
1 Convergence of the MLE for the drift

Let us consider again the Ornstein–Uhlenbeck equation:

dXt = −αXt dt+ dWt, X0 = x0, α < 0. (1)

For simplicity, we will consider only the case of a deterministic initial condition. We begin this
week’s lectures by proving an asymptotic result for the maximum likelihood estimator (MLE)
that we derived last week for the drift coefficient:

α̂ = −
∫ T
0 Xt dXt∫ T
0 |Xt|2 dt

.

Employing (1) to formally rewrite dXt as −αXt dt+ dWt, we obtain

α̂ = α−
∫ T
0 Xt dWt∫ T
0 |Xt|2 dt

.

The rigorous justification of this step would require the rigorous definition of the stochastic
integral with respect to Xt, which we will not do here. Remember, however, that we observed a
similar equivalence at the finite-dimensional level when we calculated the probability of ruin of a
gambler in the first problem sheet.

The exact solution to (1) is given by

Xt = e−αt x0 +

∫ t

0
e−α(t−s) dWs. (2)

As you showed in the coursework, the law of the stochastic integral in this equation is∫ t

0
e−α(t−s) dWs ∼ N

(
0,

∫ t

0
e−2α(t−s) ds

)
= N

(
0,

1− e−2αt

2α

)
.

We deduce that Xt is a Gaussian process and, using the assertion (3) in Slutsky’s theorem, that
Xt → N

(
0, 1

2α

)
in distribution as t→∞,

Theorem 1 (Slutsky). Assume that Xn → X in distribution and Yn → c in distribution as
n→∞, for a random variable X and a constant c. Then

Xn + Yn → X + c in distribution as n→∞. (3)

and
Xn

Yn
→ X

c
in distribution as n→∞.

Remark 1. You may be wondering whether (3) can be generalized to the case where Yn → Y in
distribution for some non-constant random variable Y . In general, the answer is no: consider for
example the sequences Xn = Z, Yn = −Z, for a random variable Z ∼ N (0, 1). It is clear that
Xn → Z and Yn → Z in distribution, but Sn := Xn + Yn = 0 converges to 0 in distribution. �

The probability measure measure associated with N
(
0, 1

2α

)
is called the invariant measure of

the stochastic differential equation, and we will denote its density by ρ∞(x). From the expression
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of the exact solution (2), we can also obtain the following bounds on the moments of Xt, which
we will require for proving Lemma 3 and Theorem 4.

Lemma 2 (Uniform-in-time bound on the moments of Xt). Let Xt be given by (2). Then for
every m ∈ N there exists a constant C such that

E|Xt|m ≤ C ∀t ≥ 0.

Proof. From Jensen’s inequality,(u
2

+
v

2

)m
≤ um

2
+
vm

2
∀u, v ∈ R.

Employing this in (2), we obtain

E|Xt|m = 2m−1
∣∣e−αt x0∣∣m + 2m−1E

∣∣∣∣∫ t

0
e−α(t−s) dWs

∣∣∣∣m .
Since the stochastic integral is ∼ N

(
0, 1−e

−2αt

2α

)
, we can employ the formula for the moments of

the normal distribution to deduce

E|Xt|m ≤ 2m−1
∣∣e−αt x0∣∣m + 2m−1

√
1− e−2αt

2α
(m− 1)!!,

which concludes the proof.

The last ingredient we need, in order to prove the convergence of the MLE estimator, is an
ergodicity result. Roughly speaking, ergodicity means that time averages of an observable f(Xt)

converge to space averages – averages with respect to the invariant measure of the SDE.

Lemma 3 (Ergodicity for the Ornstein–Uhlenbeck process). Let f(x) = x2 and Xt be the solution
to (1). Then there exists a constant C that does not depend on T such that

E
∣∣∣∣ 1

T

∫ T

0
f(Xt) dt−

∫
R
f(x) ρ∞(x) dx

∣∣∣∣2 ≤ C

T
∀T > 0. (4)

Remark 2. Here we prove this result only for the function f(x) = x2 and for the Ornstein–
Uhlenbeck process, but the statement holds more generally. For example, it should appear clearly
from the proof below that (4) also holds for f(x) = x3 (with a different constant C). In more
general contexts, the crux of the problem lies in proving that (5) admits a solution and that this
solution does not grow too fast as x→∞. �

Proof. Let L be the generator of (1) and consider the following partial differential equation,
known as a Poisson equation:

− Lφ(x) = f(x)− µf , L = −αx∂x +
1

2
∂2x, µf :=

∫
R
f(x) ρ∞(x) dx. (5)

If L and f were the generator of a general SDE and a general observable, respectively, showing
the existence of a solution to this equation would be quite difficult. In our simple setting, however,
an explicit solution can be obtained simply from the ansatz φ(x) = ax2 + b x+ c: substituting
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in (5), we find φ(x) = x2

2α + c for any constant c. Since the value of c has no impact on the
forthcoming calculations, we take c = 0 for simplicity. Employing Itô’s formula for Yt = φ(Xt),
we obtain

φ(XT )− φ(X0) =

∫ T

0
f(Xt)− µf dt+

∫ T

0
φ′(Xt) dWt.

It follows from the standard inequality |u+ v|2 ≤ 2u2 + 2v2 that

E
∣∣∣∣ 1

T

∫ T

0
f(Xt)− µf dt

∣∣∣∣2 ≤ 2

T 2
E|φ(XT )− φ(X0)|2 +

2

T 2
E
∣∣∣∣∫ T

0
φ′(Xt) dWt

∣∣∣∣2
≤ 2

T 2
E|φ(XT )− φ(X0)|2 +

2

T 2

∫ T

0
E|φ′(Xt)|2ds.

Since φ a polynomial of degree 2, and since all the moments of Xt are bounded uniformly on the
interval [0,∞) by Lemma 2, we deduce

E
∣∣∣∣ 1

T

∫ T

0
f(Xt)− µf dt

∣∣∣∣2 ≤ C

T
.

which concludes the proof.

Theorem 4 (Convergence of the MLE). For all 0 ≤ β < 1/2, It holds that

T β(α̂− α)→ 0 in distribution as T →∞.

Remark 3. In fact, it is possible to show that
√
T (α̂− α)→ N (0, 2α) in distribution, which is a

stronger statement but requires more machinery. �

Proof. Employing Itô’s formula, we notice that

1

2
(X2

T −X2
0 ) =

∫ T

0

(
−αX2

t +
1

2

)
dt+

∫ T

0
Xt dWt,

so we can rewrite the formula for α̂ as

α̂ = −
X2
T −X2

0 − T
2
∫ T
0 |Xt|2 dt

=
1

2
T

∫ T
0 |Xt|2 dt

−
1
T (X2

T −X2
0 )

2
T

∫ T
0 |Xt|2 dt

.

It follows that

T β(α− α̂) =
αT β 2

T

∫ T
0 |Xt|2 − 1

2α dt

2
T

∫ T
0 |Xt|2 dt

+
T β−1(X2

T −X2
0 )

2
T

∫ T
0 |Xt|2 dt

=:
N1

D
+
N2

D
.

We now show that N1 → 0, N2 → 0 and D → 1
2α in distribution as T →∞, which by repeated

application of Sultsky’s theorem will conclude the proof. The convergence of N1 and D follows
from Lemma 3 and the fact that convergence in L2 (Ω) implies convergence in distribution. For
N2, notice that

E|N2| ≤ T β−1(E|XT |2 + E|X0|2),

which, by Lemma 2, implies that N2 → 0 in L1 (Ω) and therefore also in distribution.
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