
Computational Stochastic Processes

Problem Sheet 1

U. Vaes

with problems from G. Pavliotis, A. Duncan and S. Gomes

February 2020

You are free to return a selection of your work to me for marking. This is entirely optional and

the mark will not count for assessment.

Generating non-uniform random variables

Problem 1 (Generalized Bernoulli Distribution). Suppose X is a discrete valued random variable

taking values i with probability pi for i ∈ {1, . . . , k} where
k∑
i=1

pi = 1.

1. Write down the CDF F (x) for the probability distribution of this r.v..

Solution. One can easily check that

F (x) = P[X ≤ x] =

bxc∑
i=1

pi

2. Write down an expression for the generalised inverse of the CDF F (x).

Solution. Let G be the generalised inverse of F , then for y ∈ (0, 1]:

G(y) = inf

{
j ∈ {1, . . . , k} |

j−1∑
i=1

pi < y ≤
j∑
i=1

pi

}

3. Use the inverse transform method to derive an algorithm to sample from this distribution.

Solution. (a) Sample u ∼ U(0, 1).

(b) Set j = 1.

(c) While u >
∑j

i=1 pi, set j := j + 1.

(d) Output X = j.

4. Implement a sampler based on this scheme using a programming language of your choice.

5. For k = 4, p1, p2, p3, p4 = 0.125, 0.125, 0.375, 0.375 generate N = 103 samples and generate a

normalized histogram from this sample to verify that each value is generated with the correct

probability.

1

Solution. See the Jupyter notebook. We can check that the right proportion of each of the

integers, j = 1, 2, 3, 4 was generated.

Problem 2 (Sample from Gamma(k, λ) distribution). When k ∈ N, it is known that

X1 + . . .+Xk ∼ Gamma(k, λ),

where X1, . . . , Xk are iid Exp(λ) distributed random variables.

1. Based on this observation, write a scheme to generate Gamma(k, λ) distributed samples,

where k ∈ N.

Solution. We use the inverse transform method to generate k, Exp(λ) random variables,

and add them, i.e.

(a) Let u1, . . . , uk ∼ U(0, 1) iid.

(b) Set X = − 1
λ

∑k
i=1 log(ui).

2. Suppose now that k ∈ R≥0. We wish to implement a rejection sampler for Gamma(k, λ)

using proposal density of the form

g(x) =
λk00

Γ(k0)
xk0−1e−λ0x,

where k0 = bkc, and λ0 > 0. Calculate the upper bound M = supx≥0 f(x)/g(x), and show

that necessarily λ < λ0 and

M =
λk

Γ(k)

Γ(k0)

λk00

(
k − k0
λ− λ0

)k−k0
e−(k−k0).

Solution. The pdf of X is given by

f(x) =
λk

Γ(k)
xk−1e−λx, k > 1.

The ratio f(x)/g(x) is given by

λk

Γ(k)

Γ(k0)

λk00
xk−k0e−(λ−λ0)x.

We want a bound for f/g for all x ≥ 0. In particular, it is automatically bounded at x = 0

since k ≥ k0. But to be bounded as x → +∞, we require that λ − λ0 > 0. Under this

assumption it is straightforward to check that the maximum is obtained at x∗ given by

x∗ =
k − k0
λ− λ0

.

2

For this value of x, we have

M = f(x∗)/g(x∗)

=
λk

Γ(k)

Γ(k0)

λk00
(x∗)k−k0e−(λ−λ0)x

∗

=
λk

Γ(k)

Γ(k0)

λk00
(x∗/e)k−k0 .

3. Optimise over λ0 to minimise M .

Solution. Take the derivative of M with respect to λ0. After some simplification we see that

the minimum occurs when

λ0 =
k0
k
λ,

and since λ0 < λ, this is consistent with out previous assumption.

4. Implement a rejection sampling scheme to sample from Gamma distribution. Implement also

a naive rejection sampler based on a proposal distributed according to the standard Cauchy

distribution, and compare the performance of both.

Solution. See the Jupyter notebook. I suggest you run it for a large N (say 100000), with

fixed λ and vary k (for example, k = 1.1, 4.5, 9.5). You should notice that the rejection based

sampler with Cauchy proposals does not scale well as k →∞, whereas our new approach has

run-time almost independent of k.

Monte Carlo simulation

Problem 3 (Monte Carlo Simulation). We want to estimate the area inside the Batman curve via

Monte Carlo simulation. To this end, let (X,Y) be a uniformly distributed random variable in the

rectangle [−Lx, Lx] × [−Ly, Ly], with Lx = 7.25 and Ly = 4, and let f(·, ·) denote the indicator

function of the surface inside the Batman curve. For the student’s convenience, this function is

implemented in Python below:

def batman_indicator(x, y):

We’ll initialize at one and remove parts one by one

result = np.ones(x.shape)

Ellipse

ellipse = (x/7) **2 + (y/3) **2 - 1 >= 0

result[np.where(ellipse)] = 0

Bottom curve on [-3, 3]

bottom = (abs(x) < 4) * \

(y <= abs(x/2) - ((3*np.sqrt (33) -7)/112)*x**2 - 3

+ np.sqrt(np.maximum(0, 1-(abs(abs(x) -2) - 1)**2)))

result[np.where(bottom)] = 0

Top curve

top = (abs(x) > .75) * (abs(x) < 1) * (y > 9 - 8*abs(x)) \

3

http://mathworld.wolfram.com/BatmanCurve.html

+ (abs(x) > .5) * (abs(x) < .75) * (y > 3*abs(x) + .75) \

+ (abs(x) < .5) * (y > 2.25) \

+ (abs(x) > 1) * (abs(x) < 3) * \

(y > (6*np.sqrt (10) /7+(1.5 -.5* abs(x)) -(6*np.sqrt (10) /14)*\

np.sqrt(np.maximum(0, 4-(abs(x) -1)**2))))

result[np.where(top)] = 0

return result

The exact area of the Batman sign is given below:

Exact area

I = (955/48) - (2/7) * (2*np.sqrt (33) + 7*np.pi + 3*np.sqrt (10) * (np.pi - 1)) \

+ 21 * (np.arccos (3/7) + np.arccos (4/7))

1. Using a sample of size n = 1000, generate a 95% confidence interval for the area of the

Batman sign, I := 4Lx Ly E[f(X,Y)] based on

(a) Chebychev’s inequality;

(b) The central limit theorem (CLT);

(c) Bikelis’ theorem.

Solution. We define

În = (4Lx Ly)
1

n

n∑
i=1

f(Xi, Yi), (Xi, Yi) ∼ U([−Lx, Lx]× [−Ly, Ly])

From the lecture notes, we know that the (1− α) confidence intervals are given by

(a) Chebychev’s inequality:
[
ÎN − σ√

Nα
, ÎN + σ√

Nα

]
.

(b) The CLT:
[
ÎN − cα σ√

N
, ÎN + cα

σ√
N

]
, where cα is such that 2(1 − φ(cα)) = α and φ(·)

is the CDF of N (0, 1).

(c) By Bikelis’ theorem (see lecture notes),

P

(∣∣∣∣∣ În − Iσ/
√
n

∣∣∣∣∣ ≤ a
)
≥ 2(1− φ(a))− 2 ξ√

nσ3 (1 + |a|)3
=: Ψn(a).

where σ2 = E[Z2] and ξ = E[Z3], where Z = 4Lx Ly f(X,Y)− I. Numerically, we can

estimate σ and ξ based on the data from the Monte Carlo simulation, and construct a

confidence interval by finding the smallest possible a such that Ψn(a) ≥ 1− α = .95.

2. Perform this previous simulation 1000 times independently, and measure how many of the

reported confidence intervals actually contained I.

Solution. Running this for α = 0.05 and N = 1000, we see that approximately 95% of the

confidence intervals obtained from the CLT contain I, while 100% of the confidence intervals

obtained from Chebychev contain I, which suggests that the Chebychev confidence intervals

are too loose!

3. Use Hoeffding’s inequality to derive 100(1− α)%-confidence intervals and compare with the

ones obtained via Chebychev and the CLT.

4

Theorem 1. Let Z1, . . . , Zn be iid random variables supported within the interval [0, 1] with

mean µ. Then

P [|Sn − µ| ≥ a] ≤ 2e−2na
2
,

where Sn = n−1
∑n

i=1 Zi and a > 0.

Solution. We apply Hoeffding’s inequality with the random variables Zi = f(Xi, Yi) We need

2e−2na
2 ≤ α,

or equivalently

a ≥
√
− log(α/2)

2n
,

for confidence 100(1− α)%. For a satisfying this inequality,

P
[
|În − I| ≥ 4Lx Lya

]
≤ 2e−2na

2 ≤ α.

Repeating the computation above with the new confidence interval (the code is identical), we

observe that the Hoeffding confidence intervals contain I with probability approximately 1.

This implies that the bounds are somewhat coarse. This is not too surprising in this case:

the Hoeffding inequality does not depend on the variance of the estimator! Without this

information, it is natural that the confidence intervals would be quite conservative.

4. Find a control variate that enables a reduction of the variance of the estimator.

Solution. See the Jupyter notebook.

Problem 4 (Density estimation using Histograms). A very common problem in computational

stochastic methods is the estimation of density, i.e. given a stream of iid samples of some rv X

we wish to accurately recover the density p(x) of X. The MC approach to density estimation is to

express the density p(x) as a limit of expectations of random variables, namely

p(x) = lim
h→0

E1 [x < X < x+ h]

h
.

Thus, for small h, we use the following MC estimator

p̂n(x) =
1

hn

n∑
i=1

1 [x < Xi < x+ h]

1. Assume that p ∈ C1(R), use Taylor’s theorem to show that p̂n(x) is asymptotically biased

(and thus biased). Show that the bias goes to zero as h→ 0.

Solution. Here is a simpler proof that doesn’t need Taylor’s theorem.

E[p̂n(x)] =
1

h
EX∼p(1[x < X < x+ h]) =

1

h

∫ x+h

x
p(y) dy =

1

h
(F (x+ h)− F (x)),

where F is the CDF of p and so, if F ∈ C1(R)

lim
h→0

E[p̂n(x)] = p(x).

5

Indeed, we don’t even need F ∈ C1, only that p is integrable, using the Lebesgue differentiation

theorem.

2. Compute the variance of the estimator p̂(x). Show that Var[p̂n(x)]→∞ as h→ 0.

Solution. It is straightforward to check that

nVar[p̂n(x)] =
1

h2
(F (x+ h)− F (x))(1− F (x+ h) + F (x)).

which is asymptotic to p(x)/h as h→ 0. Therefore Var[p̂n(x)]→∞ as h→ 0.

Taking h→ 0, the bias goes to zero, while the variance blows up. This suggests that a good choice

of h must involve some kind of “trade-off” between variance and bias.

3. Assuming again that p ∈ C1(R). Write an expression for the MSE of p̂n which is correct to

o(h).

Solution. Clearly the bias induced by a single sample is given by

E
[

1

h
1[x < X < x+ h]− p(x)

]
=
F (x+ h)− F (x)− hF ′(x)

h
.

which, by Taylor’s theorem, equals hF ′′(x)/2+h2F ′′′(x′)/6 = h p′(x)/2+O(h2), if we assume

that p′′(x) is bounded. Therefore the mean squared error is given by

MSE(p̂n) ≈ p(x)

hn
+
h2

4
p′(x)2. (1)

4. Find the value of h which minimises the MSE. Conclude that MSE is minimized taking

h = O(N−1/3), in which case the MSE goes to zero with rate N−2/3.

Solution. For a fixed N we should select h so that it roughly balances the terms on the RHS

of (1). Writing the RHS of (1) as a/h + bh2, we see that the minimum is attained when

h = (a/2b)1/3, so that

h∗ =

(
2p(x)

p′(x)2

)1/3

N−1/3,

is the choice which minimises the MSE, at which value

MSE(p̂n) ≈ KN−2/3.

Variance reduction techniques

Problem 5 (Importance Sampling). Consider the problem of estimating the moments of the

distribution

p(x) =
1

2
e−|x|,

called the double exponential density. The CDF of this function is

F (x) =
1

2
ex1[x ≤ 0] +

1

2
(1− e−x/2)1[x > 0],

which is a piecewise function and difficult to invert. Indeed, we cannot “easily” sample from this

distribution. Suppose we wish to estimate the second moment of the distribution E[X2].

6

1. Using importance sampling distribution N (0, 4) construct an importance sampler for com-

puting E[X2].

Solution. Our objective is to calculate the integral

I =

∫ ∞
−∞

x2
1

2
e−|x| dx.

We can rewrite this as ∫ ∞
−∞

x2
1
2e
−|x|

1√
8π
e−x2/8

1√
8π
e−x

2/8 dx.

Note that 1√
8π
e−x

2/8 is the N (0, 4) density. We can construct the following importance

sampler for I:

Îisn =
n∑
i=1

X2
i

1
2e
−|Xi|

1√
8π
e−X

2
i /8

,

where X1, X2, . . . are iid N (0, 4) samples.

2. Implement this sampler in a programming language of your choice, and generate 105 samples,

and compute the mean. The true value of this expectation should be 2.

3. Can you use the expression for the variance of the importance sampler (or some other method)

to find a better choice of σ2 for a proposal distribution N (0, σ2)? Implement this scheme and

compare the performance computationally.

Solution. See the Jupyter notebook.

In machine learning one often needs to compute expectations with respect to the Gumbel

distribution

p(x) = exp(x− exp(x)).

4. Show that E[exp(X)] <∞, where X ∼ p.

Solution.

E[exp(X)] =

∫
e2x−e

x
dx,

but clearly e2x−e
x ≤ e−|x| (check for positive and negative values of x). Therefore

E[exp(X)] ≤
∫
R
e−|x| dx = 2

5. Using a standard Gaussian importance distribution, implement a regular importance sampler

approximating E[exp(X)] in a programming language of your choice.

6. Similarly implement a self-normalized version of the importance sampler.

7. Compare the performance of both by computing the variance of both estimators, approxi-

mated over 103 independent runs.

Solution. See Jupyter notebook.

7

Problem 6 (Gambler’s ruin). Here we consider again a problem that was discussed in the work-

book on variance reduction techniques. Assume that {Zi}N−1i=0 are independent N (0, σ2) random

variables and define

Sk = s0 +
k−1∑
i=0

Zi, k = 1, . . . , N.

we want to calculate the probability of ruin within the first N games, given by

I = P
(

min
k∈{1,...,N}

Sk ≤ 0

)
,

In order to better estimate I with a Monte Carlo method, we will use importance sampling with

an important distribution given by the PDF of the RN -valued random variable V obtained by

Vk = s0 +
k−1∑
i=0

b(Vi) +
k−1∑
i=0

Zi, k = 1, . . . , N, (2)

where b(·) is real-valued function.

1. Calculate the likelihood ratio g(v) between the PDF of S = (S1, . . . , SN)T and that of

V = (V1, . . . , VN)T .

Solution. The calculation of the PDF of V is based on the fact that, if X and Y are two

random variables with joint PDF fX,Y (x, y), then

fX,Y (x, y) = fX(x) fY |X(y|x)

Here fX(x) is the marginal density for X and fY |X(y|x) is the conditional density function

of Y given that X = x. Applying this equality repeatedly

fV1,...,Vn(v1, . . . , vn) = fV1,...,Vn−1(v1, . . . , vn−1) fVn|V1,...,Vn−1
(vn|v1, . . . , vn)

= fV1,...,Vn−2(v1, . . . , vn−2) fVn−1|V1,...,Vn−2
fVn|V1,...,Vn−1

(vn|v1, . . . , vn−1)
= . . .

= fV1(v1) fV2|V1(v2|v1) fV3|V1,V2(v3|v1, v2) . . .

Since Vk+1 depends only on Vk, we can simplify the previous equation:

fV1,...,Vn(v1, . . . , vn) = fV1(v1) fV2|V1(v2|v1) fV3|V2(v3|v2) . . .

(Note that we do not write fV1|V0(v1|v0) because V0 = s0 was assumed to be deterministic.)

Next, observe that the conditional densities are Gaussians,

fVk+1|Vk(vk+1|vk) =
1√

2πσ2
exp

(
− 1

2σ2
|vk+1 − vk − b(vk)|2

)
,

which leads to

fV1,...,VN (v1, . . . , vN) =

∣∣∣∣ 1√
2πσ2

∣∣∣∣N exp

(
− 1

2σ2

N−1∑
k=0

|vk+1 − vk − b(vk)|2
)
.

Let ψ(v) := fV1,...,VN (v1, . . . , vN). With a similar reasoning, we obtain that the probability

8

density function of (S1, . . . , SN) is given by

π(v) =

∣∣∣∣ 1√
2πσ2

∣∣∣∣N exp

(
− 1

2σ2

N−1∑
k=0

|vk+1 − vk|2
)
.

The likelihood ratio, i.e. the ratio between the nominal and importance PDFs, is given by

g(v) :=
π(v)

ψ(v)
= exp

(
− 1

σ2

(
N−1∑
k=0

(vk+1 − vk) b(vk)−
1

2

N−1∑
k=0

|b(vk)|2
))

. (3)

2. Show that, if V = (V1, . . . , VN)T is obtained from (2), then the likelihood ratio evaluated at

V admits the following expression:

g(V) = exp

(
− 1

σ2

(
N−1∑
k=0

b(Vk)Zk +
1

2

N−1∑
k=0

|b(Vk)|2
))

, (4)

where we used the notation V0 = s0.

Solution. This follows directly from the fact that

Vk+1 − Vk = b(Vk) + Zk, k = 0, . . . , N − 1,

with again V0 = s0. Note that (5) is a pointwise equality of random variables: for any ω in

the sample space Ω,

g(V (ω)) = exp

(
− 1

σ2

(
N−1∑
k=0

b(Vk(ω))Zk(ω) +
1

2

N−1∑
k=0

|b(Vk(ω))|2
))

. (5)

3. Calculate the expectation E[g(V)]. Was the result expected?

Solution. For k ∈ {0, . . . , N}, let

gk(V) = exp

(
− 1

σ2

(
k−1∑
i=0

b(Vi)Zi +
1

2

k−1∑
i=0

|b(Vi)|2
))

,

with the convention that the empty sum is zero. Clearly g0(V) = 1 and we calculate that

gk+1(V) = gk(V) exp

(
− 1

σ2

(
b(Vk)Zk +

1

2
|b(Vk)|2

))
.

By the “pulling out known factors” property of conditional expectation, we obtain that

E[gk+1(V)|Z0, . . . , Zk−1] = gk(V)E
[
exp

(
− 1

σ2

(
b(Vk)Zk +

1

2
|b(Vk)|2

))
|Z0, . . . , Zk−1

]
.

For Z0, . . . , Zk−1 given, the argument the exponential is a normal random variable with mean

m = − 1
2σ2 |b(Vk)|2 and variance s2 = 1

σ2 |b(Vk)|2. By the properties of the log-normal distri-

bution, we deduce

E[gk+1(V)|Z0, . . . , Zk−1] = gk(V) em+ s2

2 = gk(V).

9

It then follows from a simple recursion that E[g(V)] = 1. This was expected because

E[g(V)] =

∫
RN

(
π(v)

ψ(v)

)
ψ(v) dv = 1.

4. For the parameters N = 10 and σ = .2, calculate I by using importance sampling using the

modified dynamics (2). Can you find a choice of the function b(·) that produces better results

than the constant function b(·) = −.1?

Solution. See the Jupyter notebook.

Problem 7 (Control Variates). Let X ∼ p and suppose we want to evaluate

P(X > a) =

∫ ∞
a

p(x) dx.

Suppose that p is symmetric around zero, so that P(X > 0) = 1
2 . Form a control variate estimator

Îcn =
1

n

n∑
i=1

[
1(Xi > a) + α

(
1(Xi > 0)− 1

2

)]

1. Compute the variance Var[Îcn].

Solution. Let Xi ∼ p, then we can compute the required variances and covariance as follows:

Var[1[Xi > a]] =

∫
1[Xi > a]2p(x) dx−

(∫
1[Xi > a]p(x) dx

)2

= P[Xi > a](1−P[Xi > a]),

Var[1[Xi > 0]] =

∫
1[Xi > 0]2p(x) dx−

(∫
1[Xi > 0]2p(x) dx

)2

=
1

4
,

and

Cov[1[Xi > 0],1[Xi > a]] =
1

2
P[Xi > a].

Therefore,

Var[Îcn] =
1

n

(
P[Xi > a](1− P[Xi > a]) + αP[Xi > a] +

α2

4

)
2. Find the optimal value of α for which there is maximum reduction in variance. Is it com-

putable in practice? Find a range of α over which there will be some improvement in variance.

Solution. The variance is minimized (differentiate and equal to zero) when

α = −2P[Xi > a],

and the minimal variance will be

Var[Îcn] =
1

n

(
P[Xi > a]− 2P[Xi > a]2

)
.

We would not be able to compute this α in practice, however, αP[Xi > α] + α2/4 will be

negative for α ∈ [−4P[Xi > α], 0]. Choosing α in this range we will see a decrease in

variance. Of course, if X > α is a rare event, this is easier said than done, since P[Xi > α]

will be very small.

10

3. Suppose now that p is the standard Gaussian distribution, and a = 3. Implement both a

standard MC estimator În and appropriately tuned control variate estimator Îcn. Plot the

95% intervals for both as a function of n.

Solution. See the Jupyter notebook. Performing the numerical experiment, one will see

insignificant difference between the control variate estimator and the standard one. This isn’t

surprising, the control variate doesn’t provide that much additional information about the

distribution.

4. Employing the fact that there there is an explicit formula for the moments of p, construct a

control variate that produces a better variance reduction. Is it worth doing?

Solution. In the Jupyter notebook, we construct a polynomial control variate that produces

a modest reduction of the variance. For a fixed computational cost, however, the estimator

is worse than the naive Monte Carlo estimator.

Problem 8 (Importance sampling with Gaussian mixture). Consider the function

f(x, y) = e−βV1(x,y) + e−βV2(x,y)

where β > 0 and

V1(x, y) = (x− 0.5)2+
1

2
(y + 0.1)4, V2(x, y) = 0.75(x+ 0.4)2+(y − 0.5)4.

1. Use a Monte-Carlo algorithm to estimate the integral

Z =

∫ 1

−1

∫ 1

−1
f(x, y) dx dy,

for β = 100.

2. Plot the variance of the estimator as a function of the number of random samples that you

are generating. Use a deterministic numerical method to estimate Z and calculate the error

as a function of the number of random samples.

Solution. See the Jupyter notebook. Note that when we sample from a uniform distribution

in [−1, 1]× [−1, 1] to compute this integral, we are indeed computing∫ 1

−1

∫ 1

−1
f(x, y)

1

4
dx dy

where p(x, y) = 1
4 is the pdf of U([−1, 1] × [−1, 1]). So the estimator has to come multiplied

by 4 to overcome this.

3. Choose an appropriate distribution ψ(x, y) and estimate Z by using importance sampling.

Justify the choice of ψ(x, y) and plot the variance and the error of the estimator as a function

of the number of samples.

Solution. By inspecting the function f (either by looking at the polynomials V1 and V2 or by

looking at the plots), we realise that f has two areas with more “importance”. These will have

mean at (x, y) = (0.5,−0.1) and (−0.4, 0.5). So a good first guess for importance distribution

11

ψ would be a sum of two Gaussians, one of them with mean µ1 = (0.5,−0.1) and the other

µ2 = (−0.4, 0.5). For the variance, we look at the coefficients in V1 and V2. So we choose

ψ(x, y) = 0.5N (µ1,Σ1) + 0.5N (µ2,Σ2),

where

Σ1 =

[
1
β 0

0 1
0.5β

]
, Σ2 =

[
1

0.75β 0

0 1
β

]
.

We can vary the coefficients in front of each Gaussian after further inspection of the plot

of f (feel free to experiment with this!), but for the purposes of this exercise it is sufficient

to use 0.5. To sample from ψ we need to sample from a generalised Bernoulli function that

takes the values 1 and 2 with probabilities 0.5 and 0.5 (this will be different if you change the

coefficients in front of each Gaussian!). For the solution, see the Jupyter notebook.

Simulation of continuous-time Gaussian processes

Problem 9 (Simulation of Markovian Gaussian processes). A very useful property of multivariate

Gaussian random variables is that if we condition on part of the random vector, the resulting

distribution remains Gaussian. To see this, suppose that

X = (X1, X2)
> ∼ N (m,Σ), Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then we know that

X1 ∼ N (m1,Σ11), and X2 ∼ N (m2,Σ22).

Furthermore, the conditional distribution of X2 conditional on X1 is a multivariate normal with

E[X2 |X1] = m2 + Σ21Σ
−1
11 (X1 −m1). (6)

and

Var(X2 |X1) = Σ22 − Σ21Σ
−1
11 Σ12. (7)

Using these properties we can develop a more efficient scheme to simulate Gaussian processes, more

specifically to interpolate between already simulated points of a Gaussian process.

1. Suppose we wish to generate Xn+1 at time tn+1 given that we have already generated

X0, . . . , Xn.

(a) Specify the conditional distribution of Xn+1 given X0, . . . , Xn.

Solution. Using equations (6) and (7), we know that the conditional distribution of

Xn+1 given X0, . . . , Xn is a Normal distribution with mean

E[Xn+1 |X0, . . . , Xn] = E(Xn+1)+Σn+1,(1,...,n)Σ
−1
(1,...,n),(1,...,n)([X0, . . . , Xn]−[E(X0), . . . ,E(Xn)]),

and variance

Var(Xn+1 |X0, . . . , Xn) = Var(Xn+1)− Σn+1,(1,...,n)Σ
−1
(1,...,n),(1,...,n)Σ(1,...,n),n+1.

12

(b) Use this to construct a numerical scheme to simulate a Gaussian stochastic process.

Solution. Given X0, . . . , Xn we generate Xn+1 by generating a sample from a normal

distribution with mean and variance described above.

2. Suppose additionally that the Gaussian process X(t) is Markovian, so that in particular, you

only need to know the value of X(tn) to generate X(tn+1). Construct a scheme to iteratively

sample X(ti) over a sequence of points t0 < t1 < t2 <

Solution. If Xt is Markovian, we only need Xn to generate Xn+1. The formulas above

simplify to

E[Xn+1 |X0, . . . , Xn] = E[Xn+1 |Xn] = E(Xn+1) +
Cov(Xn, Xn+1)

Var(Xn)
(Xn − E(Xn)),

and

Var(Xn+1 |X0, . . . , Xn) = Var(Xn+1 |Xn) = Var(Xn+1)−
Cov(Xn, Xn+1)

2

Var(Xn)
.

So to generate Xn+1 we only need to sample from a Normal distribution with this mean and

variance.

(a) In the case of Brownian motion, show that the update formula can be written as:

X(ti+1) = X(ti) +
(√

ti+1 − ti
)
Z,

where Z ∼ N (0, 1).

Solution. The Brownian motion has E(Xt) = 0 and Cov(Xt, Xs) = min(t, s) (and in

particular Var(Xt) = t). So we have

E[Xtn+1 |Xtn] =
min(tn, tn+1)

tn
Xn = Xn,

and

Var(Xtn+1 |Xtn) = tn+1 −
min(tn, tn+1)

2

tn
= tn+1 − tn.

So the conditional distribution of Xtn+1 given Xtn is N (Xn, tn+1− tn) and we can write

Xtn+1 = Xtn +
√
tn+1 − tnZ, Z ∼ N (0, 1)

as required.

(b) Derive a similar update formula for the stationary Ornstein-Uhlenbeck process with

mean 0 and covariance C(s, t) = exp(α|t− s|/2).

Solution. For the Ornstein-Uhlenbeck process we have E(Xt) = 0, C(s, t) = exp(α|t−
s|/2) and Var(Xt) = 1. Plugging this in the previous expressions, you obtain the desired

update.

Problem 10 (Karhunen–Loève expansion). Consider the Gaussian random field X(x) in R with

covariance function

γ(x, y) = e−a|x−y|

where a > 0.

13

1. Simulate this field: generate samples and calculate the first four moments.

Solution. Note that we have already done this when we simulated Gaussian processes (the

OU process!). See Problem8.m for solution.

2. Consider X(x) for x ∈ [−L,L]. Calculate analytically the eigenvalues and eigenfunctions of

the integral operator K with kernel γ(x, y),

Kf(x) =

∫ L

−L
γ(x, y)f(y) dy.

Use this in order to obtain the Karhunen-Loéve expansion for X. Plot the first five eigen-

functions when a = 1, L = 0.5. Investigate (either analytically or by means of numerical

experiments) the accuracy of the KL expansion as a function of the number of modes kept.

Solution. We need to compute eigenvalues λ and eigenfunctions Φ such that∫ L

−L
e−a|x−y|Φ(y) dy = λΦ(x).

We note that we can write this as∫ x

−L
e−a(x−y)Φ(y) dy +

∫ L

x
ea(x−y)Φ(y) dy = λΦ(x). (8)

We differentiate (8) with respect to x to obtain

− a
∫ x

−L
e−a(x−y)Φ(y) dy + a

∫ L

x
ea(x−y)Φ(y) dy = λΦ′(x), (9)

where ′ represents derivative with respect to x. Differentiating again, we obtain

(−2a+ a2λ)Φ(x) = λΦ′′(x). (10)

Defining ω2 = −2a+λa2
λ , we obtain the ODE

Φ′′(x)− ω2Φ(x) = 0, −L ≤ x ≤ L.

We need two boundary conditions. We obtain them by evaluating equations (8) and (9) at

x = −L and x = L and rearranging:

aΦ(L) + Φ′(L) = 0, (11)

aΦ(−L)− Φ′(−L) = 0. (12)

It can be shown that equation (10) with boundary conditions (11)–(12) only has solutions

when ω2 ≥ 0 and that these are of the form

Φ(x) = c1 cos(ωx) + c2 sin(ωx).

14

In order to compute the eigenvalues, we use the boundary conditions and obtain

c1(a− ω tan(ωL)) + c2(ω + a tan(ωL)) = 0,

c1(a− ω tan(ωL))− c2(ω + a tan(ωL)) = 0.

This system has nontrivial solutions only if its determinant is zero, which gives the following:

(a− ω tan(ωL)) = 0,

(ω + a tan(ωL)) = 0.

Denoting the solutions to these equations by ω, ω∗, we obtain the eigenvalues and eigenfunc-

tions:

Φn(x) =
cos(ωnx)√
L+ sin(2ωnL)

2ωn

, λn =
2a

ω2
n + a2

, n even, (13)

Φ∗n(x) =
sin(ω∗nx)√
L− sin(2ω∗

nL)
2ω∗
n

, λ∗n =
2a

ω∗n
2 + a2

, n odd. (14)

(15)

And we can write

X(t, ω) =

∞∑
n=1

[
ξn
√
λnΦn(x) + ξ∗n

√
λ∗nΦ∗n(x)

]
,

where ξn, ξ
∗
n are computed by taking the inner product of X with the eigenfunctions.

3. Develop a numerical method for calculating the first few eigenvalues/eigenfunctions of K with

a = 1, L = −0.5. Use the numerically calculated eigenvalues and eigenfunctions to simulate

X(x) using the KL expansion. Compare with the analytical results and comment on the

accuracy of the calculation of the eigenvalues and eigenfunctions and on the computational

cost.

Solution. Not presented here. Would need to write the eigenfunctions in a chosen basis

and obtain generalised eigenvalue problem. Then solve it numerically and compare with the

solutions obtained analytically.

Additional problems

Problem 11 (Sampling uniformly on spheres and balls). A rv has uniform distribution on the

d–dimensional ball D = {x ∈ Rd : |x|2 ≤ 1} if the rv takes values almost surely in D and has

distribution

p(x) dx =
dx∫

D 1 dx
.

Similarly, a rv has uniform distribution on the sphere C = {x ∈ Rd : |x|2 = 1} if the rv takes

values almost surely in C and has distribution,

q(dx) =
1

λ(C)
λ(dx)

where λ(dx) is the spherical measure on C.

15

1. Given U ∼ U(0, 1), show that (cos(2πU), sin(2πU)) is uniformly distributed on the 2D circle.

Solution. Given an arc Aθ1,θ2 of the circle defined by angles θ1 < θ2, the probability

P[(cos(2πU), sin(2πU)) ∈ Aθ1,θ2] = P[2πU ∈ [θ1, θ2]] =
1

2π
(θ2 − θ1) .

It follows that the density of this random variable is 1/2π, which implies that it is uniform

on C.

2. Suppose we want to sample uniformly from the 3D sphere. We use the spherical coordinate

transformation ψ ∈ [0, π], and θ ∈ [0, 2π],

(x(θ, ψ), y(θ, ψ), z(θ, ψ)) = (sin(ψ) cos(θ), sin(ψ) sin(θ), cos(ψ)) .

(a) Let X be a uniformly distributed random variable on the sphere. Writing the spherical

measure in spherical coordinates, write down the marginal densities of the random

variables ψ and θ, and write down the CDF of ψ.

Solution. Let X be a uniformly distributed random variable on the sphere. Given a

region B = {x(θ, ψ), y(θ, ψ), z(θ, ψ)) : θ1 ≤ θ ≤ θ2, ψ1 ≤ ψ ≤ ψ2}.

P[X ∈ B] =
1

4π

∫ θ2

θ1

∫ ψ2

ψ1

sin(ψ)dψ dθ.

Let θ(X), ψ(X) be the corresponding spherical coordinates of the rv X, then

P[θ ∈ [θ1, θ2]] =
1

2π
(θ2 − θ1),

i.e. θ is uniformly distributed on [0, 2π]. Similarly,

P[ψ(X) ∈ [ψ1, ψ2]] =
1

2

∫ ψ2

ψ1

sin(ψ) dψ,

so that ψ has density 1
2 sin(ψ) dψ. The CDF is therefore,

P[ψ(X) ≤ k] =
1

2
(1− cos(k)), for k ∈ [0, π],

which has inverse G(y) = arccos(1− 2y).

(b) Based on the previous step, generate samples ψ and θ using an appropriate method,

and construct a sampler generate samples from the 2–sphere.

Solution. Similar to the Box-Muller transform, we sample θ uniformly, and ψ using an

inverse function transform, and then transform from spherical to Euclidean coordinates.

i. Sample u1 ∼ U [0, 1] and let θ = 2πu1.

ii. Sample u2 ∼ U [0, 1] and let ψ = arccos(1− 2u2).

iii. Output X = (sin(ψ) cos(θ), sin(ψ) sin(θ), cos(ψ)).

16

3. Given (X,Y) ∼ U(D), show that(
X√

X2 + Y 2
,

Y√
X2 + Y 2

)
∼ U(C),

where C is the 1-sphere in R2. Construct a rejection based sampler to generate samples

U(C) using proposals with distribution U([−1, 1] × [−1, 1]). This algorithm can be readily

generalised sample from spheres in arbitrary dimensions. How do you expect the average

performance to depend on dimension?

Solution. Given θ1 ≤ θ2 let Aθ1,θ2 be the arc on C between angles θ1 and θ2 and let Sθ1,θ2
be the corresponding sector in D. Then

P
[

(X,Y)√
X2 + Y 2

∈ Aθ1,θ2
]

= P[(X,Y) ∈ Sθ1,θ2] =
1

π

∫ 1

0

∫ θ2

θ1

r dr dθ =
θ2 − θ1

2π
,

as required. We can propose the following sampling scheme

(a) Generate U1, U2 ∼ U [−1,+1].

(b) If (U1, U2) ∈ D, then output (U1, U2)/
√
U2
1 + U2

2 .

(c) Otherwise return to step 1.

4. Suppose we can generate samples X,Y ∼ N (0, 1) iid. Show that(
X√

X2 + Y 2
,

Y√
X2 + Y 2

)
∼ U(C).

Solution. Let X and Y be N (0, 1) distributed. For θ1 ≤ θ2,

P
[
(X,Y)/

√
X2 + Y 2 ∈ Aθ1,θ2

]
=

1

2π

∫
∪t≥0tAθ1,θ2

e−(x
2+y2)/2 dx dy

=
1

2π

∫ ∞
0

∫ θ2

θ1

re−r
2/2 dr dθ =

1

2π
(θ2 − θ1),

as required.

Problem 12 (Sampling Gaussian random variables). First we consider the problem of generating

Gaussians using rejection sampling

1. The standard Cauchy distribution is a continuous probability distribution having pdf:

f(x) =
1

π(1 + x2)
.

Use the inverse transform method to derive an algorithm to sample from this distribution.

2. Using the Cauchy distribution as proposal, use the rejection algorithm to generate samples

from the standard Gaussian distribution e−x
2/2/
√

2π. Implement a function in a program-

ming language of your choice to sample Gaussian random variables using this scheme.

Solution. Let

p(x) =
1√
2π
e−x

2/2 and g(x) =
1

π(1 + x2)
.

17

It is straightforward to check that supx p(x)/g(x) is attained at x = ±1, at which

M = sup
x

[p(x)/g(x)] = e−1/2
√
π/2.

We then implement a standard rejection sampler using this proposal.

3. Would it be possible to work the other way round, i.e., use rejection sampling to produce

Cauchy distributed draws from using a Gaussian proposal distribution?

Solution. The reason why this is not possible is that there is no finite upper bound M in

this case, indeed, in this case

M = sup
x∈R

ex
2/2
√

2π

π(1 + x2)
=∞.

4. Write code to implement the Box-Muller sampling algorithm described in class. Frequently

the BM-algorithm is cited as being slow due to the necessity to compute cosines and sines.

Use the rejection based method described in the previous problem to obtain samples which

have the same distribution as (cos(2πU2), sin(2πU2)). Implement code to sample Gaussian

random variables using this scheme.

5. Using timing functions provided in your language (or use the shell time command), calculate

the time of execution for all three methods, after generating 106 samples. Which is the

fastest? Is this what you expected?

6. Use the Kolmogorov–Smirnov test as a check that the generated random numbers follow the

standard normal distribution.

7. Suppose we wish to sample a pair of Gaussian random variables X1 and X2 having means

µi, variances σ2i and correlation ρ. By assuming that the Cholesky decomposition of the

covariance matrix is of the form

C =

(
a11 0

a21 a22

)
,

find expressions for a11, a21 and a22, and solve them to generate samples from X1, X2.

Solution.

Σ =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
= CC> =

(
a211 a11a21

a11a21 a221 + a222

)
,

so that a11 = σ1, a21 = ρσ2, and so a22 = σ2
√

(1− ρ2). Therefore to sample from N (µ,Σ),

we generate Z1, Z2 ∼ N (0, 1) iid, and generate

X1 = µ1 + σ1Z1

X2 = µ2 + ρσ2Z1 + σ2
√

1− ρ2Z2.

18

