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1 Stochastic differential equations

Problem 1 (Weak error). Let us consider the weak Euler–Maruyama update defined by

X∆t
n+1 = X∆t

n + b(X∆t
n ) ∆t+ σ(X∆t

n )
√

∆t ξn,

where {ξn}N−1
n=0 are i.i.d. discrete-valued random variables taking values 1 and −1 with equal

probability. Show that the weak error, for geometric Brownian motion and for the observables

f(x) = x and f(x) = x2, scales as ∆t, i.e. show that∣∣E [f(XN∆t)− f(X∆t
N )
] ∣∣ ≤ C∆t,

for a constant C independent of ∆t.

Problem 2 (Variance reduction). Consider the overdamped Langevin equation

dXt = −V ′(Xt) dt+
√

2β−1 dWt, X0 = −1, (1)

where V (·) is the double well potential:

V (x) =
x4

4
− x2

2
.

1. By using a Monte Carlo simulation wth the Euler–Maruyama method, estimate the proba-

bility P defined by

P := P[XT > 0], T = 1.

2. By using importance sampling, implement an estimator for P with a lower variance.

Problem 3 (Maximum Likelihood estimator). Consider the SDE

dXt = (αXt − βX3
t ) dt+ dWt.

Our objective is to derive maximum likelihood estimators for α and β for a given observation of

the path Xt, t ∈ [0, T ].
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1. Show that the log of the likelihood function is

logL = αB1 − βB3 −
1

2
α2M2 −

1

2
β2M6 + αβM4,

where

Mn

(
{Xt}t∈[0,T ]

)
=

∫ T

0
Xn
t dt and Bn({Xt}t∈[0,T ]) :=

∫ T

0
Xn
t dXt.

2. Consequently show that the MLE for α and β are given by

α̂ =
B1M6 −B3M4

M2M6 −M2
4

and β̂ =
B1M4 −B3M2

M2M6 −M2
4

.

Problem 4 (Nonlinear SDEs in population dynamics). The following SDE appears in population

dynamics:

dXt = −µXt(1−Xt) dt− σXt(1−Xt) dWt (2)

1. Show that Xt = 1 is a fixed point for (2) and that linearizing about this fixed point we obtain

the SDE for geometric Brownian motion.

2. Solve (2) numerically using the explicit Euler scheme for µ = −1, X0 = 1.1 and for σ =

.5, .6, .7, .8, .9. Calculate numerically E|Xt− 1|2 and comment on the mean square stability

of the explicit Euler scheme for the nonlinear SDE (2).

3. Solve (2) using the θ-Euler scheme with θ = 1
2 . Investigate the mean square stability of this

numerical scheme when applied to (2).

2 Markov chain Monte Carlo

Problem 5. Read Section 3.3 in the lecture notes, and show that πst and πpt are reversible

for the Markov chains generated by the simulated tempering and parallel tempering algorithms,

respectively. For the case of parallel tempering, consider for simplicity the case where N = 2. In

both cases, assume that the MCMC schemes employed with probability α0, in the notations of the

lecture notes, are such that the associated transition distributions pi(x, y) satisfy detailed balance:

πi(x) pi(x, y) = πi(y) pi(y, x), πi ∝ exp

(
−H(x)

Ti

)
. (3)

Here Ti denote positive constants, called temperatures by analogy with physical systems, and

H(x) denotes a smooth confining potential – a function such that lim|x|→∞H(x) = +∞ and

e−H(x)/T ∈ L1(X) for all T > 0. (This second condition guarantees that e−H(x)/T defines a

probability measure, up to the normalization constant.)

Problem 6 (Metropolis–Hastings). In this question we explore the Metropolis–Hastings algorithm

in a discrete state space.

1. Suppose we wish to sample from the binomial distribution

pk =
n!

k!(n− k)!
pk(1− p)n−k, k ∈ {0, 1, . . . , n},

with parameters n ∈ N and p ∈ (0, 1). Derive an independence sampler using a uniform

distribution on 0, . . . , n as proposal distribution.
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2. The geometric probability distribution is

pk = p(1− p)k−1, k ∈ {1, 2, 3, . . .},

with parameter p ∈ (0, 1). Derive a simple symmetric random walk Metropolis Hastings

algorithm to sample from this distribution.

In both cases implement the samplers in a programming language of your choice (with your chosen

values of p and n), and confirm that they work by comparing the estimated means and variances

with the known theoretical means and variances of these distributions.

Problem 7 (Metropolis-Hastings using deterministic transformations). Suppose we wish to sample

from a distribution π(x). We consider sampling from this distribution using a Metropolis-Hastings

algorithm in which the proposal distribution q(y |x) is an equal mixture of two uniform distribu-

tions, as follows:

q(· |x) =
1

2
U((a− ε)x, (a+ ε)x) +

1

2
U(x/(a+ ε), x/(a− ε),

where a is a constant greater than one, and 0 < ε < a − 1, for x ≥ 0, and analogously (i.e. with

bounds flipped) for x < 0.

1. Derive an expression for the MH acceptance probability for this proposal distribution.

2. Consider the limit of this algorithm as ε→ 0. Describe the resulting algorithm in this limit.

3. For the particular case where π is the following distribution

π(x) =
2

π

1

(1 + x2)2
,

would either of the schemes proposed be efficient for sampling from π?

Problem 8 (Alternative acceptance probabilities). While the Metropolis-Hastings acceptance

probability is by far the most widely used acceptance probability, there are several other choices.

One alternative rule is the Barker rule:

α(x, y) =

(
1 +

π(x)q(y|x)

q(x|y)π(y)

)−1

.

1. Show that the Metropolis Hastings scheme using this acceptance rule is reversible with respect

to π, in the case of a continuous state space.

2. Using a proposal q(·|x) ∼ N (x, δ2), implement the Barker-rule based scheme, as well as a

standard RWMH for a standard Gaussian target distribution π. Plotting the acceptance rate

averaged over time, how do they compare?

3. Compare the performance in terms of effective sample size.

Problem 9. Consider the independence sampler, i.e. of the Metropolis–Hastings algorithm with

proposal q(·|x) = g(·). Show that, if π(x) ≤ M g(x) for some constant M , then the probability of

an acceptance from state x is bounded from below by 1
M .

3



Problem 10 (MALA algorithm and preconditioning). Let π(x), x ∈ Rd be a probability density

function and suppose that we want to calculate the expectation

Eπf =

∫
Rd

f(x)π(x) dx, (4)

where f(x) is an arbitrary function such that Eπf < +∞.

1. Explain how you can use a diffusion process of the form

dXt = ∇ log π(Xt) dt+
√

2 dWt, X0 ∼ ρ0, (5)

where Wt denotes standard Brownian motion on Rd in order to calculate Eπf .

2. Let π(x) be a bivariate normal distribution π ∼ N (µ,Σ), where

µ =

[
3

6

]
, Σ =

[
2 0.5

0.5 1

]
.

(a) Write down π(x), log π(x) and ∇ log π(x).

(b) Use the above calculations to sample from π using the MALA distribution.

(c) Compute an estimator for I = E(f(X)), where X = (X,Y ) ∼ π and f(x) = x3 + y2.

(d) Track the acceptance rate for different time steps δ.
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