
These notes are loosely based on Section 5.3 of the lecture notes from 2016.

Inference for Stochastic Differential Equations

Once a stochastic model for a given physical system has been derived, we must choose the
parameters such that the output of the stochastic model agrees with the observed data. In
this section, we present some simples techniques for estimating the diffusion coefficient and
parameters in SDEs. As usual, we shall focus on the one-dimensional case. We shall consider the
following one dimensional Itô SDE of the form:

dXt = b(Xt; θ) dt+ σ(Xt; θ) dWt, X0 = x0, (1)

where θ ∈ Θ ⊂ RN is a finite set of parameters that we want to estimate from the observations.
The initial conditions can be taken to be either deterministic or random. We assume that we are
provided with observations of the path of the process. This can be either be:

1. Discrete observations Xt0 , Xt1 , . . . , XtN , or

2. The entire path Xt, t ∈ [0, T ].

Some simple examples

• The Ornstein-Uhlenbeck process with unknown drift coefficient α:

dXt = −αXt dt+ dWt.

• Brownian motion in a bistable potential, with unknown parameters A,B:

dXt = (AXt −BX3
t ) dt+ dWt.

Inferring the diffusion coefficient

In order to estimate parameters in the diffusion coefficient, it is natural to use the quadratic
variation over the interval [0, T ] of the solution Xt of the SDE (1), which is defined as

[X]T := lim
∆t→0

N−1∑
k=0

∣∣Xtk+1
−Xtk

∣∣2 , (2)

where the limit is in probability. We will show in Proposition 1 that this limit is well defined for
the solution to (1) when the diffusion term is constant, σ(Xt, θ) = σ, and that

[X]T =

∫ T

0
σ2 ds = T σ2. (3)

For more general Itô processes, such as the solution to (1) with non-constant diffusion, it is
possible to show that the limit in the definition of the quadratic variation also converges in
probability and that [X]T admits the explicit expression

[X]T =

∫ T

0
σ2(Xs; θ) ds,
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but we will not do this here. Equation (3) and the limit in (2) suggest that we define the following
estimator for σ2:

σ̂2
N =

1

T

N−1∑
k=0

∣∣Xtk+1
−Xtk

∣∣2 , tk = k (T/N). (4)

Notice that this is an estimator for σ2 and not for σ. This is because the law of the solution
to (1) (and in particular all the finite-dimensional distributions of the solution) is exactly the
same when σ is replaced by −σ, which is a consequence of the fact that Wt = −Wt in law. In
other words, the sign of σ cannot be deduced from observations.

In class we showed that the bias of the estimator (4) decreases to 0 as ∆t1/2. Here we provide
a more complete result for information purposes, but you are expected to know the proof of only
the simpler result shown in class.

Proposition 1 (The mean square error scales as ∆t). Assume that the drift coefficient b(·) is a
bounded function and let {Xti}Ni=0 be a sequence of equidistant observations of the solution to

dXt = b(Xt) dt+ σ dWt,

with timestep ∆t = T/N and T fixed. Let also σ̂2
N be as defined in (4). Then the mean-square

error converges to zero in the limit as N →∞. More precisely,

MSE(σ̂2
N ) = var[σ̂2

N ] + |E|σ̂2
N | − σ2|2 ≤ C(∆t+ ∆t2).

Remark 1. This result implies that σ̂2
N is asymptotically unbiased. By Chebyshev’s inequality, it

also implies, that σ̂2
N is weakly consistent: σ̂2

N → σ2 in probability in the limit as N →∞. �

Proof of Proposition 1. In this proof, C denotes any constant that is independent of ∆t; it can
change from occurrence to occurrence. We have that

Xti+1 −Xti =

∫ ti+1

ti

b(Xs) ds+ σ∆Wi =: Ii +Mi.

where ∆Wi := Wti+1 −Wti ∼ N (0,∆t). We substitute this into (4) to obtain

e := T (σ̂2
N − σ2) =

N−1∑
i=0

I2
i + 2

N−1∑
i=0

IiMi + σ2
N−1∑
i=0

(|∆Wi|2 −∆t)︸ ︷︷ ︸
=:Zi

. (5)

By definition, the mean-square error is equal to E[e2]/T 2. Since b(·) is bounded by assumption,
we obtain using the Cauchy-Schwarz inequality

|Ii|2 ≤ 〈b(Xs), 1〉2L2(ti,ti+1) ≤ ∆t ‖b(Xs)‖2L2(ti,ti+1) = ∆t

∫ ti+1

ti

b(Xs)
2 ds ≤ C ∆t2. (6)

Therefore, employing the fact that the Zi are i.i.d. and E[Zi] = 0, together with the standard
inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we deduce

E[e2] ≤ C∆t2 + 6E

∣∣∣∣∣
N−1∑
i=0

IiMi

∣∣∣∣∣
2

+ 3σ4N E|Z2
0 |.
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Using Cauchy-Schwarz’ inequality, Young’s inequality with ε, and (6), we obtain for any ε > 0∣∣∣∣∣
N−1∑
i=0

IiMi

∣∣∣∣∣
2

≤ N
N−1∑
i=0

|Ii|2 |Mi|2 ≤
N

2

N−1∑
i=0

(
|Ii|4

ε
+ ε |Mi|4

)
≤ C N

N−1∑
i=0

(
∆t4

ε
+ ε|Mi|4

)
.

Using the fact that E|Mi|4 = E|σ∆Wi|4 = C ∆t2, and choosing ε = ∆t in order to balance the
terms (and thereby obtain the best possible bound), we obtain

E

∣∣∣∣∣
N−1∑
i=0

IiMi

∣∣∣∣∣
2

≤ C∆t.

Using the fact that E[Z2
0 ] = C∆t2 and going back to (5), we deduce

E[e2] ≤ C(∆t2 + ∆t).

which concludes the proof.

Proposition 2 (Simpler result shown in class - examinable). With the same notations and
assumptions as in Proposition 1, it holds that

|E|σ̂2
N | − σ2| ≤ C(

√
∆t+ ∆t).

Proof. We have that

Xti+1 −Xti =

∫ ti+1

ti

b(Xs) ds+ σ∆Wi =: Ii +Mi.

where ∆Wi := Wti+1 −Wti ∼ N (0,∆t). Employing (4), we obtain

σ̂2
N − σ2 =

1

T

(
N−1∑
i=0

I2
i + 2

N−1∑
i=0

IiMi + σ2
N−1∑
i=0

(|∆Wi|2 −∆t)

)
,

so

E[σ̂2
N − σ2] =

1

T

(
N−1∑
i=0

E[I2
i ] + 2

N−1∑
i=0

E[IiMi]

)
. (7)

Since b(·) is bounded by assumption, an application of the Cauchy-Schwarz inequality gives

|Ii|2 ≤ 〈b(Xs), 1〉2L2(ti,ti+1) ≤ ∆t ‖b(Xs)‖2L2(ti,ti+1) = ∆t

∫ ti+1

ti

b(Xs)
2 ds ≤ C ∆t2. (8)

On the other hand, by Young’s inequality with ε,

|IiMi| ≤
1

2ε
|Ii|2 +

ε

2
|Mi|2 ∀ε > 0,

so, using (8) and the fact that E|Mi|2 = E|σ∆Wi|2 = σ2 ∆t, we obtain

E|IiMi| ≤
C

2ε
∆t2 +

ε

2
(σ2 ∆t).
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Taking ε =
√

∆t, we deduce E|IiMi| ≤ C ∆t3/2, and going back to (7) we conclude

E[σ̂2
N − σ2] ≤ C

T

(
N∆t2 +N∆t3/2

)
= C

(
∆t+

√
∆t
)
. (9)

(Note that, since ∆t ≤ T and T is fixed, we have in fact E[σ̂2
N −σ2] ≤ C

√
∆t for another constant

C independent of ∆t.)

Proposition 1 informs us that, provided that ∆t is small enough, our estimator σ̂2
N is close

to σ2 with high probability. With a little bit more effort, it is possible to show σ̂2
N is “almost

strongly consistent”, in the sense that suitably chosen subsequences {σ̂2
Nk
}∞k=1 converge almost

surely to σ2.

Corollary 3 (Almost sure convergence - not examinable). Under the assumptions of Proposition 1,
the estimator defined by σ̃2

N = σ̂2
2N

is strongly consistent: limN→∞ σ̃
2
N = σ2 almost surely.

Proof. By Markov’s inequality (which simply follows from I[ε,∞)(x) ≤ x/ε any x > 0)

P(|σ̃2
N − σ2|2 ≥ ε) = E

[
I[ε,∞)(|σ̃2

N − σ2|2)
]
≤ 1

ε
E
[
|σ̃2
N − σ2|2

]
≤ C 2−N ,

for any ε > 0, and where C is independent of N . Therefore

∞∑
N=1

P(|σ̃2
N − σ2|2 ≥ ε) <∞.

Let us now denote by EN be the event that |σ̃2
N − σ2|2 ≥ ε. By the Borel–Cantelli lemma,

P
[
lim sup
N→∞

EN

]
= P

[ ∞⋂
N=1

∞⋃
k=N

Ek

]
= 0.

Now notice that if ω ∈ Ω is such that ω /∈
⋂∞
N=1

⋃∞
k=N Ek, then ω ∈ EN for only finitely many

N . Therefore L := lim supN→∞ |σ̃2
N − σ2|2 < ε almost surely. Since this is true for any ε > 0,

we conclude by employing subadditivity:

P [L > 0] = P

[ ∞⋃
M=1

{ω ∈ Ω : L(ω) > 1/M}

]
≤

∞∑
M=1

P[L > 1/M ] = 0.

Remark 2 (Showing Itô’s formula in a particular case – not examinable). Note that Proposition 1
implies, in the particular case where Xt is a Brownian motion (dXt = dWt), that

N−1∑
k=0

∣∣Wtk+1
−Wtk

∣∣2 → T in L2 (Ω) as N →∞.

As a byproduct of this result, we can now prove

I =

∫ T

0
Ws dWs =

W 2
T

2
− T

2
.
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using only the rigorous definition of the Itô integral, i.e. without using Itô’s formula. To this end,
let us define a piecewise constant approximation of the Brownian motion:

WN
s = WN

ns∆t, ns =
⌊ s

∆t

⌋
, ∆t =

T

N
.

Clearly, ∫ T

0
E|Ws −WN

s |2ds =

∫ T

0
E|Ws −Wns∆t|2ds =

∫ T

0
(s− ns∆t) ds =

∆t

2
.

Therefore WN
s →Ws in L2 (Ω× [0, T ]) as N →∞. Consequently, by Itô’s isometry

IN :=

∫ T

0
WN
s ds→ I in L2 (Ω) as N →∞.

Now notice that, using the usual notation tk = k∆t,

IN =
N−1∑
k=0

Wtk

(
Wtk+1

−Wtk

)
=

1

2

N−1∑
k=0

(Wtk +Wtk+1
)
(
Wtk+1

−Wtk

)
− 1

2

N−1∑
k=0

(Wtk+1
−Wtk)

(
Wtk+1

−Wtk

)
=

1

2
W 2
T −

1

2

N−1∑
k=0

|Wtk+1
−Wtk |

2 →
W 2
T

2
− T

2
in L2 (Ω).

�

Estimating the drift coefficient

From now on, we assume that we have already estimated the diffusion coefficient. Thus, we will
set σ = 1, in which case (1) becomes

dXt = b(Xt; θ) dt+ dWt, X0 ∼ ρ0. (10)

We take the initial condition to be random in order to illustrate a case different from the one
seen in class. Our objective is to estimate the unknown parameters in the drift θ ∈ Θ from a
time-series of observations. To this end, we will use the maximum likelihood estimator (MLE). We
will begin by describing the general intuition of the MLE in the case of observations {X(j)}Jj=1

that live in a finite dimensional state space, but the approach carries over mutatis mutandis to the
case of function-valued observations. The only difference in that case is that the law of Brownian
motion is used as a reference measure, instead of the Lebesgue measure: the Radon–Nikodym
derivative with respect to the law of Brownian motion, usually obtained by Girsanov’s theorem,
is used in place of the probability distribution function (PDF).

General introduction to the maximum likelihood estimator

Suppose we have a number J of i.i.d. observations, denoted by X(1), . . . , X(J), of a random
variable X with PDF f(x; θ0). Since the observations are independent, their joint PDF (i.e.
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density of the law with respect to the Lebesgue measure) is given by

LJ(x; θ0) =
J∏
j=1

f(x(j); θ0), x = {x(j)}Jj=1.

The function LJ(X; θ), where X = {X(j)}Nj=1, is called the likelihood function, and Θ is a set of
admissible parameters. It is viewed as a function of θ given the data X. The maximum likelihood
estimator (MLE) is then

θ̂ = arg max
θ∈Θ

LJ(X; θ) = arg max
θ∈Θ

1

J

J∑
j=1

ln f(X(j); θ),

where the second equality is justified because x 7→ lnx is an increasing function. Let us use the
notation lJ(θ) := 1

J

∑J
j=1 ln f(X(j); θ). By the strong law of large numbers,

lim
J→∞

lJ(θ) = EX∼f(x;θ0) [ln f(X; θ)] =

∫
ln(f(x; θ)) f(X; θ0) dx =: l(θ) almost surely.

If the l(·) admits a unique global maximum, it is therefore reasonable to expect θ̂ to converge
to the maximizer of l(·) as J → ∞. It is possible to prove this rigorously under appropriate
conditions using the uniform law of large numbers, but we will not present this here. We only
show that, if l(·) admits a unique maximizer, this maximizer is necessarily θ0.

Lemma 4. It holds that l(θ) ≤ l(θ0) for all θ ∈ Θ.

Proof. Since ln(x) ≤ x− 1 for all x > 0,

l(θ)− l(θ0) =

∫
[ln(f(x; θ))− ln(f(x; θ0))] f(x; θ0) dx =

∫
ln

(
f(x; θ)

f(x; θ0)

)
f(x; θ0) dx

≤
∫ (

f(x; θ)

f(x; θ0)
− 1

)
f(x; θ0) dx =

∫
(f(x; θ)− f(x; θ0)) dx = 1− 1 = 0,

which concludes the proof.

Example 1. Suppose that X = {X(j)}Jj=1 are i.i.d. samples from a Gaussian N (µ, σ2) with
unknown parameters µ and σ2. The likelihood function takes the form

L(x;µ, σ) =
1

(2πσ2)N/2
exp

(
−
∑J

j=1(x(j) − µ)2

2σ2

)
, x ∈ RJ .

The maximum likelihood estimator (µ̂, σ̂2) for (µ, σ2) is given by

(µ̂, σ̂2) = arg max
µ,σ2

L(X;µ, σ2)

which gives

µ̂ =
1

J

J∑
j=1

X(j), σ̂2 =
1

J

J∑
j=1

(X(j) − µ̂)2.

Notice that this estimator for the variance is biased (but asymptotically unbiased). �
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Example 2. Suppose that W (j)
t are independent Brownian motions on [0, T ] and that the

observations X = {X(j)}Jj=1 are obtained by X(j) = (σWt1 , . . . , σWtN ), where tk = k(T/N) for
some N ∈ N>0. Our aim in this example is to obtain the maximum likelihood estimator for σ2.
In class we examined only the case where J = 1, but it is only slightly more difficult to consider
the more general case, which we consider here. The PDF of an individual observation is

f(x(j);σ) =

∣∣∣∣ 1

2π σ2 ∆t

∣∣∣∣N/2 exp

(
− 1

2σ2 ∆t

N−1∑
k=0

|x(j)
k+1 − x

(j)
k |

2

)
, x(j) ∈ RN , x

(j)
0 := 0.

The logarithm of the likelihood is thus given by

LJ(X;σ) = −J N
2

ln(π σ2 ∆t) − 1

2σ2 ∆t

J∑
j=1

N−1∑
k=0

|X(j)
k+1 −X

(j)
k |

2.

Equaling the derivative with respect to σ2 to 0, we obtain

−J N
2 σ̂2

+
1

2 σ̂4 ∆t

J∑
j=1

N−1∑
k=0

|X(j)
k+1 −X

(j)
k |

2 = 0,

which gives, taking into account that N∆t = T ,

σ̂2 =
1

J

J∑
j=1

(
1

T

N−1∑
k=0

|X(j)
k+1 −X

(j)
k |

2

)
.

In the case where J = 1 (i.e. when we are inferring the diffusion coefficient from only one replica
of the process σWt, which you can view as the solution to dXt = σ dWt with X0 = 0), this
estimator coincides with the one obtained in (4) above. �

Application to the drift coefficient

We now want to derive maximum likelihood estimators for the parameters in the drift of (10). As
a first step, we will focus on the easier problem of estimating the drift in the stochastic difference
equation that is obtained after Euler–Maruyama discretization of (10):

Xn+1 −Xn = b(Xn; θ) ∆t+ ξn
√

∆t, ξn ∼ N (0, 1), n = 0, . . . , N − 1, (11)

with the initial condition X0 ∼ ρ0. To this end, let us assume that we have J discrete-time
trajectories X = {X(j)}Jj=1 of the discrete dynamics (11). The PDF of X(j) is

f(x(j);σ) =

∣∣∣∣ 1

2π∆t

∣∣∣∣N/2 ρ0(x
(j)
0 ) exp

(
− 1

2 ∆t

N−1∑
k=0

∣∣∣x(j)
k+1 − x

(j)
k − b(x

(j)
k ; θ) ∆t

∣∣∣2) ,
with x(j) ∈ RN+1. The joint PDF of {X(j)}Jj=1 can then be obtained by simply taking the tensor
product of J times this PDF, because the replicas {X(j)}Jj=1 are i.i.d. To fix ideas, we will
now consider the particular case b(x; θ) = −θ b(x). Since we are in a finite-dimensional setting,
the likelihood can be defined by using the Lebesgue measure as reference measure, as we did
above for the diffusion coefficient. Some authors define the likelihood in this case as the function
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obtained after dividing by the PDF of discretized Brownian motions, but the two approaches are
equivalent because that PDF does not depend on the parameter θ. Taking the logarithm of the
likelihood, we obtain

LJ(X;σ) = −J N
2

ln(2π∆t) +
J∑
j=1

ln ρ0(X
(j)
0 )− 1

2 ∆t

J∑
j=1

N−1∑
k=0

∣∣∣X(j)
k+1 −X

(j)
k + θ b(X

(j)
k ) ∆t

∣∣∣2 .
Equaling the derivative with respect to θ to 0, we obtain

J∑
j=1

N−1∑
k=0

(
X

(j)
k+1 −X

(j)
k + θ̂ b(X

(j)
k ) ∆t

)
b(X

(j)
k ) = 0,

which gives

θ̂ = −

∑J
j=1

∑N−1
k=0 b(X

(j)
k )

(
X

(j)
k+1 −X

(j)
k

)
∑J

j=1

∑N−1
k=0 |b(X

(j)
k )|2 ∆t

.

• In the case where the drift coefficient is constant: b(·) = 1, the estimator simplifies to

θ̂ = − 1

J

J∑
j=1

X
(j)
N −X

(j)
0

N∆t
.

• If only one replica of (11) is available, the maximum likelihood estimator is

θ̂ = −
∑N−1

k=0 b(Xk) (Xk+1 −Xk)∑N−1
k=0 |b(Xk)|2 ∆t

. (12)

Let us now discuss how this methodology can be adapted to estimate the drift coefficient
based on J continuous-time solutions of (10). For simplicity, and since we saw that considering
several replicas does not generally pose serious difficulties, we will consider that J = 1: we are
estimating the drift coefficient based on only one, possibly long trajectory of (10). The main
additional obstacle in this case is that, because there is no analogue of the Lebesgue measure in
infinite dimensional Banach spaces, we need to write the density of the law of X(0) with respect
to a different reference measure. The usual choice is to define the likelihood function via the
density with respect to the law of Brownian motion, which is given by Girsanov’s theorem:

dPX
dPW

(X; θ) = exp

(∫ T

0
b(Xt; θ) dXt −

1

2

∫ T

0
b(Xt, θ)

2 dt

)
.

Taking the logarithm of the likelihood and the derivative with respect to θ, and dropping the
superscript from X(0) for simplicity, we obtain the following expression for the MLE in the
particular case where b(Xt; θ) = −b(Xt) θ,

θ̂ = −
∫ T

0 b(Xt) dXt∫ T
0 |b(Xt)|2 dt

,

which has a structure similar to that in (12). Of course, we wouldn’t be able to evaluate
this estimator excactly. Given a set of discrete equidistant observations {Xk}Nk=0, we could
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approximate the integrals:

θ̂ ≈ −
∑N−1

k=0 b(Xk) (Xk+1 −Xk)∑N−1
k=0 |b(Xk)|2 ∆t

. (13)

Example 3 (MLE for the stationary Ornstein-Uhlenbeck process). Consider the stationary
Ornstein-Uhlenbeck process

dXt = −αXt dt+ dWt, X0 ∼ N
(

0,
1

2α

)
.

The MLE estimator for α in this case is

α̂ = −
∫ T

0 Xt dXt∫ T
0 X2

t dt
.

It is possible to show that that this estimator becomes asymptotically unbiased in the large
sample limit N → +∞, for ∆t fixed. �

Exercise 1 (Maximum Likelihood estimator for a bistable SDE). Consider the SDE

dXt = (αXt − βX3
t ) dt+ dWt.

Our objective is to derive maximum likelihood estimatorrs for α and β for a given observation of
the path Xt, t ∈ [0, T ].

1. Show that the log of the likelihood function is

logL = αB1 − βB3 −
1

2
α2M2 −

1

2
β2M6 + αβM4,

where

Mn

(
{Xt}t∈[0,T ]

)
=

∫ T

0
Xn
t dt and Bn({Xt}t∈[0,T ]) :=

∫ T

0
Xn
t dXt.

2. Consequently show that the MLE for α and β are given by

α̂ =
B1M6 −B3M4

M2M6 −M2
4

and β̂ =
B1M4 −B3M2

M2M6 −M2
4

.

9


