These notes are loosely based on Section 5.3 of the lecture notes from 2016.

Inference for Stochastic Differential Equations

Once a stochastic model for a given physical system has been derived, we must choose the
parameters such that the output of the stochastic model agrees with the observed data. In
this section, we present some simples techniques for estimating the diffusion coefficient and
parameters in SDEs. As usual, we shall focus on the one-dimensional case. We shall consider the

following one dimensional 1t6 SDE of the form:
dXt =b(Xy;0)dt + o(Xy;0) AWy, Xo = xo, (1)

where § € © C RV is a finite set of parameters that we want to estimate from the observations.
The initial conditions can be taken to be either deterministic or random. We assume that we are

provided with observations of the path of the process. This can be either be:
1. Discrete observations Xy, X¢,,..., Xy, or
2. The entire path Xy, t € [0, 7.

Some simple examples

e The Ornstein-Uhlenbeck process with unknown drift coefficient «:
dX; = —aX,dt + dW,.
e Brownian motion in a bistable potential, with unknown parameters A, B:
dX; = (AX; — BX}?) dt + dW;.

Inferring the diffusion coefficient

In order to estimate parameters in the diffusion coefficient, it is natural to use the quadratic
variation over the interval [0, 7] of the solution X; of the SDE (1)), which is defined as

N—-1

: 2

[(X]p = Aliglo E ‘th“ — th} , (2)
k=0

where the limit is in probability. We will show in Proposition [I| that this limit is well defined for
the solution to when the diffusion term is constant, (X, #) = o, and that

T
[X}T:/ o?ds =To> (3)
0
For more general Itd processes, such as the solution to with non-constant diffusion, it is

possible to show that the limit in the definition of the quadratic variation also converges in

probability and that [X]7 admits the explicit expression
T
X]r = / o?(X,:0) ds,
0

1



but we will not do this here. Equation and the limit in (2]) suggest that we define the following

estimator for o2:
N-1

62 = % S X — Xt te=k(T/N). (4)

k=0
Notice that this is an estimator for o2 and not for o. This is because the law of the solution
to (1) (and in particular all the finite-dimensional distributions of the solution) is exactly the
same when o is replaced by —o, which is a consequence of the fact that Wy = —W; in law. In

other words, the sign of ¢ cannot be deduced from observations.

In class we showed that the bias of the estimator decreases to 0 as At!/2. Here we provide
a more complete result for information purposes, but you are expected to know the proof of only

the simpler result shown in class.

Proposition 1 (The mean square error scales as At). Assume that the drift coefficient b(-) is a

bounded function and let {Xti}i]io be a sequence of equidistant observations of the solution to
dXt = b(Xt) dt + O'th,

with timestep At =T /N and T fized. Let also [712\, be as defined in . Then the mean-square

error converges to zero in the limit as N — oo. More precisely,
MSE(6%) = var[6%] + [E|6%| — 0?|* < C(At + At?).

Remark 1. This result implies that &12\, is asymptotically unbiased. By Chebyshev’s inequality), it
also implies, that &12\, is weakly consistent: 6]2\, — o2 in probability in the limit as N — co. @

Proof of Proposition[] In this proof, C' denotes any constant that is independent of At; it can
change from occurrence to occurrence. We have that

tit1
XtiJrl - Xy, = /t b(XS) ds + o AW; =: I, + M;.

where AW; := Wy, , — W, ~ N (0, At). We substitute this into to obtain

141

N-1 N-1 N-1
e:=T(%—0) =Y IT+2) LM+0>> (JAWi]> - At). (5)
i =0 =0
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=)

.
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By definition, the mean-square error is equal to E[e?]/T?. Since b(-) is bounded by assumption,

we obtain using the Cauchy-Schwarz inequality

tit1
2
L1 < (0(Xe), Doty ) < AEIDX) T2t 11,0y = At /t b(X,)?ds < CAt2.  (6)
Therefore, employing the fact that the Z; are i.i.d. and E[Z;] = 0, together with the standard
inequality (a + b+ ¢)? < 3(a? + b? + %), we deduce

N-1 2

Z I; M;

=0

Ele?] < CAt* + 6 + 30" NE|Z3|.



https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

Using Cauchy-Schwarz’ inequality, Young’s inequality with ¢, and @, we obtain for any € > 0

2 N-1 N N2 it N
2 2 ¢ 4 4
<N Z; L (M < = Z; <€+5|Mi| ) <CN Z; <€+5]Mi| )
1= 1= 1=

N-1
Z I; M;
=0

Using the fact that E|M;|* = E|o AW;|* = C At?, and choosing € = At in order to balance the
terms (and thereby obtain the best possible bound), we obtain

2
< CAt.

N-1

Z I; M;

=0

E

Using the fact that E[ZF] = CAt* and going back to (), we deduce
E[e?] < C(At? + At).
which concludes the proof. O

Proposition 2 (Simpler result shown in class - examinable). With the same notations and

assumptions as in Proposition[1], it holds that
IE|6%| — 02| < C(VAL + At).

Proof. We have that

Lit1
Xy, — Xi, = / b(X,)ds + o AW; =: I; + M.

t;

where AW, :=W,, , — W;, ~ N (0, At). Employing , we obtain

141

AR N-1 N—1

~ 2

63 —o? = T (Z I?+QZI¢M1'+02 Z(\AWJ —At)> )
=0 1=0 =0

SO

1 N-1 N-1
E[63 — 0?] = 0 <Z E[I7]+2 > E[L Mi}> : (7)
=0 i

=0

Since b(+) is bounded by assumption, an application of the Cauchy-Schwarz inequality gives

tit1
‘Ii|2 < (b(Xs), 1>%2(ti,ti+1) < At ||b(XS)H%2(ti,ti+1) = At /t b(XS)2 ds < C AL (8)

K3

On the other hand, by Young’s inequality with ¢,
Lo € 2
2e 2

so, using and the fact that E|M;|? = E|loc AW;|? = 02 At, we obtain

C A+ (0?2 Ab).

E|L; M;| < —
|5 ”—25 2


https://en.wikipedia.org/wiki/Young%27s_inequality_for_products

Taking € = V/At, we deduce E|I; M;| < C At?/?, and going back to we conclude
E[6% — 0] < % (NAE + NAB2) = ¢ (At + VAL). (9)

(Note that, since At < T and T is fixed, we have in fact E[63, — %] < C'v/At for another constant
C' independent of At.) O

Proposition (1 informs us that, provided that At is small enough, our estimator &]2\, is close

to o2 with high probability. With a little bit more effort, it is possible to show &]2\, is “almost
strongly consistent”, in the sense that suitably chosen subsequences {&?Vk }72 | converge almost

surely to o2.

Corollary 3 (Almost sure convergence - not examinable). Under the assumptions of Proposition

the estimator defined by 5’]2\, = &%N 1s strongly consistent: limy_ oo 5?\[ = o2 almost surely.
Proof. By Markov’s inequality (which simply follows from [ o)(7) < x/e any x > 0)

- - I r _
P(|6% — d**>¢)=E [I[s’oo)(\afv - 02]2)] <-E [|O']2V - 02|2] <c27N,

™

for any € > 0, and where C is independent of N. Therefore

o0
Z P(|6% — o> > ¢) < oo.
N=1
Let us now denote by Ex be the event that |6% — 0%|? > . By the Borel-Cantelli lemma,

P [limsupEN] —P [ﬁ G Ey

N—oo N=1k=N

=0.

Now notice that if w €  is such that w ¢ N¥_; Ure v Ek, then w € Ey for only finitely many
N. Therefore L := limsupy_,., |63 — 0%|? < & almost surely. Since this is true for any £ > 0,
we conclude by employing subadditivity:

IP’[L>0]:IP>[G{weQ:L(w)>1/M}] < iIP’[L>1/M]:O.
M=1 M=1

O]

Remark 2 (Showing It6’s formula in a particular case — not examinable). Note that Proposition
implies, in the particular case where X is a Brownian motion (dX; = dW;), that

N—
ST Wiy = Wi |* = T in L2 (Q) as N — .
k=0

[ay

As a byproduct of this result, we can now prove

T 2
I:/ woaw, = 2r T
0 2 2
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using only the rigorous definition of the It integral, i.e. without using [t6’s formula. To this end,
let us define a piecewise constant approximation of the Brownian motion:

WsN = WéiAt? Nng = [AitJ , At = %

Clearly,
T T T At
/ E|W, — WN|2ds = / E|Ws — Wy, a¢|?ds = / (s = nsAt)ds = =~
0 0 0
Therefore W — Wy in L? (Q x [0,T]) as N — co. Consequently, by Ito’s isometry

T
IN::/ WNds — I'in L? (Q) as N — oo.
0

Now notice that, using the usual notation t; = kAt,

N-1
In=) Wy Wy, —Wy)
k=0
N-1 N-1
1 1
= 9 Z (Wtk + Wtk+1) (Wtk+1 - Wtk) D) (Wtk+1 - Wtk) (Wtk+1 - Wtk)
k=0 k=0
N—-1
1 1 Wi T |
:§W/121—§Z‘Wtk+1—Wtk‘2—>TT—§ lnLQ(Q).
k=0

Estimating the drift coefficient

From now on, we assume that we have already estimated the diffusion coefficient. Thus, we will
set 0 = 1, in which case becomes

dX; = b(Xy;0)dt +dWs, X ~ po. (10)

We take the initial condition to be random in order to illustrate a case different from the one
seen in class. Our objective is to estimate the unknown parameters in the drift § € © from a
time-series of observations. To this end, we will use the mazimum likelihood estimator (MLE). We
will begin by describing the general intuition of the MLE in the case of observations {X (g )}37:1
that live in a finite dimensional state space, but the approach carries over mutatis mutandis to the
case of function-valued observations. The only difference in that case is that the law of Brownian
motion is used as a reference measure, instead of the Lebesgue measure: the Radon—Nikodym
derivative with respect to the law of Brownian motion, usually obtained by Girsanov’s theorem,
is used in place of the probability distribution function (PDF).

General introduction to the maximum likelihood estimator

Suppose we have a number J of i.i.d. observations, denoted by X X of a random
variable X with PDF f(z;6p). Since the observations are independent, their joint PDF (i.e.



density of the law with respect to the Lebesgue measure) is given by

(x;00) = X = {x(j)}jzl'

sz‘

The function L;(X;0), where X = { X}
admissible parameters. It is viewed as a function of 6 given the data X. The maximum likelihood
estimator (MLE) is then

j=1, is called the likelihood function, and © is a set of

J

0 = argmax L j(X; 9)—argmax—21nf ;0),
e 0coO =1

where the second equality is justified because x — Inz is an increasing function. Let us use the

notation /() := %ijl In f(X©):0). By the strong law of large numbers,

lim 1;(0) = Exf(a:00) [In f(X;0)] = /ln(f(m; 0)) f(X;00)dx =:1(0) almost surely.

J—00

If the [(-) admits a unique global maximum, it is therefore reasonable to expect 0 to converge
to the maximizer of [(-) as J — oo. It is possible to prove this rigorously under appropriate
conditions using the uniform law of large numbers, but we will not present this here. We only
show that, if /(-) admits a unique maximizer, this maximizer is necessarily 6.

Lemma 4. It holds that 1(6) < 1(6p) for all 6 € O.
Proof. Since In(z) <z — 1 for all z > 0,

16) = 160) = [ mn(£w50)) = o 00)] a0} e = [ (S st aa

g/(fW) —1) i 00) do = [ (£(a36) ~ (a3 00)) do =1~ 1 =0,

f(:;6)
which concludes the proof. O
Example 1. Suppose that X = {XW}7_, are i.i.d. samples from a Gaussian N (y,02) with

unknown parameters p and o2. The hkehhood function takes the form

J () — )2
1 Z':l(x lu’) J
Ho1:0) = gy P <— 2 o XERD

The maximum likelihood estimator (fi, 52) for (u,o?) is given by

(j1,02) = argmax L(X; p, 02)

w02
which gives
1< 1
- 52 — — () _ )2
=5 ZX 6" =+ Z(X f)°.
j=1 7j=1
Notice that this estimator for the variance is biased (but asymptotically unbiased). @
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Example 2. Suppose that Wt(j ) are independent Brownian motions on [0,7] and that the
observations X = {X(j)}jzl are obtained by XU) = (¢Wy,,..., oW, ), where t, = k(T/N) for
some N € Nyg. Our aim in this example is to obtain the maximum likelihood estimator for o2.
In class we examined only the case where J = 1, but it is only slightly more difficult to consider

the more general case, which we consider here. The PDF of an individual observation is

1 v ‘ N ()
27r02At‘ P ( 252 At Z |33k+1 ) ) 29 e RN, zg = 0.

The logarithm of the likelihood is thus given by

faV);0) =

=

-1

JN . .
Latio) =~ nteot )~ 10 SO it - X
202 At
7=1 k=0
Equaling the derivative with respect to o2 to 0, we obtain
J N-1
JN 1
252 204AtZZ’Xk+1 X2 =0,
7=1 k=0

which gives, taking into account that NAt =T

In the case where J =1 (i.e. when we are inferring the diffusion coefficient from only one replica
of the process oW, which you can view as the solution to dX; = o dW; with Xy = 0), this
estimator coincides with the one obtained in above. @

Application to the drift coefficient

We now want to derive maximum likelihood estimators for the parameters in the drift of . As
a first step, we will focus on the easier problem of estimating the drift in the stochastic difference

equation that is obtained after Euler-Maruyama discretization of :
Xnt1 — Xpn = b(Xp; 0) At + &, VAL, & ~N(0,1), n=0,...,N—1, (11)

with the initial condition Xy ~ pg. To this end, let us assume that we have J discrete-time
trajectories X = { XU }J of the discrete dynamics (11]). The PDF of X0 is

f@W;o) =

LE
2w AL )

N— ) ) 2
po(a:éﬂ)) exp < Z ’xk-i-l — b(a;l(c]);ﬁ) At‘ ) ,
k:

with ) € RN*+!. The joint PDF of {X J)} —, can then be obtained by simply taking the tensor
product of J times this PDF, because the replicas {XU }3-]:1 are i.i.d. To fix ideas, we will
now consider the particular case b(x;0) = —6b(z). Since we are in a finite-dimensional setting,
the likelihood can be defined by using the Lebesgue measure as reference measure, as we did
above for the diffusion coefficient. Some authors define the likelihood in this case as the function



obtained after dividing by the PDF of discretized Brownian motions, but the two approaches are
equivalent because that PDF does not depend on the parameter 6. Taking the logarithm of the
likelihood, we obtain

=

J
JN 1
Ly(X;0) = ==~ In(27 At) —I—Zlnpo A )Xm X9 4 gp(x D) Ae|
0

b
Il

j=1 Jj=1

Equaling the derivative with respect to 8 to 0, we obtain

I ‘
SO (x - xP - dox) ar) b(x) =o,
j=1 k=0

which gives

ZJ 1 Z \b( 2 A
e In the case where the drift coefficient is constant: b(-) = 1, the estimator simplifies to

1 & XY —xy

J 4 NAt
7j=1

e If only one replica of is available, the maximum likelihood estimator is

é _ Nil b( ) (X/C-i-l Xk?) ] (12)
Z o [b(Xy)[2 At

Let us now discuss how this methodology can be adapted to estimate the drift coefficient
based on J continuous-time solutions of . For simplicity, and since we saw that considering
several replicas does not generally pose serious difficulties, we will consider that J = 1: we are
estimating the drift coefficient based on only one, possibly long trajectory of . The main
additional obstacle in this case is that, because there is no analogue of the Lebesgue measure in
infinite dimensional Banach spaces, we need to write the density of the law of X ©) with respect
to a different reference measure. The usual choice is to define the likelihood function via the
density with respect to the law of Brownian motion, which is given by Girsanov’s theorem:

P
SP;(X 0)—exp</ bXt,H)dXt—/ b(Xy,0)? dt>

Taking the logarithm of the likelihood and the derivative with respect to 6, and dropping the
superscript from X(© for simplicity, we obtain the following expression for the MLE in the
particular case where b(Xy;0) = —b(X4) 0,

) b(Xe) dx,
ST b(Xp) 2 dt’

%>

which has a structure similar to that in . Of course, we wouldn’t be able to evaluate

this estimator excactly. Given a set of discrete equidistant observations {Xk}fy:o, we could



approximate the integrals:
5~ ko D(Xk) (Xigr — Xi) a3)
Yo b(X) [ At

Example 3 (MLE for the stationary Ornstein-Uhlenbeck process). Consider the stationary
Ornstein-Uhlenbeck process

1
dXt = —OéXt dt + th, X() ~ N (0, 2) .
«Q

The MLE estimator for « in this case is

JT X dX,
Jrx2dt

a=—
It is possible to show that that this estimator becomes asymptotically unbiased in the large
sample limit N — 400, for At fixed. %)

Exercise 1 (Maximum Likelihood estimator for a bistable SDE). Consider the SDE
dXt = (aXt — BX?) dt + th

Our objective is to derive maximum likelihood estimatorrs for o and 5 for a given observation of
the path Xy, t € [0, 7.

1. Show that the log of the likelihood function is

1 1
log L = aB; — B3 — 5oﬁMg — 552M@- + afS My,

where
T T
M ({Xheeo) = /0 Xpdt and  Ba({Xiheor) = /0 X7 dX,.

2. Consequently show that the MLE for a and § are given by

A = d = .
B2 VA v R b MyMg — M?



