Strong convergence of the Euler—-Maruyama method

In this section, we present a simple proof of strong convergence for the Euler—-Maruyama method

applied to the autonomous equation

t ¢
Xy =z —l—/ b(Xs)ds —i—/ o(Xs)dWs, Xo = xg. (1)
0 0
We will assume throughout that the following conditions, which guarantee the existence of a
unique strong solution to (|1)), are satisfied:
Assumption 1. The coefficients of are globally Lipschitz and that they satisfy a linear growth
condition: there exists K such that for all z,x' € R

|b(z) — b(z)| + |o(z) — o(2)] < Ko — 2] and — [b(z)| + |o(z)| < K(1+ |z)).

In addition, xq is independent of the Brownian motion W and E[z3] < cc.

We mentioned in class that it was often convenient to define a continuous-time process
{Xﬁt}te[oﬂ from a discrete-time approximation {X2*}N_  obtained by the Euler-Maruyama
method. (Here, by continuous-time process, we mean a process indexed by ¢ € [0,7], not a
process with continuous sample paths.) Some standard ways of defining a continuous-time
approximation are the following:

Piecewise constant solution. For ¢; <t < t;41, set XtAt = XZ-At. With this definition, notice
that X! satisfies

R tn R tn R ¢
dXA :x0+/ tb(XSAt)der/ ta(XSAt)dWS, ng = {NJ, (2)
0 0

which has a structure similar to that of .

Piecewise constant drift and diffusion. For ¢; <t < t;41, set
XP= X2 b(XPY) (= ta) + o (X2 (Wy — W),

With this definition, X" satisfies

5 t _ t _
AXA = 29 + /0 b(X20N,) ds + /0 o(X50,) AW, (3)

Recall also (if you have had a course on stochastic differential equations that the proof of existence
and uniqueness of a strong solution to relies on a fixed-point iteration in the Banach space of
stochastic processes Y satisfying

< 0.

E [ sup |Y;|?

0<t<T

It is therefore not surprising that the proof yields, as a byproduct, an estimate of the form

E [ sup | Xf?| < O(K, T, Elaol?), (4)

0<t<T




which we will take for granted below. We are now ready to prove the strong convergence of the
Euler—-Maruyama scheme.

Theorem 1 (Strong convergence of the Euler-Maruyama method). Let XtAt be the piecewise
constant solution, as defined in above, associated with the Euler—Maruyama method with time
step At. Under Assumption there exists C = C(T, K, E|Xo|?) such that

sup E|X; — XA < CVAL.
0<t<T
Proof of Theorem[]. To simplify the notations, we will denote the continuous-time Euler-Maruyama
solution XtAt by just X, (without the At superscript). We will also denote by n; the index of
the discretization point less than ¢ closest to ¢, that is ny = |t/At| (and similarly for ng).
For 0 <t < T, let us define

Z(t) = suwp E[1X, — X[
0<s<t

Substituting the exact and approximate solutions in the expression Z(t), we obtain

Z(t) = sup E
0<s<t

tns ~ t”s ~
/ b(Xy) — b(Xy,) du —|—/ o(Xy) —o(Xy)dW,
0 0
S S 2
+ / b(Xy) du + / o(Xy)dWy,
tng tng

tng A 2 tng ) 2
<4 sup E / b(Xy) — b(Xy)du| + / o(Xy) — o(Xy) dW,
0<s<t 0 0
S 2 S
+ / b(X,)du| + / o(X,)dW,
tns tng

Using the linearity of the expectation, Cauchy—Schwarz’s inequality and [t6’s isometry, we obtain

Z(t) <4 sup (TEM"S |b(Xu)—b(Xu)\2du] +EM”S ]J(Xu)—a(Xu)qu}

0<s<t
/ 0(X) 2 ds]) .
tng

Using the global Lipschitz and linear growth assumptions on the coefficients, we obtain

+ AtE[/ b(X,)>du| +E
tng

Z(t) <4 sup <K2 (T+1)E [/t | X — X2 du] +2K*(At+1)E [/S (14 |X,)2 du])
0 lng

0<s<t

<4 sup <K2 (T +1) /tns Z(u)du + 2 K*(At +1) <At+/s E[|X.|?] du))
0 tng

0<s<t

<4 <K2 (T +1) /tZ(u)du+2K2At(At+1) <1+ sup E[|Xt|2]>).
0

0<t<T



Employing , and denoting by C constants depending only on K, T and E|xo|?, we deduce

t
Z(t) <C (/ Z(u)du+At> ,
0
and so, by |Gronwall’s inequality, it follows that

Z(T) = sup E [\XS - XSP] < O At
0<s<T

which leads to the conclusion by using Jensen’s (or just the Cauchy—Schwarz) inequality. O

Remark 1 (Not covered). In this result we worked with the following metric of the strong error,

oAt
ear = sup E|X; — X7,
0<t<T

but note that this is one of several possibilities. In particular,

1. Some results provide bounds for the strong error only at the discretization points. This
is the case, in particular, for many error estimates associated with higher-order schemes.
The piecewise constant interpolated solution we use here, for example, cannot be expected
to converge to the exact solution with strong order more than 1/2 (or 1 if the diffusion
coefficient is equal to 0). To see this, consider the equation

dX; = dW,.

This equation is integrated exactly (but only at the discrete times ty, ..., tx) by numerical
schemes for SDEs, and the piecewise constant interpolated solution is simply X; = Whp, A¢-
Consequently E|X; — XA = E|W; — Wy, a¢| = (V2/7) vV — ny AL, by the properties of the
folded normal distribution, and the supremum in the strong error employed in Theorem

is therefore (v/2/7)VAt.

2. Some results employ a different interpolated solution, such as the one defined in (3]),
corresponding to constant drift and diffusion coefficients over each interval [t;,t;11),

3. Some results employ an even stronger metric for the strong error than the one we use. In
particular, it is possible to show that the order of convergence is 1/2 also when the strong
error €a; is defined by

2, =E [ sup |X; — thAt|2] .
0<t<T
Here )N(tAt is the interpolated solution given by . To see that this is a stronger metric,
notice that

E | sup |X;— X2

0<t<T

> sup E|X; — X}
0<t<T

and, by Jensen’s inequality, E|X; — X2 > (E|X; — XA)2.


https://en.wikipedia.org/wiki/Gr%C3%B6nwall%27s_inequality

Weak convergence of the Euler-Maruyama method

In order to prove the weak convergence, we will rely on the fundamental relation, established by
the Feynman—Kac formula below, between (1) and the following parabolic partial differential
equation (PDE), known as the backward Kolmogorov equation associated to :

{Gtu(t, x) + Lu(t,x) =0, (t,z) € [0,T) xR 5)

uw(T,z) = f(x), z eR.

Here the operator L is the generator of the Markov semigroup associated with :
1
L=0b(z)0; + 3 o(z)? 92

If you are not familiar with Markov semigroups, do not worry: here it is sufficient to view L as
just an operator that is useful for our purposes. Note that , unlike most parabolic PDEs in
physics, is paired with a condition at the final time, a terminal condition.

Theorem 2 (Feyman-Kac formula). Assume that f, b and o are such that the solution u(t,x)
to the backward Kolmogorov equation exists and satisfies the assumption of Ito’s formula, i.e.
that w € CY2. Then u admits the representation

u(t, z) = E[f(X5")],

where Xﬁ’m denotes the solution of
S S
Xt =g +/ b(Xy) du +/ o(X,) dW,, t<s<T.
¢ ¢
Proof. Employing It6’s formula,
T T
u(T, X%x) =u(t,z) + / Opu(s, X0%) + Lu(s, XE*) ds + / o(X5") Opu(s, X5*) AWy,
t t

Using the fact that u solves and that the It6 integral is a martingale, we obtain after taking
expectations

E[f(X;“’x)] = ’U,(t, x)?
which concludes the proof. ]

Remark 2. In the case of , where the drift and diffusion coefficients do not depend explicitly
on time, it is often more convenient to consider the following initial-value problem instead of :

(6)

{&w(t, x) — Lo(t,x) =0, (t,z) € (0,T] x R
v(0,2) = f(x), x €R.

Notice that the solution v to this equation is related to that of (5)) by v(t,z) = u(T —t,x), as
can be shown by an application of the chain rule. Consequently, v admits the representation

v(t, ) = E[f (X737 7)) = E[f(X77)]



because, in view of the fact that the coefficients b(-) and o(-) do not depend explicitly on time,
the processes u — X%, and u + Xy have the same law regardless of the value of s. %)

Much of the difficulty in proving a general weak convergence result for the Euler-Maruyama
scheme lies in showing that the solution to (or to @ in the autonomous case) has good
regularity properties. In order to focus on the part of the proof that is most interesting for our
purposes in this course, we will make very strong additional assumptions on the coefficients to
ensure that this is the case with as little work as possible.

Proposition 3 (Cauchy problem on the torus — not examinable). Assume that b(-), o(-) and
f() are smooth functions on the torus (i.e. smooth periodic functions) and that o(-) is bounded
from below uniformly by a positive constant. Then admits a unique smooth classical solution.

Proof. This follows from standard PDE theory (Lax—Milgram theorem, Fredholm alternative,

spectral theorem for compact self-adjoint operators, etc.). O

Theorem 4 (Weak convergence of the Euler—-Maruyama method). Under the assumptions of
Proposition[3, there exist K > 0 independent of At such that

[E[f(XR")] - E[f (X7))| < K At.
Proof. Let us denote by u the solution to . By the Feynman—Kac formula,
E[f(X§")] - E[f(X1)] = E [u(T, X§") = u(0,z0)]

N—1 N—-1
¥ (uton 380 0052 | = S wd @

1=0 i=0

=E

Let X; be the interpolated Euler-Maruyama solution defined by . Since X; coincides with

XnAt at the discretization points, we deduce from It6’s formula that

E[e;] = E [ / ot %) + <b()~(ti) 0, + %a(f(ti)Q ag) u(t, X)) dt] .

ti

Notice that the operator in the second term of the integrand is the generator of . Since v is
the solution to (B)), (9; + L£)u(t;, X;,) =0, and so

Ele] = E [ /t ‘tm (Brutt, %) — Buu(t:, %)) +b(X) (Bpult, K) — Byu(ti, i) (8)

1 - - -

+ 5o(Xe)? (O2ult, X) — O2u(ti, X1,)) dt] (8b)
3 ~ tiv1 ~ ~ 3

=E Zhj(Xti) / gj(t, Xi) — gi(tivXti) dt| =: ZE[@Z]] (8¢)
j=1 ti i=1

where we introduced
1
hl(x> = 17 hQ(J") = b($)7 h3($) = 5 O'(.’E)Q, g1 = 8tu7 g2 = 8:Eua g3 = 8%u



By Ité’s formula, it holds for j = 1,2, 3 that

- 1

350,50 - g5t %0 = | / 019y (5. %) + (8050 0 + 50150202 s X.) ds

L o(Xt,) 92g;(s, Xs) dWS] .

Using the law of total expectation and the fact that the It6 integral is a martingale, we observe

that the Itd integral does not contribute to the expectation:
- - N tz+1 - ~ ~
Eles] =B [E [es1%,]| =B |15 | [ 0,050 - g6 %) ot %3 |
] t
- N tit1 pt - - 1 - 9 a2 - -
=E |hj(Xy,)E [/ 0vgi(s, Xs) + <b(Xti) Or + §U(Xti) 8z> gj(s, Xs)dsdt| Xti” ,
L t; t;
- tiv1 pt . . 1 - ~
=E |h;(Xy,) / Deg;(s, Xs) + (b(Xti) O + QJ(Xti)263> g;(s, Xs)ds dt} .
L t t

By Proposition 3| u(:) is a smooth function on the compact set [0,7] x T, where T denotes
the torus. Therefore, together with all their derivatives in space and time, the functions g; are
uniformly bounded from below and from above. The functions h; are also uniformly bounded
from below and from above independently of At, because they are periodic by assumption. It

follows from these considerations that

ti+1 t 1
IE [eif] | < / Cdsdt = Qcm{ i=1,2,3,
ti t

i

where C is a constant independent of At. We deduce, going back to ,

=z

3 N-1 3
ELf(XN")] — Elf (X7)]| = Elei;] > [Elegll < 5 CAt

2

,_.

Il
o

j=1 =0 j=1
which concludes the proof. O

Remark 3 (Not covered). The assumptions of Theorem (| are very restrictive: as stated, the
theorem applies only to SDEs with state space T. When the state space of the SDE is R, it
can be shown at the cost of substantial additional work that, if b,0 € C’;} and f € C’;,l, then the
solution to the backward Kolmogorov equation is sufficiently regular for the proof outlined above
to go through, although more advanced arguments need to be employed to bound the terms
in . Here C’f (resp. C’I‘;) denotes the subspace of C* consisting of functions which, together with
their derivatives of order up to ¢, are bounded (resp. grow at most polynomially). This result is
an improvement upon the one we proved but it is still not completely satisfactory: indeed, simple
SDESs such as the Ornstein—Uhlenbeck process, for which the drift coefficient is unbounded, are
still not covered. For more general results, the interested reader can refer to 1] or [2]. @

Exercise 1. In the case of geometric Brownian and for f(x) = x, show using a more direct
method that the weak error for the Euler—-Maruyama scheme scales as O(At), i.e. that there
exists C' independent of At such that, for any sufficiently small At,

|E [Xnae — X§']| < CAt.



Solution. We use the following parametrization of the geometric Brownian motion:
dX; = pXydt + o Xy dWy, Xg=1x9 >0, (9)

where 1 and o are constants and zg is deterministic. The solution to this SDE (which we found
earlier in the course by applying It6’s formula to the function In X;) is

52
X = xg exp <<M— 2> t+UWt>-

The Euler-Maruyama discretisation of @D, denoted by XnAt, is obtained from the iteration
XA = X8+ p XBUAL + 0 XBYAW, = (1 4+ p At + o AW,) X2,

where AW,, = Winsnae — Waate. It follows that

N-1
X§' =m0 [[ O+ pat+oaw,).
n=0
Since all the factors are independent,
N-1 N-1
EXR] =z0 [[ B+ pAt+0AW,] =a0 [] (1 +pAt).
n=0 n=0

On the other hand, by the properties of the lognormal distribution,
E[XNAt] = X0 e“T .

Therefore

N
E [Xnae — XR']| = | - (1 + “T) :

N

Employing the first of the well-known characterizations of the exponential function,

pT\Y
1i 1+ 52 ) =etT
Ngnoo< + N > e

we deduce convergence of the weak error to zero. To obtain the rate of convergence to zero, let

introduce x := T and rewrite, by Taylor’s formula with remainder,

A\ N 1 2\ Y
ex:(eﬁ) :<1+I+65N$> , 0§§N§

=1

N 2 N2

By the |binomial theorem)

. N /N 2 \N-k [N 2\ F
o)D) ()

Going back to , denoting by C' a constant independent of N (and thus of At) changing form


https://en.wikipedia.org/wiki/Characterizations_of_the_exponential_function
https://en.wikipedia.org/wiki/Binomial_theorem

line to line, and noticing that

1 1
ZefN g2 <« Zelel 2 oy
2e x 726 T €
we deduce
N N—k k
N x M,
‘E[XNAt_X]%tHS g <k> <1+|N’> (2>
k=1
N k N k N
N lz]\ N—F M, k|| M, k
<k2_1<k>(eN) () <) N () <O M At

By the formula for geometric series,

N [e's
k k 1
< = — | <
g | M, At|" < M, At ( E | M, At| ) M, At (1 LA S CAt,
k=1 k=0

for At sufficiently small, which concludes the exercise. O

Exercise 2. Repeat the previous exercise for f(z) = 2.

Solution. From the properties of the lognormal distribution,
E[| X7 [*] = |zof* exp((2u+ 0*)T).

For the Euler—-Maruyama discretization, we calculate

N-1 N-1
E[| X5 = |xo|? H (11 + pAt? + 0% At) = |z H (14 (2u + o)At + p>At?) .
n=0 n=0

From the calculations in the previous exercise with x = 2u + 02, we know

N-1
exp((2u 4 0*)T) — H (1+(2u+ 02)At)

n=0

< CAt,

where, as before, C' denotes a constant independent of At (possibly changing from line to line).
It is thus sufficient to show

N-1 N-1
H (1+@2p+ o?) At + M2At2) - H (1+@2p+ 0'2)At) < CAt.
n=0 n=0

Letting now = = 1 + (2u + 02)At and employing the binomial theorem, we obtain

N-1 N-1 N N
H ($+M2At2)_ Hx SZ <k>xN_k,u2kAt2k
n=0 n=0 k=1
N N
<O [V A < et TS 2 A
k=1 k=1
after which it is easy to conclude. O



Exercise 3. Let us modify the Euler—-Maruyama update as follows
Xithy = X+ b(X2) At + 0 (X)) VALE,,

where {&, 27:_01 are i.i.d. discrete-valued random variables taking values 1 and —1 with equal
probability. Show that the corresponding weak error, for geometric Brownian motion and for the

observables f(z) = x and f(x) = 22, also scales as At.
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