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Question 1. 1. We first calculate the normalization constant:

Z =

∫ ∞
−∞

e−λx 1[0,α](x) dx =
1− e−λα

λ
.

The cumulative distribution is given by

Gα,λ(x) =

∫ x

−∞
gα,λ(y) dy =

1

Z

∫ x

−∞
e−λy 1[0,α](y) dy = max

(
0,min

(
1,

1− e−λx

1− e−λα

))
,

which is a compact way of writing

Gα,λ(x)


0, if x < 0;

1−e−λx
1−e−λα if 0 ≤ x ≤ α;

1, if x > α.

The generalized inverse of Gα,λ is given by

Fα,λ(u) = inf{x : Gα,λ(x) ≥ u} = − 1

λ
log
(

1− u(1− e−λα)
)

To check our result, we can verify that Fα,λ(0) = 0 and Fα,λ(1) = α. Notice that Fα,λ coincides

with G−1α,λ on (0, 1), which is how we obtained the expression for Fα,λ: for u ∈ (0, 1),

Gα,λ(x) = u⇔ 1− e−λx

1− e−λα
= u⇔ x = − 1

λ
log
(

1− u(1− e−λα)
)
.

If {Ui}i=1,2,... is a stream of independent U(0, 1) random variables, then {Fα,λ(Ui)}i=1,2,... is a

stream of IID samples from gλ,α.

2. Let us rewrite the expression of f(x) for convenience:

f(x) = 32
x(1− x) e−4(x−1)

3 + e4
1[0,1](x).

The derivative of f(x) in (0, 1) is given by

f ′(x) = 32
(1− 2x) e−4(x−1) − 4x(1− x) e−4(x−1)

3 + e4
,
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which vanishes when

(1− 2x)− 4x(1− x) = 0⇔ 4x2 − 6x+ 1 = 0⇔
(

2x− 3

2

)2

− 5

4
= 0,

i.e. when

x =
3±
√

5

4
.

Of the two roots, only x1 := 3−
√
5

4 lies in [0, 1]. To check that this root corresponds to a

maximum, we can calculate the second derivative

f ′′(x) = −64
(8x2 − 16x+ 5) e−4(x−1)

3 + e4
= −512

(
(x− 1)2 − 3

8

)
e−4(x−1)

3 + e4
,

which is negative at x1, so we conclude

arg max
x∈[0,1]

f(x)

h(x)
= arg max

x∈[0,1]
f(x) = x1.

This implies that the best (i.e. the smallest, since the acceptance probability/rate is given by
1
M and we want to maximize this rate) constant for rejection sampling is given by

M1 := inf{M : f(x) ≤M h(x)∀x ∈ [0, 1]} = inf

{
M :

f(x)

h(x)
≤M ∀x ∈ [0, 1]

}
= inf

{
M :

f(x1)

h(x1)
≤M

}
=
f(x1)

h(x1)
=

4e
(
−1 +

√
5
)

e
√
5

3 + e4
.

The rejection sampler works as follows:

• Generate X ∼ h, i.e. here X ∼ U(0, 1), and U ∼ U(0, 1).

• If U ≤ f(x)
M1 h(x)

, accept X and stop (or return to the first step to generate other samples).

• Else, reject X and return to the first step.

Suppose now that we use g1,4 instead of h. We calculate

f(x)

g1,4(x)
=

32 x(1−x) e−4(x−1)

3+e4

4e−4x

1−e−4

= 8
1− e−4

3 + e4
x(1− x) e−4(x−1)

e−4x
= 8

e4 − 1

e4 + 3
x(1− x),

which is maximized at x2 = 1
2 . Given that

M1 =
f(x1)

h(x1)
>

f(x2)

g1,4(x2)
=: M2,

rejection sampling is more efficient using g1,4 – if the constant M in the rejection sampling

algorithm is chosen optimally in both cases, using g1,4 leads to a higher acceptance probability.

Question 2. 1. The MH algorithm is given in the lecture notes. The proposal density associated

with the proposal

y =
√

1− β2 x+ β w, w ∼ N (0, 1),

is given by

q(y|x) =
1√

2πβ2
exp

(
(y −

√
1− β2 x)2

2β2

)
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The acceptance probability for sampling from π is defined by

α(x, y) = min

{
1,
π(y) q(x|y)

π(x) q(y|x)

}
.

Assuming that the chain has state Xn at time n, Xn+1 is obtained as follows:

• Generate Y ∼ q(·|Xn) and u ∼ U(0, 1);

• If u < α(Xn, Y ), set Xn+1 = Y , else set Xn+1 = Xn.

Denoting by {Xn}n=1,2,... the Markov chain generated by the MH algorithm, we can define an

estimator for I = EZ∼π(f(Z)) by

În =
1

n

n∑
i=1

f(Xn).

We say that family {În}n∈N of estimators for I is

• Unbiased if E[In] = I for all n ∈ N;

• (Weakly) consistent if In → I in probability as n→∞.

See Definition 2.1 in the lecture notes for more details.

The estimator În defined above is in general biased, but it can be unbiased if the Markov chain

is started at the right probability measure, i.e. if X0 ∼ π.

To show that În is strongly consistent, and thus also weakly consistent, we would like to employ

Theorem 3.6 from the lecture notes:

• We are told that π(x) is a smooth positive density, so it is in particular bounded and

positive on every compact domain of R.

• We would like to show that there exist positive numbers δ and ε such that

q(y|x) > ε if |x− y| < δ,

but this is not the case. Indeed if β ∈ (0, 1).

q(x|x) =
1√

2πβ2
exp

(
−(x−

√
1− β2 x)2

2β2

)
→ 0 as x→∞.

It thus seems that we cannot apply Theorem 3.6 directly. Since we haven’t seen more advanced

ergodicity results in class this year, you are not expected to be able to answer this part of the

exercise. Note that there is a typo in the mock exam here, because the question allows β = 0,

in which case the estimator is clearly not consistent.

2. We now consider another MCMC scheme for sampling from π, where a new state y is obtained

from a current state x by

y = x+
√
δ w, w ∼ N (0, 1),

and the acceptance probability is given by

α(x, y) =
π(y)

π(x) + π(y)
.
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We first calculate the transition function p(x, y) = “P[Xn+1 = y|Xn = x]”. We add quotation

marks here because, in fact, the transition probability measure is not absolutely continuous

with respect to the Lebesgue measure, so it does not really make sense to consider its density.

Strictly speaking, we should view p(x, ·) as a probability measure on R.

Employing the same reasoning as in the lecture notes, we obtain that the probability that a

proposal from x is accepted is given by∫
R
q(y|x)α(x, y) dy.

Therefore, we find that for any set B ∈ B(R), where B(R) denotes the Borel σ-algebra on R,

p(x,B) =

∫
B
q(y|x)α(x, y) dy +

(
1−

∫
R
q(y|x)α(x, y) dy

)
δx(B), (1)

where δx is a Dirac measure. Another suitable notation to write this is

p(x, ·) = q(·|x)α(x, ·) +

(
1−

∫
R
q(y|x)α(x, y) dy

)
δx,

For this equation to make sense as an equality of measures, we interpret the first term in the

right-hand side as the measure induced by the function q(·|x)α(x, ·). Indeed, remember that

any function f ∈ L1(R) (or even L1
loc, but don’t worry if you haven’t seen this notation before),

induces a measure µf by

µf (B) =

∫
B
f(x) dx.

Let us emphasize that these comments are mostly for your information; as mentioned in the

revision class, the MCMC question at the exam will focus on discrete state spaces, as do the

lecture notes for the most part.

A distribution π is reversible for the Markov chain if∫
A
π(x) p(x,B) dx =

∫
B
π(y) p(y,A) dy ∀A,B ∈ B(R).

Employing the expression of p(x, ·) that we found in (1), the left-hand side is

LHS =

∫
A

∫
B
π(x)q(y|x)α(x, y) dy dx+

∫
A
π(x)

(
1−

∫
R
q(y|x)α(x, y) dy

)
δx(B) dx,

=

∫
A

∫
B
π(x)q(y|x)

π(y)

π(x) + π(y)
dy dx+

∫
A∩B

(
1−

∫
R
q(y|x)

π(y)

π(x) + π(y)
dy

)
π(x)dx,

=

∫
A

∫
B
q(y|x)

π(x)π(y)

π(x) + π(y)
dy dx+

∫
A∩B

π(x)dx−
∫
A∩B

∫
R
q(y|x)

π(x)π(y)

π(x) + π(y)
dy dx

Since q(x|y) = q(y|x), this expression is invariant upon swapping A and B, and so (easy to

check) the RHS can be developed simiarly to obtain the same expression.

Question 3. 1. A continuous time Gaussian process is defined in Definition 4.8 of the lecture

notes.

2. Strict and weak stationarity are defined in Definitions 4.9 and 4.10, respectively.
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3. If {Xt} is a Gaussian process with mean function µ(t) and covariance function C(s, t), then
Xt1

...

XtN

 ∼ N


m(t1)

...

m(tN )

 ,


C(t1, t1) . . . C(t1, tN )

...
...

C(tN , t1) . . . C(tN , tN )


 =: N (m,Σ),

where m and Σ can be calculated explicitly. We can generate a N (m,Σ) random vector

from a vector Y = (Y1, . . . , YN )T of IID N (0, 1) random variables by using Lemma 2.4 in the

lecture notes. If C denotes a solution of CCT = Σ, which can be obtained e.g. by Cholesky

decomposition, it holds that

X = m+ CY ∼ N (m,Σ).

4. Suppose that (
Z1

Z2

)
∼ N

((
m1

m2

)
,

(
σ11 σ12

σ21 σ22

))
=: N (m,Σ),

The conditional distribution of Z2 conditional on Z1 is given by

fZ2|Z1
(z2|z1) =

fZ1,Z2(z1, z2)∫
R fZ1,Z2(z1, z2) dz2

=
1

Z(z1)
exp

−1

2

(
z1 −m1

z2 −m2

)T (
σ11 σ12

σ21 σ22

)−1(
z1 −m1

z2 −m2

)
where Z(z1) is the normalization constant. Using the Schur’s complement or Cramer’s formula,

we calculate (
σ11 σ12

σ12 σ22

)−1
=

1

σ11σ22 − σ212

(
σ22 −σ12
−σ12 σ11

)
,

so

(z −m)TΣ(z −m) =
1

σ11σ22 − σ212

(
z1 −m1

z2 −m2

)T (
σ22 −σ12
−σ12 σ11

)(
z1 −m1

z2 −m2

)
=

1

σ11σ22 − σ212
(σ11 z2 z2 − 2σ11m2 z2 − 2σ12z2(z1 −m1)) + C(z1)

=
σ11

σ11σ22 − σ212

(
z2 −

(
m2 +

σ12
σ11

(z1 −m1)

))2

+ C(z1).

where C(z1) is a (changing) constant independent of z2. This shows that

fZ2|Z1
(z2|z1) ∝ exp

(
− 1

2γ(z1)
(z2 − µ(z1))

2

)
,

where µ(z1) = m2 + σ12
σ11

(z1 −m1) and γ(z1) =
σ11σ22−σ2

12
σ11

.

Suppose now that we have already generated Xt1 , Xt2 , . . . , Xtn and that {Xt} is a Markov

process. Since {Xt} is a Markov process,

E[Xtn+1 |Xt1 , . . . , Xtn ] = E[Xtn+1 |Xtn ]

5

https://en.wikipedia.org/wiki/Schur_complement


and

V[Xtn+1 |Xt1 , . . . , Xtn ] = V[Xtn+1 |Xtn ].

By the formulas found above, we can generate Xtn+1 by

Xtn+1 = m(tn+1) +
σ12
σ11

(Xtn −m(tn)) +

√
σ22 −

σ212
σ11

ξ, ξ ∼ N (0, 1).

If m(t) = 0 and C(s, t) = e−
α
2
|t−s|, this formula reads

Xtn+1 = m(tn+1) + e−
α
2
|tn+1−tn|Xtn +

√
1− e−α|tn+1−tn| ξ, ξ ∼ N (0, 1),

as required.

Question 4. We consider the SDE

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x0.

1. (i) Written in integral form, the SDE reads

Xt −X0 =

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs,

so in particular,

Xtn+1 −Xtn = (Xtn+1 −X0)− (Xtn −X0) =

∫ tn+1

tn

b(Xs) ds+

∫ tn+1

tn

σ(Xs) dWs.

Approximating the integrals as∫ tn+1

tn

b(Xs) ds ≈ b(Xtn) ∆t∫ tn+1

tn

σ(Xs) dWs ≈ b(Xtn) ∆Wn,

and noting that ∆Wn ∼ N (0,∆t) we define the Euler-Maruyama scheme as

Xn+1 = Xn + b(Xn) ∆t+ σ(Xn)
√

∆t ξ, ξ ∼ N (0, 1).

(ii) See 4.10.1 and 4.10.2 in the lecture notes. In class we saw that the strong and weak errors

can be defined in different ways so, should these concepts come up at the exam, we will

be very precise about what we expect.

(iii) The EM scheme has strong and weak orders of convergence equal to 1/2 and 1, respec-

tively.

2. See the lecture notes, or exercise 4 in the 2016 exam.

3. We consider the θ-Euler method,

Xn+1 = Xn + [(1− θ)b(Xn) + θ b(Xn+1)]∆t+ σ(Xn)
√

∆t ξ, ξ ∼ N (0, 1).

To calculate E|Xt|2 for scalar geometric Brownian motion, let us use a different approach from
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the one used in class. Letting Yt = |Xt|2 and using Itô’s formula, we have

dYt = “2Xt dXt” + |σXt|2 dt = 2λ|Xt|2 dt+ 2σ|Xt|2 dWt + σ2|Xt|2 dt

= (2λ+ σ2)Ys ds+ 2σ Ys dWs.

In integral form, this is

Yt − Y0 =

∫ t

0
(2λ+ σ2)Ys ds+

∫ t

0
2σ Ys dWs,

Letting f(t) = E[Yt] and differentiating the previous equation, we obtain a differential equation

for f :

f ′(t) = (2λ+ σ2)f(t)⇒ f(t) = f(0) e(2λ+σ
2)t.

In order for this function to converge to 0 as t→∞, it is necessary and sufficient that

2λ+ σ2 < 0.

The update formula for the θ Euler method reads, in the case of scalar gBM,

(1− λ θ∆t)Xn+1 = Xn

(
1 + λ(1− θ)∆t+ σ

√
∆t ξ

)
,

that is, assuming 1− λ θ∆t 6= 0,

Xn+1 = Xn

(
1 + λ(1− θ)∆t+ σ

√
∆t ξ

1− λ θ∆t

)
.

Therefore

E|Xn+1|2 = E|Xn|2E

(
1 + λ(1− θ)∆t+ σ

√
∆t ξ

1− λ θ∆t

)2

= E|Xn|2
|1 + λ(1− θ)∆t|2 + σ2 ∆t

|1− λ θ∆t|2
.

The discrete time approximation is mean-square stable if and only if

|1 + λ(1− θ)∆t|2 + σ2 ∆t

|1− λ θ∆t|2
< 1

⇔ |1 + λ(1− θ)∆t|2 − |1− λ θ∆t|2 + σ2 ∆t < 0

⇔ ∆t(2λ+ σ2 + ∆t(1− 2θ)λ2) < 0

⇔ 2λ+ σ2 + ∆t(1− 2θ)λ2 < 0.

When θ = 1
2 , this condition becomes 2λ+σ2 < 0, which is the mean-square stability condition

for the underlying equation: the stability region of the numerical solution coincides with that

of the continuous solution.
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