
M4A44 Mock Exam

April 16, 2016

Question 1

1. Given α > 0 and λ > 0, consider the truncated exponential distribution

gα,λ(x) =

{
1
Z
e−λx 0 ≤ x ≤ α.

0 otherwise
, (1)

where Z is a normalization constant.

(i) Compute the cumulative distribution function of gα,λ and its inverse.

(ii) Using the inverse transform method, construct a sampler which generates
IID samples of gα,λ given a stream of IID U(0, 1) distribution random
numbers.

2. Suppose we wish to sample from the distribution with density

f(x) = 32
x(1− x)e−4(x−1)

3 + e4

supported on [0, 1].

(i) We wish to implement a rejection sampler for f(x) using a proposal density
h(x) = 1, on [0, 1]. Show that

x1 = arg max
x∈[0,1]

f(x)

h(x)
=

1

4
(3−

√
5).

(ii) Write down the steps of a rejection sampler for f(x) using h(x) = 1.

(iii) Let the random variable Z be the output of the rejection sampler. Show
that Z is distributed according to the density f .

(iv) Suppose instead we use proposal density g1,4, where gα,λ is given by (1).
Show that

x1 = arg max
x∈[0,1]

f(x)

g1,4(x)
=

1

2

(v) Given that f(x1)/h(x1) > f(x2)/g1,4(x2), what does that say about the
relative performance of both rejection samplers?

. . . . . . . . .
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Question 2

Suppose we wish to sample from the distribution with smooth positive density π(x)
on R using MCMC.

1. We want to sample from π(x) using a Metropolis-Hastings algorithms with
proposal

y =
√

1− β2x+ βw, w ∼ N (0, 1),

where β ∈ [0, 1] is a constant.

(i) Describe the steps of a Metropolis-Hastings algorithm using the proposal
q(y |x) to sample from π, giving expressions for the proposal density and
acceptance probability.

(ii) Given a function f ∈ L1(π), describe how to use the above Metropolis-
Hastings algorithm to define an estimator În for I = Eπ[f ], where n ∈ N.

(iii) What does it mean for an estimator În to be (a) unbiased and (b) consis-
tent?

(iv) Show that the estimator În defined above is consistent. Is it unbiased?

2. Consider an MCMC scheme for sampling from π which given Xn = x, a new
state y is proposed according to

y = x+
√
δw, w ∼ N (0, 1),

where δ > 0, and is accepted with probability

α(x, y) =
π(y)

π(x) + π(y)
.

(i) Write down the probability transition function p(x, y) = P [Xn+1 = y |Xn = x]
for the Markov chain defined above.

(ii) What does it mean for π to be reversible with respect to p(x, y)?

(iii) Prove that π is reversible with respect to p(x, y).

. . . . . . . . .

Question 3

1. Give the definition of a continuous time Gaussian process.

2. Give the definition for a continuous time process to be strictly stationary and
weakly stationary.

3. Let X(t) be a Gaussian process with mean µ(t) and covavariance C(s, t), where
0 ≤ s, t ≤ T . Write down an algorithm to generate the sample (X(t1), X(t2), . . . , X(tN)),
for 0 ≤ t1 < t2 < . . . < tN ≤ T .

M4A44



Problem 4 3

4. Suppose we to generateX(tn+1) given that we have already generateX(t0), . . . , X(tn).

(i) Consider

m = (m1,m2) and Σ =

(
σ11 σ12

σ12 σ22

)
,

where Σ is positive definite. Let X = (X1, X2) ∼ N (m,Σ). Show that the
conditional distribution of X2 conditional on X1 is a multivariate normal
with

E[X2 |X1] = m2 +
σ21

σ11

(X1 −m1).

and
Var(X2 |X1) = σ22 −

σ21

σ11

σ12.

(ii) Suppose that X(t) is a Gaussian Markov process. Derive a scheme to
generate samples of X(tn+1) given values X(tn), . . . , X(t0), where 0 ≤
t0 < t1 < . . . < tn < tn+1.

(iii) Apply this method to sample from a Gaussian process mean 0 and covari-
ance C(s, t) = exp(−α|t− s|/2), and show that

X(tn+1) = e−α|tn−tn+1|/2X(tn) +
√

1− e−α|tn−tn+1|w,

where w ∼ N (0, 1).

. . . . . . . . .

Question 4

Consider the following scalar Itô SDE

dXt = b(Xt) dt+
√

(Xt), (2)

where Wt is a standard one-dimensional Brownian motion and b(x) and σ(x) are
smooth, bounded functions.

1. In this question we consider the Euler-Maruyama discretisation for (2).

(i) Derive the Euler-Maruyama discretisation for (2) for approximating X(tn),
where tn = n∆t, n ∈ N.

(ii) Define the strong and weak orders of convergence of a numerical approxi-
mation to (2).

(iii) What are the strong and weak orders of convergence of the Euler-Maruyama
scheme?

2. In this question we derive the Milstein approximation of (2).
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(i) Using the fact that
dW 2

t = 2Wt dWt + dt,

show that ∫ (n+1)∆t

n∆t

Wt dWt =
1

2
(∆W 2

n −∆t),

where ∆Wn = W(n+1)∆t −Wn∆t.

(ii) Derive the Milstein approximation of (2).

(iii) What are the strong and weak orders of convegence of the Milstein scheme?

3. Given θ ∈ [0, 1], consider the θ-Euler Maruyama approximation of (2) given by

Xn+1 = Xn + [(1− θ)b(Xn) + θb(Xn+1)]∆t+ σ(Xn)∆Wn.

(a) Consider the scalar Geometric Brownian motion

dXt = λXt dt+ σXt dWt

(b) Obtain a formula for E|Xt|2, and show that the process Xt is mean square
stable when

2λ+ σ2 < 0.

(c) Write down the θ-Euler Maruyama discretisation Xn of the scalar Geomet-
ric Brownian motion process.

(d) Show that Xn is mean-square stable when

2λ+ σ2 + ∆t(1− 2θ)λ2 < 0.

(e) What happens when θ = 1/2?

. . . . . . . . .
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