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Additional information on stochastic Taylor schemes (not examinable)

The Euler–Maruyama and Milstein schemes both belong to the class of strong Taylor schemes for
stochastic differential equations. In particular, the associated update formulae can be viewed as
truncated stochastic Taylor expansions, as we explain below.

Taylor methods for ordinary differential equations. We first recall the proof for obtaining
the remainder of a truncated Taylor series of a smooth function, because a very similar reasoning
can be applied to obtain the remainder of an Itô-Taylor expansion.

Theorem 1 (Taylor’s formula with integral remainder). Let x(t) be a smooth function on [0, T ] and
let t∗ ∈ [0, T ]. It holds that

x(t) =
n∑
i=0

(t− t∗)i

i!
x(i)(t∗) +

∫ t

t∗

(t− t∗)n

n!
x(n+1)(s) ds.

Proof. By the fundamental theorem of analysis, it holds that

x(t) = x(t∗) +

∫ t

t∗
x′(s1) ds1. (1)

Since x′ is also a smooth function, we can apply the fundamental theorem of analysis again to obtain

x′(s1) = x′(t∗) +

∫ s1

t∗
x′′(s2) ds2.

Continuing in this fashion and substituting in (1) leads to the equation

x(t) =

n∑
i=0

ci(t)x
(i)(t∗) +

∫ t

t∗

∫ s1

t∗
· · ·
∫ sn

t∗
x(n+1)(sn+1) dsn+1 . . . ds1 dt, n = 1, 2, . . .

where the coefficients ci(t) can be expressed as multiple integrals

ci(t) =

∫ t

t∗

∫ s1

t∗
· · ·
∫ si−1

t∗
dsi . . . ds2 ds1 =

(t− t∗)i

i!
.

To conclude the proof, it suffices to rewrite the remainder in a simpler form, which is left as an
exercise (but is not very important for our purposes):∫ t

t∗

∫ s1

t∗
· · ·
∫ sn

t∗
x(n+1)(sn+1) dsn+1 . . . ds1 dt =

∫ t

t∗

(t− t∗)n

n!
x(n+1)(s) ds.

Assume now that b(·) is a smooth function and consider the equation:

x′(t) = b(x(t)).

Let us emphasize again that the deterministic version of Itô’s formula is simply the chain rule, which
in integral form leads to

f(x(t)) = f(x(t∗)) +

∫ t

t∗
b(x(s)) f ′(x(s)) ds.
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Introducing the operator L = b(x) ∂x, the Taylor expansion of x(t) can be written as follows:

x(t) = x(t∗) + b(x(t∗)) (t− t∗) + Lb(x(t∗))
(t− t∗)2

2
+ LLb(x(t∗))

(t− t∗)3

6
+ . . . ,

where here and later expressions such as LLb(x(t∗)) should be read as (L(Lb))(x(t∗)). Remember
from the proof of Theorem 1 that the factors (t− t∗)i/i! originate from multiple integrals. Numerical
methods for ODEs can be defined by simply keeping more and more terms in the Taylor series. The
simplest scheme of that form is the explicit Euler scheme, which is based on the update following
update formula:

x̂n+1 = x̂n + ∆t b(x̂n).

Similarly, the second-order Taylor scheme reads

x̂n+1 = x̂n + ∆t b(x̂n) +
1

2
∆t2 b′(x̂n) b(x̂n).

Taylor methods for stochastic differential equations. Taylor methods for SDEs are very
similar in spirit to Taylor methods for ODEs. Instead of relying on deterministic Taylor expansions,
these methods are based on Itô–Taylor expansions, also known as stochastic Taylor expansions. We
will refrain here from presenting a theorem as general as Theorem 1 for Itô Taylor expansions, not
because it would be difficult to do so but because the notations necessary for stating a general result
in a compact manner are quite cumbersome. In contrast with Taylor’s formula presented above,
which is valid for any smooth function x(t), the Itô–Taylor expansion applies only to stochastic
processes that solve an SDE. Let us assume that b(·) and σ(·) are smooth, globally Lipschitz functions
and let Xt denote the unique strong solution of

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x0,

where x0 is independent of the Brownian motion. The construction of an Itô–Taylor expansion is
very similar to that of a Taylor expansion: the only difference is that, instead of the fundamental
theorem of analysis employed in (1), Itô’s formula is used. For any t∗ ∈ [0, T ] and t ≥ t∗, write

Xt = Xt∗ +

∫ t

t∗
b(Xs1) ds1 +

∫ t

t∗
σ(Xs1) dWs1 .

Applying Itô’s formula, we obtain

b(Xs1) = b(Xt∗) +

∫ s1

t∗
Lb(Xs2) ds2 +

∫ s1

t∗
N b(Xs2) dWs2

σ(Xs1) = σ(Xt∗) +

∫ s1

t∗
Lσ(Xs2) ds2 +

∫ s1

t∗
Nσ(Xs2) dWs2 ,

where the operators are defined by L = b(x) ∂x + 1
2σ(x)2 ∂2

x and N = σ(x) ∂x. In order to write the
truncation error associated with the Milstein scheme, we apply Itô’s formula again to the integrands
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in the previous equation:

Lb(Xs2) = Lb(Xt∗) +

∫ s2

t∗
L(Lb)(Xs3) ds3 +

∫ s2

t∗
N (Lb)(Xs3) dWs3 ,

Lσ(Xs2) = Lσ(Xt∗) +

∫ s2

t∗
L(Lσ)(Xs3) ds3 +

∫ s2

t∗
N (Lσ)(Xs3) dWs3 ,

N b(Xs2) = N b(Xt∗) +

∫ s2

t∗
L(N b)(Xs3) ds3 +

∫ s2

t∗
N (N b)(Xs3) dWs3 ,

Nσ(Xs2) = Nσ(Xt∗) +

∫ s2

t∗
L(Nσ)(Xs3) ds3 +

∫ s2

t∗
N (Nσ)(Xs3) dWs3 .

Collecting all terms and writing all the integrals without simplifying, we obtain

Xt =Xt∗ + b(Xt∗)

∫ t

t∗
ds1 + σ(Xt∗)

∫ t

t∗
dWs1

+ Lb(Xt∗)

∫ t

t∗

∫ s1

t∗
ds2 ds1 +N b(Xt∗)

∫ t

t∗

∫ s1

t∗
dWs2 ds1

+ Lσ(Xt∗)

∫ t

t∗

∫ s1

t∗
ds2 dWs1 +Nσ(Xt∗)

∫ t

t∗

∫ s1

t∗
dWs2 dWs1

+

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
LLb(Xs3) ds3 ds2 ds1 +

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
NLb(Xs3) dWs3 ds2 ds1

+

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
LN b(Xs3) ds3 dWs2 ds1 +

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
NN b(Xs3) dWs3 dWs2 ds1

+

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
LLσ(Xs3) ds3 ds2 dWs1 +

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
NLσ(Xs3) dWs3 ds2 dWs1

+

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
LNσ(Xs3) ds3dWs2 dWs1 +

∫ t

t∗

∫ s1

t∗

∫ s2

t∗
NNσ(Xs3) dWs3 dWs2 dWs1 .

The terms in green are the ones retained for the Milstein scheme, and the other terms constitute the
truncation error. By now, it should be clear that this procedure can be iterated to construct more
and more accurate numerical schemes for SDEs, but observe that the number of terms increases
exponentially as we increase the multiplicity of the integrals! Note also that, in contrast with
the deterministic Taylor expansion, it is not always possible to simplify the multiple integrals; in
high-order schemes, these have to be approximated, for example by Karhunen–Loève expansion of
the Brownian motion.

Scaling of the multiple integrals. To understand how a multiple integral scales with the time
step of the numerical method, and thereby decide whether or not to keep it in a numerical scheme
of a given strong order, we can use the scaling property of Brownian motion: for any c > 0

Vt :=
1√
c
Wct

is another Brownian motion. Suppose that we would like to find the scaling with respect to the time
step ∆t of the following integral: ∫ ti+1

ti

∫ s1

ti

∫ s2

ti

dWs3 dWs2 dWs1 . (2)
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Applying successively the changes of variables u1 = s1 − ti, u2 = s2 − ti and u3 = s3 − ti, we obtain∫ ti+1

ti

∫ s1

ti

∫ s2

ti

dVs3 dWs2 dWs1
law
=

∫ ∆t

0

∫ ti+u1

ti

∫ s2

ti

dWs3 dWs2 dVu1

law
=

∫ ∆t

0

∫ u1

0

∫ ti+u2

ti

dWs3 dVu2 dVu1

law
=

∫ ∆t

0

∫ u1

0

∫ u2

0
dVu3 dVu2 dVu1 ,

for another Brownian motion V . Then, employing successively the changes of variables z1 = u1/∆t,
z2 = u2/∆t and z3 = u3/∆t∫ ∆t

0

∫ u1

0

∫ u2

0
dVu3 dVu2 dVu1

law
=

∫ 1

0

∫ z1∆t

0

∫ u2

0
dWz3 dVu2 dVz1∆t

law
=

∫ 1

0

∫ z1

0

∫ z2∆t

0
dVz3 dVz2∆t dVz1∆t

law
=

∫ 1

0

∫ z1

0

∫ z2

0
dVz3∆t dVz2∆t dVz1∆t,

Finally, using the scaling property of Brownian motion,∫ 1

0

∫ z1

0

∫ z2

0
dVz3∆t dVz2∆t dVz1∆t

law
= (∆t)3/2

∫ 1

0

∫ z1

0

∫ z2

0
dBz3 dBz2 dBz1 ,

where Bt is another Brownian motion. The integral multiplying (∆t)3/2 no longer depends on the
time step. From this calculation we can deduce, for example, that the mean and standard deviation
of the triple integral (2) scale as O((∆t)3/2). In general, this approach can be employed to show
that a multiple integral comprising nt time integrals and nw Itô integrals scales as ∆tnt+

nw
2 .
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Exercise 1. Remembering that

Bt :=

{
0 if t = 0,

tW1/t if t > 0

defines a Brownian motion and that, by definition, Brownian motions have almost surely continuous
paths, show that the geometric Brownian motion solving

dXt = λXt dt+ σXt dWt, X0 = x0, P(x0 = 0) = 0,

is asymptotically stable if and only if

λ− σ2

2
< 0.

Proof. The exact solution is given by

Xt = x0 exp

((
λ− σ2

2

)
t+ σWt

)
.

Employing the change of variable s = 1/t, we observe that, almost surely,

lim
t→∞

(
λ− σ2

2
+ σ

Wt

t

)
= lim

s→0

(
λ− σ2

2
+ σ sW1/s

)
= lim

s→0

(
λ− σ2

2
+ σ Bs

)
= λ− σ2

2
.

We conclude that, almost surely,

lim
t→∞
|Xt| = lim

t→∞
|x0| exp

(
t

(
λ− σ2

2
+ σ

Wt

t

))
=

{
0 if λ− σ2

2 < 0,

∞ if λ− σ2

2 > 0.

On the other hand, when λ− σ2/2 = 0,

P(|Xt| > |x0|) = P
(
eσWt > 1

)
= P(Wt > 0) =

1

2
,

and so it is clear that P(limt→∞Xt = 0) ≤ 1/2.

Exercise 2. Show that the Euler–Maruyama approximation with time step ∆t of the geometric
Brownian motion is asymptotically stable if

E := E
[
log |1 + λ∆t+ σ

√
∆t ξ|

]
< 0, ξ ∼ N (0, 1).

Optionally (not examinable), use the law of iterated logarithm to show that this condition is also
necessary.

Proof. The Euler–Maruyama approximation satisfies

X̂n = X̂0

n−1∏
i=0

(1 + λ∆t+ σ∆Wi),

Taking absolute values and the logarithm,

log |X̂n| = log |X̂0|+
n−1∑
i=0

log |1 + λ∆t+ σ∆Wi|,
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Since log |1 + λ∆t + σ∆Wi| ∈ L1 (Ω) (because x 7→ log x is in L1 (R>0)), the strong law of large
numbers implies that, almost surely,

lim
n→∞

[
1

n

n−1∑
i=0

log |1 + λ∆t+ σ∆Wi|

]
= E[log |1 + λ∆t+ σ∆Wi|].

We conclude that, if E < 0, then

lim
n→∞

[
log |X̂n|

]
= log |X̂0|+ lim

n→∞
n

(
1

n

n−1∑
i=0

log |1 + λ∆t+ σ∆Wi|

)
= −∞

almost surely, and so limn→∞ |X̂n| = 0 almost surely. Similarly, limn→∞ |X̂n| =∞ almost surely if
E > 0. To complete the optional part of the exercise, it remains to examine the case E = 0. In
this case, introducing the variance s2 = var

[
log |1 + λ∆t+ σ

√
∆t ξ|

]
and using the law of iterated

logarithm, we obtain

lim
n→∞

[
log |X̂n|

]
= log |X̂0|+ lim

n→∞

[
s
√

2n log logn

(
1
s

∑n−1
i=0 log |1 + λ∆t+ σ∆Wi|√

2n log log n

)
︸ ︷︷ ︸

→1 a.s.

]
=∞,

almost surely.
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