we can use the above exact scheme for generating the sample. If we must resort to option (2),
then the procedure is approximate. However, one can typically quantify the error incurred in this
case, so the approach is still feasible.

While this algorithm provides a perfectly adequate scheme for simulating stationary Gaussian
processes, the true power of this method can be seen when using it to simulate stationary Gaussian
random fields, i.e. a Rd–indexed Gaussian process. Indeed, many scientific computing software
libraries provide algorithms for simulating stationary GRFs based on circulant embeddings. See the
lecture notes for references.

Exercise 2. Consider the stationary Gaussian process with exponential covariance C(τ) = e−|τ |/l.

1. Implement a method for simulating this process in a programming language of your choice.

2. (Challenging optional exercise:) Show that the eigenvalues λi in this case are always positive.

Remark 1 (A word on the Cooley–Tukey algorithm). The Cooley–Tukey is the most common
algorithm for computing fast Fourier transforms. It relies on the observation that, assuming that N
is a multiple of 2 for simplicity, and given a vector x = (x0, . . . , xN−1)> ∈ CN , the DFT of x can be
decomposed as

(Fx)j =

N−1∑
k=0

ωjkxk =

N/2−1∑
k=0

ω2kjx2k +

N/2−1∑
k=0

ω(2k+1)jx2k+1 =: (F1x + F2x)j , j = 0, . . . , N − 1.

We just rewrote N sums (one for each value of j) of N terms as 2N sums of N/2 terms, so what
have we gained? The gain comes from the fact that (F1x)j and (F2x)j are both periodic functions
of j with period N/2 (why? Hint: ωN = 1), so only N sums of N/2 terms have to be calculated!
This “splitting of the sum” procedure can then be repeated. �
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This short section is based on Andrew Duncan’s lecture notes from 2016 and on the notes by J.
Michael Steele freely available here.

Construction of the Itô integral

In this section, we outline the construction of the Itô integral
∫ T

0 f(t, ω) dWt for integrands satisfying
the following assumptions:

1. f(t, ω) is B × F-measurable where B is the Borel σ-algebra of [0, T ].

2. f(t, ·) is Ft adapted for all t ≥ 0, where Ft is the natural filtration associated with the Brownian
motion Wt.

3. E
∫ T

0 f(t, ω)2dt <∞.

We will denote by J the class of stochastic processes f(t, ω) : [0, T ]× Ω→ R for which the above
three properties hold, and our goal will be to define the Itô integral for any f ∈ J . To this end, we
will first define the Itô integral on the subset J0 ⊂ J of so-called simple processes.

Definition 8. Let J0 be the class of stochastic processes f that admit the following representation:

f(ω, t) =
N−1∑
i=0

ai(ω) I(ti,ti+1](t) (2)

with E[|ai|2] <∞ and ai ∈ Fti , and for some N ∈ N and 0 = t0 < t1 < · · · < tn = T .

Exercise 3. Show that J0 is a linear subspace of J .

Exercise 4. Show that any f ∈ J0 admits more than one representation as a sum of the form (2).

For processes in J0, it is reasonable to define the Itô integral as follows, by analogy with the
Riemann-Stieltjes integral:

If :=

∫ T

0
f(ω, t) dWt =

N−1∑
i=0

ai(ω) (Wti+1 −Wti).

It is simple to check that this definition is unambiguous, i.e. that the value of If is the same for all
representations of f as a sum of the form (2).

It relatively easy to show the celebrated Itô isometry in J0 (not examinable).

Lemma 9 (Itô isometry in J0). If f, g ∈ J0, then

E[If (ω) Ig(ω)] = E
[∫ T

0
f(ω, t) g(ω, t) dt

]
= 〈f, g〉L2(Ω×[0,T ]) .

Proof. The first step (left as an exercise) is to show the existence of a partition 0 = t0 < t1 < . . . <

tN = T over which both f and g can be expressed as simple processes:

f(ω, t) =

N−1∑
i=1

ai(ω) I(ti,ti+1](t), g(ω, t) =

N−1∑
i=1

bi(ω) I(ti,ti+1](t).
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Then, employing the definition of the Itô integral for simple processes, we obtain

If (ω) Ig(ω) =
N−1∑
i=0

N−1∑
j=0

ai(ω) bj(ω) (Wti+1 −Wti) (Wtj+1 −Wtj ).

(Note that Wti = Wti(ω) depends on ω too but, in order to alleviate the notations, we do not write
this explicitly.) Taking the expectation, we have

E[If (ω) Ig(ω)] =
N−1∑
i=0

N−1∑
j=0

E[ai(ω) bj(ω) (Wti+1 −Wti) (Wtj+1 −Wtj )] =:

N−1∑
i=0

N−1∑
j=0

E[eij(ω)]. (3)

Using the basic properties of conditional expectation (read here if you don’t know these properties),
and employing the fact that the random variables ai and bi are Fti-measurable by definition of J0,
we obtain, in the case i = j:

E[eij(ω)] = E[ai(ω) bi(ω) (Wti+1 −Wti)
2]

= E[E[ai(ω) bi(ω) (Wti+1 −Wti)
2|Fti ]] (Tower property)

= E[ai(ω) bi(ω)E[(Wti+1 −Wti)
2|Fti ]] (Pulling out known factors)

= E[ai(ω) bi(ω) (ti+1 − ti)] (Variance of Brownian increment)

= (ti+1 − ti)E[ai(ω) bi(ω)].

On the other hand, when j > i,

E[eij(ω)] = E[ai(ω) bj(ω) (Wti+1 −Wti)(Wtj+1 −Wtj )]

= E[E[ai(ω) bj(ω) (Wti+1 −Wti)(Wtj+1 −Wtj )|Ftj ]] (Tower property)

= E[ai(ω) bi(ω)(Wti+1 −Wti)E[Wtj+1 −Wtj |Ftj ]] (Pulling out known factors)

= 0 (Mean of Brownian increment).

An analogous calculation shows that E[eij ] = 0 when j < i. Substituting in (3), we deduce

E[If (ω) Ig(ω)] =

N−1∑
i=0

E[ai(ω) bj(ω)](ti+1 − ti) = E
[∫ T

0
f(ω, t) g(ω, t) dt

]
,

which concludes the proof.

This isometry will be instrumental in extending our definition of the Itô integral over [0, T ] to J .
To complete this program, we need one more ingredient, which we will admit without proof.

Lemma 10 (Density of J0 in J ). For any f ∈ J , there exists a sequence {fn}n∈N with fn ∈ J0

such that
‖f − fn‖L2(Ω×[0,T ]) → 0 as n→∞.

Now, given any f ∈ J , this lemma implies that there exists a sequence {fn}n∈N in J0 that
converges to f in L2 (Ω× [0, T ]). By Itô’s isometry – Lemma 9 – it is clear that

E[|Ifm − Ifn |2] = ‖Ifm − Ifn‖2L2(Ω) = ‖fm − fn‖2L2(Ω×[0,T ]),

and since {fn}n∈N is a Cauchy sequence in L2 (Ω× [0, T ]) (because it is convergent to f and every
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convergent sequence is a Cauchy sequence), we deduce that {Ifn}n∈N is a Cauchy sequence in L2 (Ω).
By completeness of L2 (Ω), this implies that {Ifn}n∈N converges to a limit in L2 (Ω), a limit which
we will take as the definition of the Itô integral of f :

If := lim
n→∞

Ifn ,

where the limit is in L2 (Ω).

Exercise 5. Show that the Itô isometry – Lemma 9 – holds also for f , g in J .

Proof. Let {fn}n∈N and {gn}n∈N be sequences in J0 converging in L2 (Ω× [0, T ]) to f and g,
respectively. (Again, the existence of such sequences is provided by Lemma 10.) Since the inner
product of any Hilbert space H, here denoted by 〈·, ·〉H, is a continuous function on H×H, we have

E[If Ig] =
〈
If , Ig

〉
L2(Ω)

= lim
n→∞

〈
Ifn , Ign

〉
L2(Ω)

= lim
n→∞

〈fn, gn〉L2(Ω×[0,T ]) = 〈f, g〉L2(Ω×[0,T ]) ,

where we used Itô’s isometry on J0.

Link with the “Riemann sums” definition (not covered in class)

At this point, one may wonder whether the tentative definition of the Itô given at the beginning of
the lecture, namely

Îf = lim
n→∞

N−1∑
i=0

f(ω, ti) (Wti+1 −Wti), (4)

makes sense, and whether it coincides with the formal definition of the Itô integral given above. It
turns out that, under relatively weak assumptions, the limit in (4) exists in the sense of convergence
in probability, and that the limit coincides with the Itô integral. For example, it is possible to show
the following result (see J. Michael Steele’s paper if you are interested in learning more about this):

Proposition 11. For any continuous f : R→ R, and with a partition of [0, T ] given by ti = iT/N

for 0 ≤ i ≤ N , it holds that

lim
N→∞

N−1∑
i=0

f(Wti) (Wti+1 −Wti) =

∫ T

0
f(Wt) dWt,

where the limit is in the sense of convergence in probability. (Note that the integral in the right-hand
side is the Itô integral as defined by the extension procedure, not the tentative definition (4).)

This result, of which extensions to more general integrands exist, is good news for us, because it
means that we are usually allowed to view the Itô integral as the limit of a Riemann sum, which is
often a more intuitive and tangible viewpoint.
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