M4A44 Mock Exam

April 16, 2016

Question 1

1. Given $\alpha > 0$ and $\lambda > 0$, consider the truncated exponential distribution

$$g_{\alpha,\lambda}(x) = \begin{cases} \frac{1}{Z}e^{-\lambda x} & 0 \le x \le \alpha. \\ 0 & \text{otherwise} \end{cases},$$
(1)

where Z is a normalization constant.

- (i) Compute the cumulative distribution function of $g_{\alpha,\lambda}$ and its inverse.
- (ii) Using the inverse transform method, construct a sampler which generates IID samples of $g_{\alpha,\lambda}$ given a stream of IID U(0,1) distribution random numbers.
- 2. Suppose we wish to sample from the distribution with density

$$f(x) = 32 \frac{x(1-x)e^{-4(x-1)}}{3+e^4}$$

supported on [0, 1].

(i) We wish to implement a rejection sampler for f(x) using a proposal density h(x) = 1, on [0, 1]. Show that

$$x_1 = \arg \max_{x \in [0,1]} \frac{f(x)}{h(x)} = \frac{1}{4}(3 - \sqrt{5}).$$

- (ii) Write down the steps of a rejection sampler for f(x) using h(x) = 1.
- (iii) Let the random variable Z be the output of the rejection sampler. Show that Z is distributed according to the density f.
- (iv) Suppose instead we use proposal density $g_{1,4}$, where $g_{\alpha,\lambda}$ is given by (1). Show that

$$x_1 = \arg \max_{x \in [0,1]} \frac{f(x)}{g_{1,4}(x)} = \frac{1}{2}$$

(v) Given that $f(x_1)/h(x_1) > f(x_2)/g_{1,4}(x_2)$, what does that say about the relative performance of both rejection samplers?

.

Question 2

Suppose we wish to sample from the distribution with smooth positive density $\pi(x)$ on \mathbb{R} using MCMC.

1. We want to sample from $\pi(x)$ using a Metropolis-Hastings algorithms with proposal

$$y = \sqrt{1 - \beta^2 x + \beta w}, \quad w \sim \mathcal{N}(0, 1),$$

where $\beta \in [0, 1]$ is a constant.

- (i) Describe the steps of a Metropolis-Hastings algorithm using the proposal q(y | x) to sample from π , giving expressions for the proposal density and acceptance probability.
- (ii) Given a function $f \in L^1(\pi)$, describe how to use the above Metropolis-Hastings algorithm to define an estimator \hat{I}_n for $I = \mathbb{E}_{\pi}[f]$, where $n \in \mathbb{N}$.
- (iii) What does it mean for an estimator \hat{I}_n to be (a) unbiased and (b) consistent?
- (iv) Show that the estimator \hat{I}_n defined above is consistent. Is it unbiased?
- 2. Consider an MCMC scheme for sampling from π which given $X_n = x$, a new state y is proposed according to

$$y = x + \sqrt{\delta}w, \quad w \sim \mathcal{N}(0, 1),$$

where $\delta > 0$, and is accepted with probability

$$\alpha(x,y) = \frac{\pi(y)}{\pi(x) + \pi(y)}$$

- (i) Write down the probability transition function $p(x, y) = \mathbb{P}[X_{n+1} = y | X_n = x]$ for the Markov chain defined above.
- (ii) What does it mean for π to be reversible with respect to p(x, y)?
- (iii) Prove that π is reversible with respect to p(x, y).

• • • • • • • • •

Question 3

- 1. Give the definition of a continuous time Gaussian process.
- 2. Give the definition for a continuous time process to be strictly stationary and weakly stationary.
- 3. Let X(t) be a Gaussian process with mean $\mu(t)$ and covavariance C(s,t), where $0 \le s, t \le T$. Write down an algorithm to generate the sample $(X(t_1), X(t_2), \ldots, X(t_N))$, for $0 \le t_1 < t_2 < \ldots < t_N \le T$.

- 4. Suppose we to generate $X(t_{n+1})$ given that we have already generate $X(t_0), \ldots, X(t_n)$.
 - (i) Consider

$$\mathbf{m} = (m_1, m_2)$$
 and $\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$,

where Σ is positive definite. Let $\mathbf{X} = (X_1, X_2) \sim \mathcal{N}(\mathbf{m}, \Sigma)$. Show that the conditional distribution of X_2 conditional on X_1 is a multivariate normal with

$$\mathbb{E}[X_2 \mid X_1] = m_2 + \frac{\sigma_{21}}{\sigma_{11}}(X_1 - m_1).$$

and

$$\operatorname{Var}(X_2 \mid X_1) = \sigma_{22} - \frac{\sigma_{21}}{\sigma_{11}} \sigma_{12}.$$

- (ii) Suppose that X(t) is a Gaussian Markov process. Derive a scheme to generate samples of $X(t_{n+1})$ given values $X(t_n), \ldots, X(t_0)$, where $0 \le t_0 < t_1 < \ldots < t_n < t_{n+1}$.
- (iii) Apply this method to sample from a Gaussian process mean 0 and covariance $C(s,t) = \exp(-\alpha |t-s|/2)$, and show that

$$X(t_{n+1}) = e^{-\alpha |t_n - t_{n+1}|/2} X(t_n) + \sqrt{1 - e^{-\alpha |t_n - t_{n+1}|}} w_{t_n}$$

where $w \sim \mathcal{N}(0, 1)$.

• • • • • • • • •

Question 4

Consider the following scalar Itô SDE

$$dX_t = b(X_t) dt + \sqrt{(X_t)}, \tag{2}$$

where W_t is a standard one-dimensional Brownian motion and b(x) and $\sigma(x)$ are smooth, bounded functions.

- 1. In this question we consider the Euler-Maruyama discretisation for (2).
 - (i) Derive the Euler-Maruyama discretisation for (2) for approximating $X(t_n)$, where $t_n = n\Delta t$, $n \in \mathbb{N}$.
 - (ii) Define the strong and weak orders of convergence of a numerical approximation to (2).
 - (iii) What are the strong and weak orders of convergence of the Euler-Maruyama scheme?
- 2. In this question we derive the Milstein approximation of (2).

(i) Using the fact that

$$dW_t^2 = 2W_t \, dW_t + dt.$$

show that

$$\int_{n\Delta t}^{(n+1)\Delta t} W_t \, dW_t = \frac{1}{2} (\Delta W_n^2 - \Delta t),$$

where $\Delta W_n = W_{(n+1)\Delta t} - W_{n\Delta t}$.

- (ii) Derive the Milstein approximation of (2).
- (iii) What are the strong and weak orders of convegence of the Milstein scheme?
- 3. Given $\theta \in [0, 1]$, consider the θ -Euler Maruyama approximation of (2) given by

$$X_{n+1} = X_n + [(1-\theta)b(X_n) + \theta b(X_{n+1})]\Delta t + \sigma(X_n)\Delta W_n.$$

(a) Consider the scalar Geometric Brownian motion

$$dX_t = \lambda X_t \, dt + \sigma X_t \, dW_t$$

(b) Obtain a formula for $\mathbb{E}|X_t|^2$, and show that the process X_t is mean square stable when

$$2\lambda + \sigma^2 < 0.$$

- (c) Write down the θ -Euler Maruyama discretisation X_n of the scalar Geometric Brownian motion process.
- (d) Show that X_n is mean-square stable when

$$2\lambda + \sigma^2 + \Delta t (1 - 2\theta)\lambda^2 < 0.$$

(e) What happens when $\theta = 1/2$?

• • • • • • • • •