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You are free to return a selection of your work to me for marking. This is entirely optional and

the mark will not count for assessment.

Generating non-uniform random variables

Problem 1 (Generalized Bernoulli Distribution). Suppose X is a discrete valued random variable

taking values i with probability pi for i ∈ {1, . . . , k} where
k∑
i=1

pi = 1.

1. Write down the CDF F (x) for the probability distribution of this r.v..

2. Write down an expression for the generalised inverse of the CDF F (x).

3. Use the inverse transform method to derive an algorithm to sample from this distribution.

4. Implement a sampler based on this scheme using a programming language of your choice.

5. For k = 4, p1, p2, p3, p4 = 0.125, 0.125, 0.375, 0.375 generate N = 103 samples and generate a

normalized histogram from this sample to verify that each value is generated with the correct

probability.

Problem 2 (Sample from Gamma(k, λ) distribution). When k ∈ N, it is known that

X1 + . . .+Xk ∼ Gamma(k, λ),

where X1, . . . , Xk are iid Exp(λ) distributed random variables.

1. Based on this observation, write a scheme to generate Gamma(k, λ) distributed samples,

where k ∈ N.

2. Suppose now that k ∈ R≥0. We wish to implement a rejection sampler for Gamma(k, λ)

using proposal density of the form

g(x) =
λk00

Γ(k0)
xk0−1e−λ0x,

1



where k0 = bkc, and λ0 > 0. Calculate the upper bound M = supx≥0 f(x)/g(x), and show

that necessarily λ < λ0 and

M =
λk

Γ(k)

Γ(k0)

λk00

(
k − k0
λ− λ0

)k−k0
e−(k−k0).

3. Optimise over λ0 to minimise M .

4. Implement a rejection sampling scheme to sample from Gamma distribution. Implement also

a naive rejection sampler based on a proposal distributed according to the standard Cauchy

distribution, and compare the performance of both.

Monte Carlo simulation

Problem 3 (Monte Carlo Simulation). We want to estimate the area inside the Batman curve via

Monte Carlo simulation. To this end, let (X,Y ) be a uniformly distributed random variable in the

rectangle [−Lx, Lx] × [−Ly, Ly], with Lx = 7.25 and Ly = 4, and let f(·, ·) denote the indicator

function of the surface inside the Batman curve. For the student’s convenience, this function is

implemented in Python below:

def batman_indicator(x, y):

# We’ll initialize at one and remove parts one by one

result = np.ones(x.shape)

# Ellipse

ellipse = (x/7) **2 + (y/3) **2 - 1 >= 0

result[np.where(ellipse)] = 0

# Bottom curve on [-3, 3]

bottom = (abs(x) < 4) * \

(y <= abs(x/2) - ((3*np.sqrt (33) -7)/112)*x**2 - 3

+ np.sqrt(np.maximum(0, 1-(abs(abs(x) -2) - 1)**2)))

result[np.where(bottom)] = 0

# Top curve

top = (abs(x) > .75) * (abs(x) < 1) * (y > 9 - 8*abs(x)) \

+ (abs(x) > .5) * (abs(x) < .75) * (y > 3*abs(x) + .75) \

+ (abs(x) < .5) * (y > 2.25) \

+ (abs(x) > 1) * (abs(x) < 3) * \

(y > (6*np.sqrt (10) /7+(1.5 -.5* abs(x)) -(6*np.sqrt (10) /14)*\

np.sqrt(np.maximum(0, 4-(abs(x) -1)**2))))

result[np.where(top)] = 0

return result

The exact area of the Batman sign is given below:

# Exact area

I = (955/48) - (2/7) * (2*np.sqrt (33) + 7*np.pi + 3*np.sqrt (10) * (np.pi - 1)) \

+ 21 * (np.arccos (3/7) + np.arccos (4/7))

1. Using a sample of size n = 1000, generate a 95% confidence interval for the area of the

Batman sign, I := 4Lx Ly E[f(X,Y )] based on
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(a) Chebychev’s inequality;

(b) The central limit theorem (CLT);

(c) Bikelis’ theorem.

2. Perform this previous simulation 1000 times independently, and measure how many of the

reported confidence intervals actually contained I.

3. Use Hoeffding’s inequality to derive 100(1− α)%-confidence intervals and compare with the

ones obtained via Chebychev and the CLT.

Theorem 1. Let Z1, . . . , Zn be iid random variables supported within the interval [0, 1] with

mean µ. Then

P [|Sn − µ| ≥ a] ≤ 2e−2na
2
,

where Sn = n−1
∑n

i=1 Zi and a > 0.

4. Find a control variate that enables a reduction of the variance of the estimator.

Problem 4 (Density estimation using Histograms). A very common problem in computational

stochastic methods is the estimation of density, i.e. given a stream of iid samples of some rv X

we wish to accurately recover the density p(x) of X. The MC approach to density estimation is to

express the density p(x) as a limit of expectations of random variables, namely

p(x) = lim
h→0

E1 [x < X < x+ h]

h
.

Thus, for small h, we use the following MC estimator

p̂n(x) =
1

hn

n∑
i=1

1 [x < Xi < x+ h]

1. Assume that p ∈ C1(R), use Taylor’s theorem to show that p̂n(x) is asymptotically biased

(and thus biased). Show that the bias goes to zero as h→ 0.

2. Compute the variance of the estimator p̂(x). Show that Var[p̂n(x)]→∞ as h→ 0.

Taking h→ 0, the bias goes to zero, while the variance blows up. This suggests that a good choice

of h must involve some kind of “trade-off” between variance and bias.

3. Assuming again that p ∈ C1(R). Write an expression for the MSE of p̂n which is correct to

o(h).

4. Find the value of h which minimises the MSE. Conclude that MSE is minimized taking

h = O(N−1/3), in which case the MSE goes to zero with rate N−2/3.

Variance reduction techniques

Problem 5 (Importance Sampling). Consider the problem of estimating the moments of the

distribution

p(x) =
1

2
e−|x|,
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called the double exponential density. The CDF of this function is

F (x) =
1

2
ex1[x ≤ 0] +

1

2
(1− e−x/2)1[x > 0],

which is a piecewise function and difficult to invert. Indeed, we cannot “easily” sample from this

distribution. Suppose we wish to estimate the second moment of the distribution E[X2].

1. Using importance sampling distribution N (0, 4) construct an importance sampler for com-

puting E[X2].

2. Implement this sampler in a programming language of your choice, and generate 105 samples,

and compute the mean. The true value of this expectation should be 2.

3. Can you use the expression for the variance of the importance sampler (or some other method)

to find a better choice of σ2 for a proposal distribution N (0, σ2)? Implement this scheme and

compare the performance computationally.

In machine learning one often needs to compute expectations with respect to the Gumbel

distribution

p(x) = exp(x− exp(x)).

4. Show that E[exp(X)] <∞, where X ∼ p.

5. Using a standard Gaussian importance distribution, implement a regular importance sampler

approximating E[exp(X)] in a programming language of your choice.

6. Similarly implement a self-normalized version of the importance sampler.

7. Compare the performance of both by computing the variance of both estimators, approxi-

mated over 103 independent runs.

Problem 6 (Gambler’s ruin). Here we consider again a problem that was discussed in the work-

book on variance reduction techniques. Assume that {Zi}N−1i=0 are independent N (0, σ2) random

variables and define

Sk = s0 +
k−1∑
i=0

Zi, k = 1, . . . , N.

we want to calculate the probability of ruin within the first N games, given by

I = P
(

min
k∈{1,...,N}

Sk ≤ 0

)
,

In order to better estimate I with a Monte Carlo method, we will use importance sampling with

an important distribution given by the PDF of the RN -valued random variable V obtained by

Vk = s0 +
k−1∑
i=0

b(Vi) +
k−1∑
i=0

Zi, k = 1, . . . , N, (1)

where b(·) is real-valued function.

1. Calculate the likelihood ratio g(v) between the PDF of S = (S1, . . . , SN )T and that of

V = (V1, . . . , VN )T .
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2. Show that, if V = (V1, . . . , VN )T is obtained from (1), then the likelihood ratio evaluated at

V admits the following expression:

g(V ) = exp

(
− 1

σ2

(
N−1∑
k=0

b(Vk)Zk +
1

2

N−1∑
k=0

|b(Vk)|2
))

, (2)

where we used the notation V0 = s0.

3. Calculate the expectation E[g(V )]. Was the result expected?

4. For the parameters N = 10 and σ = .2, calculate I by using importance sampling using the

modified dynamics (1). Can you find a choice of the function b(·) that produces better results

than the constant function b(·) = −.1?

Problem 7 (Control Variates). Let X ∼ p and suppose we want to evaluate

P(X > a) =

∫ ∞
a

p(x) dx.

Suppose that p is symmetric around zero, so that P(X > 0) = 1
2 . Form a control variate estimator

Îcn =
1

n

n∑
i=1

[
1(Xi > a) + α

(
1(Xi > 0)− 1

2

)]

1. Compute the variance Var[Îcn].

2. Find the optimal value of α for which there is maximum reduction in variance. Is it com-

putable in practice? Find a range of α over which there will be some improvement in variance.

3. Suppose now that p is the standard Gaussian distribution, and a = 3. Implement both a

standard MC estimator În and appropriately tuned control variate estimator Îcn. Plot the

95% intervals for both as a function of n.

4. Employing the fact that there there is an explicit formula for the moments of p, construct a

control variate that produces a better variance reduction. Is it worth doing?

Problem 8 (Importance sampling with Gaussian mixture). Consider the function

f(x, y) = e−βV1(x,y) + e−βV2(x,y)

where β > 0 and

V1(x, y) = (x− 0.5)2+
1

2
(y + 0.1)4, V2(x, y) = 0.75(x+ 0.4)2+(y − 0.5)4.

1. Use a Monte-Carlo algorithm to estimate the integral

Z =

∫ 1

−1

∫ 1

−1
f(x, y) dx dy,

for β = 100.
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2. Plot the variance of the estimator as a function of the number of random samples that you

are generating. Use a deterministic numerical method to estimate Z and calculate the error

as a function of the number of random samples.

3. Choose an appropriate distribution ψ(x, y) and estimate Z by using importance sampling.

Justify the choice of ψ(x, y) and plot the variance and the error of the estimator as a function

of the number of samples.

Simulation of continuous-time Gaussian processes

Problem 9 (Simulation of Markovian Gaussian processes). A very useful property of multivariate

Gaussian random variables is that if we condition on part of the random vector, the resulting

distribution remains Gaussian. To see this, suppose that

X = (X1, X2)
> ∼ N (m,Σ), Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then we know that

X1 ∼ N (m1,Σ11), and X2 ∼ N (m2,Σ22).

Furthermore, the conditional distribution of X2 conditional on X1 is a multivariate normal with

E[X2 |X1] = m2 + Σ21Σ
−1
11 (X1 −m1). (3)

and

Var(X2 |X1) = Σ22 − Σ21Σ
−1
11 Σ12. (4)

Using these properties we can develop a more efficient scheme to simulate Gaussian processes, more

specifically to interpolate between already simulated points of a Gaussian process.

1. Suppose we wish to generate Xn+1 at time tn+1 given that we have already generated

X0, . . . , Xn.

(a) Specify the conditional distribution of Xn+1 given X0, . . . , Xn.

(b) Use this to construct a numerical scheme to simulate a Gaussian stochastic process.

2. Suppose additionally that the Gaussian process X(t) is Markovian, so that in particular, you

only need to know the value of X(tn) to generate X(tn+1). Construct a scheme to iteratively

sample X(ti) over a sequence of points t0 < t1 < t2 < . . . .

(a) In the case of Brownian motion, show that the update formula can be written as:

X(ti+1) = X(ti) +
(√

ti+1 − ti
)
Z,

where Z ∼ N (0, 1).

(b) Derive a similar update formula for the stationary Ornstein-Uhlenbeck process with

mean 0 and covariance C(s, t) = exp(α|t− s|/2).
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Problem 10 (Karhunen–Loève expansion). Consider the Gaussian random field X(x) in R with

covariance function

γ(x, y) = e−a|x−y|

where a > 0.

1. Simulate this field: generate samples and calculate the first four moments.

2. Consider X(x) for x ∈ [−L,L]. Calculate analytically the eigenvalues and eigenfunctions of

the integral operator K with kernel γ(x, y),

Kf(x) =

∫ L

−L
γ(x, y)f(y) dy.

Use this in order to obtain the Karhunen-Loéve expansion for X. Plot the first five eigen-

functions when a = 1, L = 0.5. Investigate (either analytically or by means of numerical

experiments) the accuracy of the KL expansion as a function of the number of modes kept.

3. Develop a numerical method for calculating the first few eigenvalues/eigenfunctions of K with

a = 1, L = −0.5. Use the numerically calculated eigenvalues and eigenfunctions to simulate

X(x) using the KL expansion. Compare with the analytical results and comment on the

accuracy of the calculation of the eigenvalues and eigenfunctions and on the computational

cost.

Additional problems

Problem 11 (Sampling uniformly on spheres and balls). A rv has uniform distribution on the

d–dimensional ball D = {x ∈ Rd : |x|2 ≤ 1} if the rv takes values almost surely in D and has

distribution

p(x) dx =
dx∫

D 1 dx
.

Similarly, a rv has uniform distribution on the sphere C = {x ∈ Rd : |x|2 = 1} if the rv takes

values almost surely in C and has distribution,

q(dx) =
1

λ(C)
λ(dx)

where λ(dx) is the spherical measure on C.

1. Given U ∼ U(0, 1), show that (cos(2πU), sin(2πU)) is uniformly distributed on the 2D circle.

2. Suppose we want to sample uniformly from the 3D sphere. We use the spherical coordinate

transformation ψ ∈ [0, π], and θ ∈ [0, 2π],

(x(θ, ψ), y(θ, ψ), z(θ, ψ)) = (sin(ψ) cos(θ), sin(ψ) sin(θ), cos(ψ)) .

(a) Let X be a uniformly distributed random variable on the sphere. Writing the spherical

measure in spherical coordinates, write down the marginal densities of the random

variables ψ and θ, and write down the CDF of ψ.
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(b) Based on the previous step, generate samples ψ and θ using an appropriate method,

and construct a sampler generate samples from the 2–sphere.

3. Given (X,Y ) ∼ U(D), show that(
X√

X2 + Y 2
,

Y√
X2 + Y 2

)
∼ U(C),

where C is the 1-sphere in R2. Construct a rejection based sampler to generate samples

U(C) using proposals with distribution U([−1, 1] × [−1, 1]). This algorithm can be readily

generalised sample from spheres in arbitrary dimensions. How do you expect the average

performance to depend on dimension?

4. Suppose we can generate samples X,Y ∼ N (0, 1) iid. Show that(
X√

X2 + Y 2
,

Y√
X2 + Y 2

)
∼ U(C).

Problem 12 (Sampling Gaussian random variables). First we consider the problem of generating

Gaussians using rejection sampling

1. The standard Cauchy distribution is a continuous probability distribution having pdf:

f(x) =
1

π(1 + x2)
.

Use the inverse transform method to derive an algorithm to sample from this distribution.

2. Using the Cauchy distribution as proposal, use the rejection algorithm to generate samples

from the standard Gaussian distribution e−x
2/2/
√

2π. Implement a function in a program-

ming language of your choice to sample Gaussian random variables using this scheme.

3. Would it be possible to work the other way round, i.e., use rejection sampling to produce

Cauchy distributed draws from using a Gaussian proposal distribution?

4. Write code to implement the Box-Muller sampling algorithm described in class. Frequently

the BM-algorithm is cited as being slow due to the necessity to compute cosines and sines.

Use the rejection based method described in the previous problem to obtain samples which

have the same distribution as (cos(2πU2), sin(2πU2)). Implement code to sample Gaussian

random variables using this scheme.

5. Using timing functions provided in your language (or use the shell time command), calculate

the time of execution for all three methods, after generating 106 samples. Which is the

fastest? Is this what you expected?

6. Use the Kolmogorov–Smirnov test as a check that the generated random numbers follow the

standard normal distribution.

7. Suppose we wish to sample a pair of Gaussian random variables X1 and X2 having means

µi, variances σ2i and correlation ρ. By assuming that the Cholesky decomposition of the

covariance matrix is of the form

C =

(
a11 0

a21 a22

)
,
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find expressions for a11, a21 and a22, and solve them to generate samples from X1, X2.
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