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1 Stochastic differential equations

Problem 1 (Weak error). Let us consider the weak Euler–Maruyama update defined by

X∆t
n+1 = X∆t

n + b(X∆t
n ) ∆t+ σ(X∆t

n )
√

∆t ξn,

where {ξn}N−1
n=0 are i.i.d. discrete-valued random variables taking values 1 and −1 with equal

probability. Show that the weak error, for geometric Brownian motion and for the observables

f(x) = x and f(x) = x2, scales as ∆t, i.e. show that∣∣E [f(XN∆t)− f(X∆t
N )
] ∣∣ ≤ C∆t,

for a constant C independent of ∆t.

Solution. We use the following parametrization of the geometric Brownian motion:

dXt = µXt dt+ σXt dWt, X0 = x0, (1)

where µ and σ are constants and x0 is a random initial condition. The solution to this SDE (which

we found earlier in the course by applying Itô’s formula to the function lnXt) is

Xt = x0 exp

((
µ− σ2

2

)
t+ σWt

)
.

This can be written as

XT = x0

N−1∏
n=0

exp

((
µ− σ2

2

)
∆t+ σ∆Wn

)
,

where ∆Wn := W(n+1)∆t −Wn∆t. On the other hand, the weak Euler-Maruyama discretization

of (1), denoted by X∆t
n , is given by

X∆t
n+1 = X∆t

n + µX∆t
n ∆t+ σX∆t

n

√
∆t ξn = (1 + µ∆t+ σ

√
∆t ξn)X∆t

n ,
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It follows that

X∆t
N = x0

N−1∏
n=0

(
1 + µ∆t+ σ

√
∆t ξn

)
.

We will prove that the weak error is bounded from above by Cm ∆t for the observables f(x) = xm,

where m ∈ N and C denotes any constant independent of ∆t. Since all the factors in the expressions

of Xt and X∆t
N are independent,

E [(XT )m] = E [(x0)m]

N−1∏
n=0

E
[
exp

(
m

(
µ− σ2

2

)
∆t+mσ∆Wn

)]
,

E
[
(X∆t

N )m
]

= E [(x0)m]

N−1∏
n=0

E
[
(1 + µ∆t+ σ

√
∆t ξn)m

]
.

By the binomial theorem, here applied twice,

E
[
(1 + µ∆t+ σ

√
∆t ξn)m

]
= E

[
m∑
k=0

(
m

k

)
1m−k (µ∆t+ σ

√
∆t ξn)k

]

= E

[
m∑
k=0

(
m

k

) k∑
`=0

(
k

`

)
(µ∆t)k−` (σ

√
∆t ξn)`

]

=
m∑
k=0

(
m

k

) k∑
`=0

(
k

`

)
(µ∆t)k−` (σ

√
∆t)` E[(ξn)`]

=
m∑
k=0

(
m

k

) k∑
`=0

(
k

`

)
(µ∆t)k−` (σ

√
∆t)`

(−1)` + 1`

2
=: A(∆t).

On the other hand, by the properties of the lognormal distribution,

E
[
exp

(
m

(
µ− σ2

2

)
∆t+mσ∆Wn

)]
= exp

((
mµ− mσ2

2
+
m2σ2

2

)
∆t

)
=: B(∆t).

We will break down the rest of the proof in 3 steps.

• Step 1: Show that |A(∆t) − B(∆t)| ≤ C ∆t2. From the definition of A(∆t), by calculating

explicitly the terms of the sum corresponding to k = 0, 1, 2, we obtain that

A(∆t) = 1 +m(µ∆t) +

(
m

2

)(
(µ∆t)2 + σ2 ∆t

)
+

m∑
k=3

(
m

k

) k∑
`=0

(
k

`

)
(µ∆t)k−` (σ

√
∆t)`

(−1)` + 1`

2

= 1 +m(µ∆t) +
m(m− 1)

2

(
σ2 ∆t

)
+O(∆t2)

= 1 +

(
mµ− mσ2

2
+
m2σ2

2

)
∆t+O(∆t2).

On the other hand, by a Taylor expansion,

B(∆t) = 1 +

(
mµ− mσ2

2
+
m2σ2

2

)
∆t+O(∆t2),
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so we conclude that |A(∆t)−B(∆t)| = O(∆t2).

• Step 2: Show that |A(∆t)N − B(∆t)N | = O(∆t). Employing the binomial theorem again,

and noticing that the term corresponding to k = 0 cancels out with B(∆t)N , we obtain

∣∣A(∆t)N −B(∆t)N
∣∣ =

∣∣∣∣((A(∆t)−B(∆t)
)

+B(∆t)
)N
−B(∆t)N

∣∣∣∣
=

∣∣∣∣∣
N∑
k=1

(
N

k

)(
A(∆t)−B(∆t)

)k
B(∆t)N−k

∣∣∣∣∣
≤

N∑
k=1

(
N

k

) ∣∣∣(A(∆t)−B(∆t)
)k
B(∆t)N−k

∣∣∣
≤

N∑
k=1

(
N

k

)
(C ∆t2)k

∣∣∣B(∆t)N−k
∣∣∣ .

In order to be able to conclude this step, we note that, for k = 1, . . . , N ,

|B(∆t)|N−k ≤ exp

(∣∣∣∣mµ− mσ2

2
+
m2σ2

2

∣∣∣∣ T) ,
by definition of B(∆t). Using the inequality

(
N
k

)
≤ Nk, we finally obtain

∣∣A(∆t)N −B(∆t)N
∣∣ ≤ C N∑

k=1

Nk ∆t2k = C
N∑
k=1

T k ∆tk

= C T ∆t

(
1 +

N∑
k=1

(T ∆t)k

)
= O(∆t),

because T is fixed and the term in the round brackets is bounded from above as ∆t→ 0.

• Step 3: Show that
∣∣E [(X∆t

N )m − (XT )m
]∣∣ = O(∆t). This follows from the previous step

after noticing that E[(X∆t
N )m] = E[(x0)m]A(∆t)N and E[(XT )m] = E[(x0)m]B(∆t)N :∣∣E [(X∆t

N )m − (XT )m
]∣∣ ≤ |E [(x0)m]|

∣∣A(∆t)N −B(∆t)N
∣∣ = O(∆t).

Problem 2 (Variance reduction). Consider the overdamped Langevin equation

dXt = −V ′(Xt) dt+
√

2β−1 dWt, X0 = −1, (2)

where V (·) is the double well potential:

V (x) =
x4

4
− x2

2
.

1. By using a Monte Carlo simulation wth the Euler–Maruyama method, estimate the proba-

bility P defined by

P := P[XT > 0], T = 1.

Solution. Let us denote by {X∆t
k }Nk=0 the Euler–Maruyama discretization of (2):

X∆t
k+1 = X∆t

k − V ′(X∆t
k ) ∆t+

√
2β−1 ∆Wk, X∆t

0 = −1,
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where, as usual, ∆Wk = W(k+1)∆t −Wk∆t. To estimate P , we will use the approximation

P[XT > 0] ≈ P[X∆t
N > 0] (3)

and estimate the right-hand side by Monte Carlo simulation:

IJ =
1

J

J∑
j=1

I(0,∞)(X
∆t,j
N ),

where X∆t,j, with j = 1, . . . , J , are replicas of the Euler–Maruyama solution. See the Jupyter

notebook for the numerical estimation.

2. By using importance sampling, implement an estimator for P with a lower variance.

Solution. There is not a unique solution for this question. The general idea is to add a drift

term in (2),

dYt = −V ′(Yt) dt+ b(Yt) dt+
√

2β−1 dWt, X0 = −1, (4)

in such a way such a way that P[YT > 0] is higher than P[XT > 0]. A simple way to achieve

this is to choose b(·) to be the function

b(y) = 1(−∞,0) b,

for some positive constant b. Using an Euler–Maruyama discretization for Yt, we define a

new discrete-time process {Y ∆t
k }Nk=0:

Y ∆t
k+1 = Y ∆t

k − V ′(Y ∆t
k ) ∆t+ b(Y ∆t

n ) ∆t+
√

2β−1 ∆Wk, Y ∆t
0 = −1. (5)

This new process defines a probability measure over RN , , the law of {Y ∆t
k }Nk=1, which can

be employed to estimate P[X∆t
N > 0] via importance sampling. With this approach, based

on employing the approximation (3) from the beginning, we do not need to worry about

Girsanov’s theorem or measures over an infinite-dimensional state space.

The probability density functions of {X∆t
k }Nk=1 and {Y ∆t

k }Nk=1 are

ρX(x1, . . . , xN ) =
1

(2β−1∆t)N/2
exp

(
− 1

4β−1∆t

N−1∑
k=0

(xk+1 − xk + V ′(xk) ∆t)2

)
,

ρY (x1, . . . , xN ) =
1

(2β−1∆t)N/2
exp

(
− 1

4β−1∆t

N−1∑
k=0

(xk+1 − xk + V ′(xk) ∆t− b(xk) ∆t)2

)
,

with x0 := X0. Their ratio, which coincides with the Radon–Nikodym derivative of ρX (or,

more precisely, of the probability measure with density ρX) with respect to ρY , is given by

ρX(x1, . . . , xN )

ρY (x1, . . . , xN )
= exp

(
− 1

2β−1

(
N−1∑
k=0

(xk+1 − xk + V ′(xk) ∆t) b(xk)−
1

2

N−1∑
k=0

|b(xk)|2 ∆t

))
.

Evaluated at (Y ∆t
1 , . . . , Y ∆t

N ) and using (5), this ratio, is equal almost surely to

ρX(Y ∆t
1 , . . . , Y ∆t

N )

ρY (Y ∆t
1 , . . . , Y ∆t

N )
= exp

(
− 1

2β−1

(√
2β−1

N−1∑
k=0

b(Yk)∆Wk +
1

2

N−1∑
k=0

|b(Yk)|2∆t

))
.
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Now, introducing on RN the indicator function f(·) := IR×R×···×R>0(·), we estimate the

desired probability as follows:

P[XT > 0] ≈ P[X∆t
N > 0] = E[f(X∆t

1 , . . . , X∆t
N )]

=

∫
RN

f(x1, . . . , xN ) ρX(x1, . . . , xN ) dx1 . . . dxN

=

∫
RN

f(x1, . . . , xN )
ρX(x1, . . . , xN )

ρY (x1, . . . , xN )
ρY (x1, . . . , xN ) dx1 . . . dxN

= E
[
f(Y ∆t

1 , . . . , Y ∆t
N )

ρX(Y ∆t
1 , . . . , Y ∆t

N )

ρY (Y ∆t
1 , . . . , Y ∆t

N )

]
.

The last expression can then be approximated numerically by using a standard Monte Carlo

method with the modified discrete-time dynamics. An alternative, conceptually more difficult

manner of deriving the same estimate is by calculating the likelihood ratio between the laws of

the continuous-time processes using Girsanov’s theorem, and by then discretizing in a later

step so that it can be estimated numerically.

By Girsanov’s theorem, the law of {Yt}t∈[0,T ], viewed as a probability measure over the space

of continuous functions, is equivalent (i.e. one is absolutely continuous with respect to the

other, and conversely) to that of {Ut}t∈[0,T ] := {
√

2β−1Wt}t∈[0,T ], which is itself equiva-

lent to the law of {Xt}t∈[0,T ]. Denoting these probability measures by µY , µU and µX , the

Radon–Nikodym derivatives are given by the following expressions: evaluated at an arbitrary

continuous function {Zt}t∈[0,t],

dµX
dµU

({Zt}t∈[0,t]) = exp

(
1

2β−1

(∫ T

0
(−V ′(Ys)) dZs −

1

2

∫ T

0
| − V ′(Zs)|2 ds)

))
,

dµY
dµU

({Zt}t∈[0,t]) = exp

(
1

2β−1

(∫ T

0
(−V ′(Zs) + b(Zs)) dZs −

1

2

∫ T

0
| − V ′(Zs) + b(Zs)|2 ds

))
,

To keep the notation concise, we will abbreviate {Zt} := {Zt}t∈[0,t]. Here, the Radon–Nikodym

derivatives are viewed as functionals over the space of continuous functions: they take con-

tinuous functions as arguments and return a real number. We emphasize that, although

convenient for formal calculations, these expressions are in fact not rigorous: since Zt is a

deterministic function with potentially infinite variation, the integral with respect to dZt is

not well-defined. However, as we shall see below, what we need for importance sampling is

only an expression of the Radon–Nikodym derivative evaluated at a given stochastic process,

which we will be able to interpret precisely as a random variable.

We recall that from the basic properties of the Radon–Nikodym derivative that, for any three

equivalent measures µ, ν and λ, it holds that

dµ

dλ
=

dµ

dν

dν

dλ
(µ, ν, λ)-almost everywhere.

In particular, taking λ = µ,

1 =
dµ

dν

dν

dµ
⇒ dµ

dν
=

(
dµ

dν

)−1

(µ, ν) almost everywhere.
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Therefore, for functionals F on the space of continuous functions,∫
F({Zt}) dµX({Zt}) =

∫
F({Zt})

dµX
dµU

({Zt}) dµU ({Zt}),

=

∫
F({Zt})

dµX
dµU

({Zt})
dµU
dµY

({Zt}) dµY ({Zt})

=

∫
F({Zt})

dµX
dµU

({Zt})
dµY
dµU

({Zt})
dµY ({Zt}).

The fraction in the last equation is equal to

dµX
dµU

({Zt})
dµY
dµU

({Zt})
= exp

(
− 1

2β−1

(∫ T

0
b(Zs) dZs −

1

2

∫ T

0
|b(Zs)|2 − 2 b(Zs)V

′(Zs) ds

))
=

dµX
dµY

({Zt}).

(This formula is very similar to the ratio of the finite-dimensional PDFs found above.) Eval-

uated at {Zt} = {Yt}, and taking into account that Yt solves (2), this can be written as

dµX
dµY

({Yt}) = exp

(
− 1

2β−1

(∫ T

0
b(Ys) dYs −

1

2

∫ T

0
|b(Ys)|2 − 2 b(Ys)V

′(Ys) ds

))
,

= exp

(
− 1

2β−1

(√
2β−1

∫ T

0
b(Ys) dWs +

1

2

∫ T

0
|b(Ys)|2 ds

))
.

In the second line, the right-hand side now contains an integral with respect to Brownian

motion, so we can make sense of it rigorously as a real-valued random variable. Now let

us define the indicator functional F(·) = I{f∈C([0,T ]):f(T )>0}(·) over the space of continuous

functions. We have

P[XT > 0] = E[F({Xt})] =

∫
F({Zt}) dµX({Zt})

=

∫
F({Zt})

dµX
dµY

({Zt}) dµY ({Zt})

= E
[
F({Yt})

dµX
dµY

({Yt})
]
.

Now let {Y ∆t
t }t∈[0,T ] be the piecewise constant continuous-time process obtained from the

Euler–Maruyama discretization {Y ∆t
k }. For ∆t sufficiently small, we expect the law of {Y ∆t

t }
to be close to that of {Yt}, so in particular

E
[
F({Yt})

dµX
dµY

({Yt})
]
≈ E

[
F({Y ∆t

t })
dµX
dµY

({Y ∆t
t })

]
= E

[
f(Y ∆t

1 , . . . , Y ∆t
N )

ρX(Y ∆t
1 , . . . , Y ∆t

N )

ρY (Y ∆t
1 , . . . , Y ∆t

N )

]
,

leading us to the same estimator as the one found before. The choice of the constant b is not

evident, and some numerical exploration can help us find a good value. If b is chosen very

small, then the probability P[YT > 0] will be small and we don’t expect a significant variance

reduction. On the other hand, if b is chosen very large, then the probability P[YT > 0]

will be close to one, but we expect the likelihood ratio to take a very small value with high
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probability, thus also leading to a large variance. Numerically, we found b = 1.5 to be a good

value, yielding a variance reduction by a factor close to 9.

The presentation of Girsanov’s theorem that we gave in the course and in the Jupyter notebook

is based on Section 3.6 of Prof. Pavliotis’s book, Stochastic Processes and Applications. For

a more detailed and fully rigorous presentation of Girsanov’s theorem, see Section 8.6 of

Oksendal’s book entitled Stochastic Differential Equations.

Problem 3 (Maximum Likelihood estimator). Consider the SDE

dXt = (αXt − βX3
t ) dt+ dWt.

Our objective is to derive maximum likelihood estimators for α and β for a given observation of

the path Xt, t ∈ [0, T ].

1. Show that the log of the likelihood function is

logL = αB1 − βB3 −
1

2
α2M2 −

1

2
β2M6 + αβM4,

where

Mn

(
{Xt}t∈[0,T ]

)
=

∫ T

0
Xn
t dt and Bn({Xt}t∈[0,T ]) :=

∫ T

0
Xn
t dXt.

Solution. By Girsanov’s theorem, the Radon–Nykodym of the law of X := {Xt}t∈[0,T ] with

respect to the law of Brownian motion (called the Wiener measure) is given by

dPX
dPW

(X;α, β) = exp

(∫ T

0
b(Xt;α, β) dXt −

1

2

∫ T

0
b(Xt;α, β)2 dt

)
= exp

(∫ T

0
b(Xt;α, β) dWt +

1

2

∫ T

0
b(Xt;α, β)2 dt

)
,

where b(x;α, β) = αXt − βX3
t . Taking the logarithm of the first expression (the second

expression is not necessary in this exercise), we obtain

log

(
dPX
dPW

(X;α, β)

)
=

∫ T

0
b(Xt;α, β) dXt −

1

2

∫ T

0
b(Xt;α, β)2 dt,

= αB1(X)− β B3(X)− 1

2

(
α2M2(X)− 2αβM4(X) + β2M6(X)

)
= αB1(X)− β B3(X)− α2

2
M2(X)− β2

2
M6(X) + αβM4(X).

2. Consequently show that the MLE for α and β are given by

α̂ =
B1M6 −B3M4

M2M6 −M2
4

and β̂ =
B1M4 −B3M2

M2M6 −M2
4

.

Solution. Equaling to zero the derivatives with respect to α and β, we obtain

0 = B1(X)− αM2(X) + βM4(X),

0 = −B3(X)− βM6(x) + αM4(X),
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which in matrix form is(
M2(X) −M4(X)

−M4(x) M6(x)

)(
α

β

)
=

(
B1(X)

−B3(X)

)
.

Using Cramer’s rule, and omitting the dependence on X for convenience, we obtain

α =
B1M6 −B3M4

M2M6 − |M4|2
, β =

B1M4 −B3M2

M2M6 − |M4|2
.

Problem 4 (Nonlinear SDEs in population dynamics). The following SDE appears in population

dynamics:

dXt = −µXt(1−Xt) dt− σXt(1−Xt) dWt (6)

1. Show that Xt = 1 is a fixed point for (6) and that linearizing about this fixed point we obtain

the SDE for geometric Brownian motion.

Solution. If we substitute Xt = 1 in the SDE (6), we obtain

dXt = −µ1(1− 1) dt− σ1(1− 1) dWt = 0 dt+ 0 dWt,

so Xt = 1 is a fixed point. We now write Xt = 1 + εYt and substitute in (6), which leads to

d(1 + εYt) = −µ(1 + εYt)(1− (1 + εYt) dt− σ(1 + εYt)(1− (1 + εYt)) dWt

or

εdYt = ε(µYt dt+ σYt dWt) + ε2(µY 2
t dt+ σY 2

t dWt).

We finally get

dYt = µYt dt+ σYt dWt + ε(µY 2
t dt+ σY 2

t dWt).

Disregarding the term multiplying ε, we obtain the equation for geometric Brownian motion.

2. Solve (6) numerically using the explicit Euler scheme for µ = −1, X0 = 1.1 and for σ =

.5, .6, .7, .8, .9. Calculate numerically E|Xt− 1|2 and comment on the mean square stability

of the explicit Euler scheme for the nonlinear SDE (6).

Solution. Note first that, during the lectures, we defined mean-square stability only for the

geometric Brownian motion. It is therefore appropriate to clarify what is meant by mean-

square stability in this context. For σ = 0 and µ < 0, (6) admits two equilibrium points: a

unstable one at Xt = 0 and a stable one at Xt = 1. In the context of this exercise, we will

say that the equation is mean-square stable if

lim
t→∞

E|Xt − 1|2 = 0,

and similarly for the numerical approximation. A first question to ask oneself is the following:

what are the values of the parameters µ and σ such that the (continuous-time) solution to (6)

is mean-square stable, regardless of the initial condition? Unfortunately, this turns out to be

a difficult question. Take for example the deterministic case σ = 0. The linearized equation

suggests that the nonlinear equation (6) is mean-square stable provided that µ < 0, but this
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is true only for a subset of initial conditions: the exact solution to

dXt

dt
= −µXt(1−Xt)

is given by

Xt =
1

1− (1−X−1
0 ) eµt

.

When X0 < 0, the solutions blow up in finite time; the basin of attraction of the stable

equilibrium (still when σ = 0 and µ < 0) is only (0,+∞).

The condition for mean-square stability of the Euler–Maruyama scheme, when applied to

geometric Brownian motion, is the following:

∆t < −
(

2

µ
+
σ2

µ2

)
If µ = −1, this condition becomes

∆t < 2− σ2. (7)

Assuming that the behavior of the nonlinear equation around the equilibrium Xt = 1 can be

well approximated by that of the linearized equation, i.e. by geometric Brownian motion, we

expect the Euler–Maruyama scheme to be mean-square stable for the nonlinear equation (6)

for all the values of σ given, provided that ∆t is very small. This is indeed what is observed

in the Jupyter notebook. When ∆t is taken to be larger, however, stability issues arise, even

for values of ∆t such that (7) is satisfied.

3. Solve (6) using the θ-Euler scheme with θ = 1
2 . Investigate the mean square stability of this

numerical scheme when applied to (6).

Solution. The θ-Euler scheme is

Xn+1 = Xn + ((1− θ)b(Xn) + θb(Xn+1)) ∆t+ σ(Xn)∆Wn

This can be rewritten as

Xn+1 − θb(Xn+1)∆t = Xn + (1− θ)b(Xn)∆t+ σ(Xn)∆Wn.

This is a nonlinear equation for Xn+1 which can be written as:

F (Xn+1) = G(Xn) ⇔ F (Xn+1)−G(Xn) = 0

where F (x) = x − θ b(x) ∆t and G(x) = x + (1 − θ) ∆t b(x) + σ(x)∆W . The method is

implemented in the Jupyter notebook, and it seems to be more stable that the explicit Euler–

Maruyama method for the nonlinear equation.

2 Markov chain Monte Carlo

Problem 5. Read Section 3.3 in the lecture notes, and show that πst and πpt are reversible

for the Markov chains generated by the simulated tempering and parallel tempering algorithms,
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respectively. For the case of parallel tempering, consider for simplicity the case where N = 2. In

both cases, assume that the MCMC schemes employed with probability α0, in the notations of the

lecture notes, are such that the associated transition distributions pi(x, y) satisfy detailed balance:

πi(x) pi(x, y) = πi(y) pi(y, x), πi ∝ exp

(
−H(x)

Ti

)
. (8)

Here Ti denote positive constants, called temperatures by analogy with physical systems, and

H(x) denotes a smooth confining potential – a function such that lim|x|→∞H(x) = +∞ and

e−H(x)/T ∈ L1(X) for all T > 0. (This second condition guarantees that e−H(x)/T defines a

probability measure, up to the normalization constant.)

Solution (Simulated tempering). We will assume in this question that X is a continuous state

space, such as R. In the case of simulated tempering we consider the distribution

πst(x, i) ∝ ci πi(x), (x, i) ∈ X × I,

where I = {1, . . . , N} and the coefficients ci are positive. Note that, since X is a continuous

state space and I is a discrete state space, πst is neither a probability distribution function nor a

probability mass function, but a mixture of both. We need to show detailed balance:

πst(x, i)P
(
(x, i), (y, j)

)
= πst(y, j)P

(
(y, j), (x, i)

)
∀(x, i), (y, j) ∈ (X × I)2,

where P
(
(x, i), (y, j)

)
denotes the transition distribution from (x, i) to (y, j). To this end, we will

proceed by exhaustion of the different cases:

• If i = j and x = y, the condition is trivially satisfied.

• If i 6= j and x 6= y, then the move is impossible: P
(
(x, i), (y, j)

)
= 0. In this case both sides

of the equality are zero and the condition is satisfied.

• If i = j and x 6= y, then the move corresponds to an acceptance event u ≤ α0: the transition

density is P
(
(x, i), (y, j)

)
= α0 pi(x, y). In this case, the detailed balance condition reads

ci πi(x)α0 pi(x, y) =? ci πi(y)α0 pi(y, x),

which is satisfied by the assumption (8).

• If i 6= j and x = y, then the move corresponds to a rejection event u > α0, followed by an

acceptance of a proposal j drawn from α(i, · ). The probability of this acceptance is

β(i, j;x) = min

(
1,
cj πj(x)α(j, i)

ci πi(x)α(i, j)

)
,

so we deduce

P
(
(x, i), (y, j)

)
= (1− α0)α(i, j)β(i, j;x).

Substituting this in the detailed balance condition, we obtain

ci πi(x) (1− α0)α(i, j)β(i, j;x) =? cj πj(x) (1− α0)α(j, i)β(j, i;x),

⇔ ci πi(x)α(i, j)β(i, j;x) =? cj πj(x)α(j, i)β(j, i;x).

10



Employing the expression of β( · , · ;x), it is easily seen that both sides are equal to

min (ci πi(x)α(i, j), cj πj(x)α(j, i)) ,

so detailed balance is satisfied.

Solution (Parallel tempering). In this case we consider the distribution

πpt(x1, x2) ∝ π1(x1)π2(x2), (x1, x2) ∈ X ×X,

We need to show detailed balance:

πpt(x1, x2)P
(
(x1, x2), (y1, y2)

)
= πpt(y1, y2)P

(
(y1, y2), (x1, x2)

)
∀(x1, x2), (y1, y2) ∈ (X ×X)2,

where P
(
(x1, x2), (y1, y2)

)
denotes the transition density from (x1, x2) to (y1, y2). To this end, we

will again proceed by exhaustion of the different cases:

• If x1 = x2 and y1 = y2, the condition is trivially satisfied.

• If x1 6= y2 or x2 6= y1, then the move does not correspond to a swap, so P
(
(x1, x2), (y1, y2)

)
=

α0 p(x1, y1) p(x2 y2). In this case the detailed balance condition reads:

π1(x1)π2(x2)α0 p(x1, y1) p(x2, y2) =? π1(y1)π2(y2)α0 p(y1, x1) p(y2, x2),

which is satisfied by the assumption (8).

• If x1 = y2 and x2 = y1 and x1 6= x2 (if x1 = y2 and x2 = y1 and x1 = x2, then we are in the

first case addressed above) then the move might or might not correspond to a swap. In this

case

P
(
(x1, x2), (y1, y2)

)
= α0 p(x1, y1) p(x2 x2) + (1− α0)β(x1, x2).

The first term corresponds to the case where u ≤ α0, and the second term is the probability

of an accepted swap. Here we defined

β(x1, x2) = min

(
1,
π1(x2)π2(x1)

π1(x1)π2(x2)

)
.

Substituting in the detailed balance condition, we obtain

π1(x1)π2(x2) p(x1, y1)α0 p(x2, y2) + π1(x1)π2(x2) (1− α0)β(x1, x2)

=? π1(y1)π2(y2) p(y1, x1)α0 p(y2, x2) + π1(x2)π2(x1) (1− α0)β(x2, x1).

The first term on the left-hand side coincides with the first term on the right-hand side, by

the assumption (8). Detailed balance is therefore satisfied provided that

π1(x1)π2(x2)β(x1, x2) = π1(x2)π2(x1)β(x2, x1).

Employing the definition of β( · , · ), we see that both sides are equal to

min (π1(x1)π2(x2), π1(x2)π2(x1)) ,

which concludes the proof.
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Problem 6 (Metropolis–Hastings). In this question we explore the Metropolis–Hastings algorithm

in a discrete state space.

1. Suppose we wish to sample from the binomial distribution

pk =
n!

k!(n− k)!
pk(1− p)n−k, k ∈ {0, 1, . . . , n},

with parameters n ∈ N and p ∈ (0, 1). Derive an independence sampler using a uniform

distribution on 0, . . . , n as proposal distribution.

Solution. Note that if we are sampling a random variable Y uniformly in the finite set

{1, . . . , n}, then the probability mass function of Y is P(Y = y) = 1
n , for any y ∈ {1, . . . , n}.

We will denote the probability mass function at y by gy. The algorithm is the following:

Given a state Xn,

(a) Sample Y ∼ U({1, . . . , n}) and u ∼ U(0, 1).

(b) If u < α(Xn, Y ), set Xn+1 = Y , where

α(x, y) = min

{
1,
py gx
px gy

}
= min

{
1,
py
px

}
= min

{
1,

n!
y!(n−y)!p

y(1− p)n−y
n!

x!(n−x)!p
x(1− p)n−x

}

= min

{
1,
x!(n− x)!

y!(n− y)!
py−x(1− p)x−y

}
(c) Otherwise set Xn+1 = Xn.

2. The geometric probability distribution is

pk = p(1− p)k−1, k ∈ {1, 2, 3, . . .},

with parameter p ∈ (0, 1). Derive a simple symmetric random walk Metropolis Hastings

algorithm to sample from this distribution.

Solution. We will use a uniform distribution on a set of integers, centered at Xn and with

width 2δ for some integer δ. This means that

q(y|x) =
1

2δ + 1
1(|y − x| ≤ δ)

The algorithm is the following: Given a state Xn,

(a) Sample Z ∼ U({−δ, . . . , δ}) and propose Y = Xn + Z.

(b) Sample U ∼ U(0, 1) and set Xn+1 = Y if U < α(Xn, y), where

α(x, y) = min

{
1,
py
px

}
(9)

= min

{
1,
p(1− p)y−1

p(1− p)x−1

}
(10)

= min
{

1, (1− p)y−x
}

(11)
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(c) Otherwise reject y and set Xn+1 = Xn.

In both cases implement the samplers in a programming language of your choice (with your chosen

values of p and n), and confirm that they work by comparing the estimated means and variances

with the known theoretical means and variances of these distributions.

Solution. See the Jupyter notebook.

Problem 7 (Metropolis-Hastings using deterministic transformations). Suppose we wish to sample

from a distribution π(x). We consider sampling from this distribution using a Metropolis-Hastings

algorithm in which the proposal distribution q(y |x) is an equal mixture of two uniform distribu-

tions, as follows:

q(· |x) =
1

2
U((a− ε)x, (a+ ε)x) +

1

2
U(x/(a+ ε), x/(a− ε),

where a is a constant greater than one, and 0 < ε < a − 1, for x ≥ 0, and analogously (i.e. with

bounds flipped) for x < 0.

1. Derive an expression for the MH acceptance probability for this proposal distribution.

Solution. We consider x > 0 (the x < 0 case is anlogous). The interval I1(x) = [(a −
ε)x, (a+ ε)x] has length 2εx, and the interval I2(x) =

[
x
a+ε ,

x
a−ε

]
has length 2εx

a2−ε2 . So

q(y|x) =
1

4εx

(
1I1(x)(y) + (a2 − ε2)1I2(x)(y)

)
Therefore

α(x, y) = min

{
1,
π(y)q(x|y)

π(x)q(y|x)

}
= min

{
1,
π(y) 1

4εx

(
1I1(x)(y) + (a2 − ε2)1I2(x)(y)

)
π(x) 1

4εy

(
1I1(y)(x) + (a2 − ε2)1I2(y)(x)

)}

= min

{
1,
yπ(y)

(
1I1(x)(y) + (a2 − ε2)1I2(x)(y)

)
xπ(x)

(
1I1(y)(x) + (a2 − ε2)1I2(y)(x)

)}

Now notice that

y ∈ I1(x)⇔ y ∈ [(a− ε)x, (a+ ε)x]⇔ y

x
∈ [(a− ε), (a+ ε)]

⇔ x

y
∈
[

1

a+ ε
,

1

a− ε

]
⇔ x ∈

[
y

a+ ε
,

y

a− ε

]
⇔ x ∈ I2(y),

so 1I1(x)(y) = 1I2(y)(x). Similarly 1I2(x)(y) = 1I1(y)(x), and we deduce

α(x, y) = min

{
1,
yπ(y)

(
1I1(x)(y) + (a2 − ε2)1I2(x)(y)

)
xπ(x)

(
1I2(x)(y) + (a2 − ε2)1I1(x)(y)

)} (12)

2. Consider the limit of this algorithm as ε→ 0. Describe the resulting algorithm in this limit.

Solution. In the limit ε→ 0, the proposal q( · |x) converges in the sense of distributions to

q0(y|x) :=
1

2

(
δax(y) + δx/a(y)

)
,
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and the algorithm proposes ax or x
a with probability 1/2 each. The resulting Markov chain

can be viewed as a chain on the discrete state space . . . 1
a2
X0,

1
a X0, X0, aX0, a

2X0 . . . . The

probability of acceptance is

α(x, ax) = min

{
1,
π(ax)

π(x)

}
, α(x, x/a) = min

{
1,
π(x/a)

π(x)

}
.

3. For the particular case where π is the following distribution

π(x) =
2

π

1

(1 + x2)2
,

would either of the schemes proposed be efficient for sampling from π?

Solution. Note that if x > 0, the algorithms propose only positive values for y (and vice

versa). It follows that the resulting Markov chains are not ergodic, and the schemes would

therefore not be suitable to sample from π. Additionally, the second scheme corresponding to

the ε→ 0 limit explores only a discrete subset of R, making it even less efficient.

Problem 8 (Alternative acceptance probabilities). While the Metropolis-Hastings acceptance

probability is by far the most widely used acceptance probability, there are several other choices.

One alternative rule is the Barker rule:

α(x, y) =

(
1 +

π(x)q(y|x)

q(x|y)π(y)

)−1

.

1. Show that the Metropolis Hastings scheme using this acceptance rule is reversible with respect

to π, in the case of a continuous state space.

Solution. We need to show that π(x)p(x, y) = π(y)p(y, x). We can use the expression for

p(x, y) we derived in the lectures

p(x, y) = q(y|x)α(x, y) + δx(y)

∫
S

(1− α(x, z)) q(z|x) dz.

As before, if x = y there is nothing to prove. So let x 6= y. We have

π(x)p(x, y) = π(x)q(y|x)

(
1 +

π(x)q(y|x)

q(x|y)π(y)

)−1

= π(x)q(y|x)

(
q(x|y)π(y) + π(x)q(y|x)

q(x|y)π(y)

)−1

=
π(x)q(y|x)q(x|y)π(y)

q(x|y)π(y) + π(x)q(y|x)

= π(y)q(x|y)
π(x)q(y|x)

q(x|y)π(y) + π(x)q(y|x)

= π(y)q(x|y)

(
q(x|y)π(y) + π(x)q(y|x)

π(x)q(y|x)

)−1

= π(y)q(x|y)

(
1 +

q(x|y)π(y)

π(x)q(y|x)

)−1

= π(y)q(x|y)α(y, x) = π(y)p(y, x)
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as required.

2. Using a proposal q(·|x) ∼ N (x, δ2), implement the Barker-rule based scheme, as well as a

standard RWMH for a standard Gaussian target distribution π. Plotting the acceptance rate

averaged over time, how do they compare?

Solution. The probability that a move from a position x is accepted is given by

PB(x) = EZ∼q(·|x) α(x, Z) =

∫
S
q(z|x)α(x, z) dz

=

∫
S
q(z|x)

(
1 +

π(x)q(z|x)

q(x|z)π(z)

)−1

dz

=

∫
S
q(z|x)

(
q(x|z)π(z)

q(x|z)π(z) + π(x)q(z|x)

)
dz.

If the proposal is such that q(z|x) = q(x|z), then

PB(x) =

∫
S
q(z|x)

(
π(z)

π(z) + π(x)

)
dz.

In contrast, with the usual Metropolis–Hastings algorithm, the probability that a move from

a position x is accepted is given by

PMH(x) = EZ∼q(·|x) α(x, Z) =

∫
S
q(z|x)α(x, z) dz

=

∫
S
q(z|x) min

(
1,
q(x|z)π(z)

π(x)q(z|x)

)
dz.

If the proposal is such that q(z|x) = q(x|z), then

PMH(x) =

∫
S
q(z|x) min

(
1,
π(z)

π(x)

)
dz.

Since
π(z)

π(z) + π(x)
= min

(
1,

π(z)

π(z) + π(x)

)
≤ min

(
1,
π(z)

π(x)

)
,

we deduce that the probability of an acceptance, from any state x ∈ S, is higher for the

standard Metropolis–Hastings algorithm. See the Jupyter notebook for the numerics.

3. Compare the performance in terms of effective sample size.

Solution. The effective sample size is given by

ESS(N) =
N

1 + 2
∑N−1

k=1 ρk

where ρk = γk
γ0

and the γk are estimated by

γk =
1

N − k

N−k∑
i=1

(Xi+k − X̄)(Xi − X̄),

with X̄ the mean of the sample. Since the acceptance rate of Metropolis–Hastings is higher
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than that associated with Barker’s acceptance probability, we expect the effective sample size

to be larger for Metropolis–Hastings. This is confirmed numerically in the Jupyter notebook.

Problem 9. Consider the independence sampler, i.e. of the Metropolis–Hastings algorithm with

proposal q(·|x) = g(·). Show that, if π(x) ≤ M g(x) for some constant M , then the probability of

an acceptance from state x is bounded from below by 1
M .

Solution. The probability that a proposal from state x is accepted is given by

P (x) = EZ∼q(·|x) α(x, Z) =

∫
S
q(z|x)α(x, z) dz

=

∫
S
g(z) min

(
1,
g(x)π(z)

π(x)g(z)

)
dz

=

∫
S

min

(
g(z),

g(x)π(z)

π(x)

)
dz.

In the lecture, I swapped the integral in the minimum, which was not correct! The conclusion,

however, was correct: under the assumption that π(x) ≤M g(x),

P (x) =

∫
S

min

(
g(z)

π(z)
,
g(x)

π(x)

)
π(z) dz

≥
∫
S

min

(
1

M
,

1

M

)
π(z) dz =

1

M
.

Problem 10 (MALA algorithm and preconditioning). Let π(x), x ∈ Rd be a probability density

function and suppose that we want to calculate the expectation

Eπf =

∫
Rd

f(x)π(x) dx, (13)

where f(x) is an arbitrary function such that Eπf < +∞.

1. Explain how you can use a diffusion process of the form

dXt = ∇ log π(Xt) dt+
√

2 dWt, X0 ∼ ρ0, (14)

where Wt denotes standard Brownian motion on Rd in order to calculate Eπf .

Solution. The solution to (14) is a continuous-time Markov process with ergodic measure

π. For information purposes (= not examinable), we will include a formal that the law of

Xt converges to π as t → ∞, in a sense that will be made precise below. To this end, we

recall that the law of Xt, denoted by ρ(·, t), is governed by the Fokker–Planck (or forward

Kolmogorov) equation:

∂tρ = ∇ · (−∇(log π) ρ+∇ρ) , ρ(·, 0) = ρ0.

A first observation is that this equation can be rewritten as

∂tρ = ∇ ·
(
π∇

(ρ
π

))
, ρ(·, 0) = ρ0. (15)

It is thus clear that ρ = π is a steady state. Let us denote by L2(π) the space of measurable
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functions such that ∫
R2

|f(x)|2 π(x) dx <∞.

We will assume that π satisfies a Poincaré inequality:∫
R2

(
f(x)−

∫
R2

f(y)π(y) dy

)2

π(x) dx ≤ C
∫
R2

|∇f(x)|2 π(x) dx

for all f such that f, |∇f | ∈ L2(π), and for some constant C independent of f .

Let us now introduce ρ̃ = ρ− π and u = ρ̃/π, and notice that∫
R2

u(y, t)π(y) dy =

∫
R2

ρ(y, t)− π(y) dy = 1− 1 = 0.

Applying the Poincaré inequality to the function u, we therefore obtain∫
R2

|u(x, t)|2 π(x) dx ≤ C
∫
R2

|∇u(x, t)|2 π(x) dx (16)

Now, by (15), ρ̃ satisfies

∂tρ̃ = ∇ ·
(
π∇

(
ρ̃

π

))
, ρ̃(·, 0) = ρ0 − π,

so u solves

π ∂tu = ∇ · (π∇u) , ρ̃(·, 0) = ρ0 − π.

We deduce from this that

1

2

d

dt

(∫
R2

|u(x, t)|2 π(x) dx

)
=

∫
R2

u(x, t) ∂tu(x, t)π(x) dx

=

∫
R2

∇ · (π(x)∇u(x, t)) u(x, t) dx

= −
∫
R2

|∇u(x, t)|2 π(x) dx,

where we used integration by part, assuming that the boundary terms are zero, which is

reasonable because we expect that π(x)→ 0 as |x| → ∞. Now, using (16), we deduce

1

2

d

dt

(∫
R2

|u(x)|2 π(x) dx

)
≤ −C

∫
R2

|u(x)|2 π(x) dx.

Using Grönwall’s lemma, we conclude∫
R2

|u(x, t)|2 π(x) dx ≤ e−2Ct

∫
R2

|u(x, 0)|2 π(x) dx,

which implies that u(·, t) → 0 exponentially in L2(π) as t → ∞. The left-hand side can be

expressed in terms of ρ as ∫
R2

|ρ(x, t)− π(x)|2 π(x)−1 dx,
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so we conclude that ρ(·, t) → π exponentially in L2(π−1) as t → ∞. To give a complete

answer to the question, we would need to prove additionally an ergodicity statement, but this

is beyond the scope of this course.

2. Let π(x) be a bivariate normal distribution π ∼ N (µ,Σ), where

µ =

[
3

6

]
, Σ =

[
2 0.5

0.5 1

]
.

(a) Write down π(x), log π(x) and ∇ log π(x).

Solution. To alleviate the notations, from here on we no longer use a bold font for

vectors. We have

π(x) =
1

2π det(Σ)1/2
exp

(
−1

2
〈Σ−1(x− µ), (x− µ)〉

)
so

log(π(x)) = log(−2π det(Σ)−1/2)− 1

2
〈Σ−1(x− µ), (x− µ)〉

and

∇ log(π(x)) = −Σ−1(x− µ)

because Σ is symmetric.

(b) Use the above calculations to sample from π using the MALA distribution.

Solution. The MALA proposes Y by stepping in the SDE

dXt = ∇ log π(Xt) dt+
√

2 dWt

using the Euler-Maruyama scheme with time step δ. So we propose

Y = Xn − Σ−1(Xn − µ)δ +
√

2δ ξ

where ξ ∼ N (0, 1). The acceptance probability is

α(x, y) = min

{
1,
π(y)q(x|y)

π(x)q(y|x)

}
and, as we saw in lectures,

q(y|x) ∝ exp

(
−‖y − x+ δΣ−1(x− µ)‖2

4δ

)
.

For the implementation see the Jupyter notebook.

(c) Compute an estimator for I = E(f(X)), where X = (X,Y ) ∼ π and f(x) = x3 + y2.

Solution. See the Jupyter notebook.

(d) Track the acceptance rate for different time steps δ.

Solution. See the Jupyter notebook.
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