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Chapter 1

Introduction

Some motivating examples and questions.

Applied mathematicians have made use of ordinary and partial differential equations to model
dynamic phenomena such as fluid flow, molecular motion, climate dynamics, it has become clear
that introducing randomness into mathematical models of real-world phenonema is an extremely
powerful and useful idea. Noise is introduced into models for a number of reasons. Firstly, it
can be used to reflect uncertainty within the model: for example, parameters within models,
for example material properties, boundary conditions, etc, will never be known exactly, and a
more robust model should be able to reflect this uncertainty. There are numerous other forms of
uncertainty one might wish to incorporate beyond the variability of the parameters. Structural
uncertainty, for example, reflects our ignorance about part of the model, for example, lack of
knowledge of the underlying true physics.

Secondly, noise can be introduced as a means to reduce complexity of a model: if an exist-
ing model is too complex to be studied or simulated, then it is not very useful. In many cases
however, we can replace part of the model with a random noise term which (at least in a statistical
sense) exhibits the same behaviour. Such methods permit us to approximate (in an appropriate
sense) a deterministic, but extremely complex high-dimensional model (which would be impossi-
ble to simulate on a computer) with a tractible low-dimensional model. One particular approach
to model reduction is the Mori-Zwanzig formalism, was originally used to approximate complex
(deterministic) molecular dynamical models by a much simpler Langevin equation (which we
will discuss in Chapter 4).

Certainly, stochastic models have been applied with success to model phenomena arising in
almost every field of science, from the traditional origin of statistical physics, to cell biology,
epidemiology, climate science and medicine, not to mention economics and finance. The objective
of these lecture notes are to understand some of the common computational tasks involved in
the construction, simulation and prediction using these stochastic models. The particular focus
of this course will be on computational problems related to stochastic processes. Stochastic
processes describe dynamical systems whose time evolution is of a probabilistic nature. The
precise definition is given below:

Definition 1.1 (Stochastic process). Let T be a totally-ordered set, pΩ,F ,Pq a probability
space, and pE,Gq a measurable space. A stochastic process is a collection of random variables
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2 Chapter 1 Introduction

X “ tXt ; t P T u such that for each fixed t P T , Xt is a random variable from pΩ,F ,Pq to
pE,Gq. The set Ω is known as the sample space, and E is said to be the state space of the
stochastic process Xt.

The index set T will typically either be T “ Z or T “ N in which case Xt is said to be a
discrete time stochastic process; or T “ R or T “ R` “ tx P R ; x ě 0u in which case Xt is
said to be a continuous time stochastic process. During this course, the state space E will be
either Rn or Z equipped with the Borel σ-algebra, unless otherwise stated.

A stochastic process Xt may be viewed as a function of both t P T and ω P Ω. We some-
times write Xptq, Xpt, ωq or Xtpωq. There are two ways of viewing the stochastic process: If we
fix ω, we can consider the (non-random) map:

tÑ Xpt, ωq P E, for fixed ω P Ω,

i.e. we are looking at the path Xtpωq “: ωptq, i.e. we identify the sample space Ω with the set of
paths from 0 to T . Alternatively, we can fix t and consider the map

ω Ñ Xpt, ωq P E, for fixed t P T,

then this is a random variable, which gives us a snapshot of what is happening (non-deterministically)
to all sample points ω P Ω at a fixed time t. Heuristically, this view corresponds Xt being ob-
tained by performing an experiment at each time t P T , which determines the evolution of the
stochastic process. Although both viewpoints are equivalent, both can useful in different contexts,
as we shall see in the coming chapters.

In this course, we shall primarily be interested in Markov processes. For discrete time pro-
cesses this means that

P rXn “ xn |Xn´1 “ xn´1, . . . , X0 “ x0s “ P rXn “ xn |Xn´1 “ xn´1s .

We shall call such a process a Markov chain. The analogous concept generalised to continuous
time Markov chains naturally. Within this course, we shall only consider very particular type of
continous time process, namely diffusion processes, which are characterised as being the solution
of a stochastic differential equation (SDE) of the form

dXt “ bpXtq dt`
a

2σ2pXtq dWt,

where Wt is a standard Brownian motion. We shall discuss the properties of this process in detail
in Chapter 4.

First, let us introduce some motivating examples and identify some of the computational chal-
lenges we wish to address.

1.1 Motivation 1: Monte Carlo Methods

Typically, we interested in computing expectations of some function f with respect to the
distribution π, i.e.

I “ EX„πrfpXqs “
ż

fpxqπpxq dx.
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Integrals of these forms arise frequently when computing properties of statistical models. For
example, computing probabilities of the form Pra ă Y ă bs can clearly be expressed as the
expectation of an appropriate obserable f . There might be several reasons which such an integral
is impossible to compute directly. For example, suppose the state space is restricted to the unit
square Ω “ r0, 1sd. In this case, one could resort to numerical quadrature to approximate I
to compute the integral directly. For example, using a regular mesh of K ˆ K . . .K points,
using the standard midpoint rule one can show that the error will be OpK´2q (provided f is
smooth). However, the number of evaluations of f and π will be M “ Nd. Thus, in terms of
the computational effort, the error will be O

´

N´
2
d

¯

. While this is fine for moderately high
dimensions, as d increases, the number of evaluations must grow exponentially to maintain the
same error. This problem is known as the curse of dimensionality. There are also other issues
may also make direct approximation of I impossible, for example if we don’t have an explicit or
computable formula for π.

However, if we are able to generate a sequence of iid samples x1, x2, . . . of π, we know from the
law of large numbers that

1

N

N
ÿ

n“1

fpxnq Ñ ErfpXqs “
ż

fpxqπpxq dx, as N Ñ8,

where X „ π. Thus we can approximate the integral I using the approximation

IN “
1

N

N
ÿ

n“1

fpxnq,

knowing that, as N Ñ8, IN converges to I . This is the general idea of Monte-Carlo methods.
In 1996, Alan Sokal wrote:

“Monte Carlo is an extremely bad method; it should be used only when all alternative
methods are worse”.

Why is this so? As we shall see, the rate of convergence is OpN´1{2q, which basically means that

error „
1

?
computational cost

.

When compared to other methods for computing integrals this is horrendous! Indeed, there exist
quadrature schemes which can compute I with error scaling like Opcost´3q or even Ope´costq.
However, as in the previously described example, these methods will all suffer from the curse
of dimensionality, making them infeasible to use in high–dimensions. Monte Carlo methods
however, do not suffer from the curse, and it is in this scenario where a Monte–Carlo method
would have a strong advantage. Molecular dynamics problems, where the number of dimensions
is typically 103 ´ 106 certainly falls into this category, as do many others. In this course we shall
address the following questions:

Generating Random Objects: How do we generate iid samples from π?
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Stopping criteria: How many samples do we need to generate to obtain a sufficiently good
approximation of I?

Performance of MC methods: How do we measure the performance of MC methods, and can
we develop techniques to speed up the convergence of IN to I?

MCMC methods: If we cannot sample from π directly, but have a stochastic process which
has distribution π at equilbrium, can we develop an MC method using this process to
approximate I?

1.2 Motivation 2: Computational Statistical Physics

Consider a microscopic system composed of M particles (typically atoms). The state of the
system is described by the positions of the particles q “ pq1, . . . , qM q P R3M and the associated
momenta p “ pp1, . . . , pM q P R3M . The interactions between the particles are taken into account
through a potential function V which depend only on position. The evolution of an isolated
system is governed by the Hamiltonian dynamics

:qptq “ ´∇V pqptqq. (1.1)

with initial conditions pqp0q, 9qp0qq specified. The Langevin process is a model of a Hamiltonian
system coupled to an infinite reservoir of energy coupled via a thermostat. This model arises
through model reduction of a more complex system, and indeed, can be derived via the Mori-
Zwanzig formalism. The corresponding stochatic equations are given by

:qt “ ´∇V pqtq ´ γ 9qt `
a

2γβ´1 9Wt, (1.2)

where Wt is a 3M–dimensional Brownian motion and β´1 and γ are parameters which char-
acterise the temperature and friction in the model. We will defer the precise interpretation of
equation (1.2) until Chapter 4, and for now, will merely consider (1.2) to describe an ODE subject
to random, Gaussian distributed “kicks” in the momenta. To make sense of this equation, we can
express the Langevin process as a pair of coupled first order SDEs:

dqptq “ pptq dt

dpptq “ ´∇qV pqptqq dt´ γpptq dt`
a

2β´1γ dW ptq.
(1.3)

Another model which is frequently used is the overdamped Langevin equation given by the
solution of the following SDE:

dXt “ ´∇V pXtq dt`
a

2β´1 dWt,

this arises from the Langevin equation (1.2) in the γ Ñ8 limit. To study the dynamics of these
models, clearly we will require some means of simulation of the processes. While it is possible to
obtain explicit expressions for the solution of simple SDEs, in general there will no closed-form
solution. Thus, as we do for ODEs, we typically must resort to numerical approximations to
simulate the process. This motivates the following question:
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Discretisation: Given a step size ∆t ! 1, can we derive numerical discretisations Xpnqq and
pqpnq, ppnqq which provide good approximations to Xn∆t and pqn∆t, p∆tq respectively?
What is the natural sense in which this approximation should hold?

Stability: If we are guaranteed that the process Xt remains finite for all time t ą 0, what
conditions must we assume to ensure that the corresponding discretisation is also stable?

Under appropriate conditions, as t Ñ 8 the distribution of the position process Xt will
approach the Boltzmann distribution

πpxq “
1

Z
e´βV pxq,

where β is the inverse temperature, and Z is the normalisation constant (known as the partition
function), i.e.

Z “

ż

R3M

e´βV pxq dx.

The distribution πpxq thus characterises the fluctuations of the process Xt at equilibrium. Very
frequently, we are only interested in the equilibrium behaviour of the molecular system, and not
the transient behaviour.

Steady-State simulation: How can we generate samples from πpxq? If we use the approxima-
tionXpnq as nÑ8, will the resulting distribution approximate π, or will the discretisation
errors accumulate? If so, can we modify the process Xpnq to ensure that we sample exactly
from π?

1.3 Motivation 3: Inference Problems and Model Fitting

A central problem in statistics is to infer unobserved parameters from a sample of observed data.
In parametric inference, we suppose that θ is the parameter we wish to infer, based on a a random
vector y of observed data, which is assumed to have distribution l py | θq. This distribution is
known as the likelihood and is assumed to be completely known from the model. Our objective
is to find a value of θ which is most compatible with the observed data y. This process is some
times known as model fitting.

One method of inference is known as maximum likelihood estimation (MLE), where the pa-
rameter θ is estimated by θ̂ which is the solution of the following optimisation problem:

θ̂ “ argmax θPΘlpy | θq,

where Θ is the set of admissable values of the unknown parameter. Another approach is based
on Bayes’ rule. In this approach we view θ and y as a coupled pair of random variables. The
likelihood lpy | θq specifies the conditional density of y conditioned on a particular value θ.
Suppose we have an initial prior distribution π0pθq on the unobserved parameter, in which we
encode any prior information we might have about the parameter θ. By Bayes’ rule we know that

πpθ |yq “
l py |θq π0pθq

Prys
. (1.4)
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The probability density πpθ |yq is known as the posterior distribution. As opposed to the
maximum likelihood estimator, this distribution characterises our certainty and uncertainty about
the value of the parameter θ given what we’ve already observed. Indeed, the posterior variance
can be viewed as a measure of certainty on the value of θ, and if the variance is small, this
suggests that the posterior mean might be a good point estimate for θ. A complication arises due
to the denominator

Prys “
ż

Θ
lpy | θqπ0pθq dθ.

This is a high-dimensional integral and is in general difficult to compute. One strategy would
be to choose a prior in such a way that Prys is known. Another alternative is to compromise
between MLE and Bayesian inference, and use a Maximum a posteriori estimator, namely use
the mode of the posterior distribution as a best guess for θ. Since the mode doesn’t depend on
the normalisation constant, then we need not compute Prys. Another possibility is to resort
to Markov-Chain Monte Carlo methods (MCMC), i.e. we will construct a stochastic process
pθnqnPN, whose stationary distribution is equal to πpθ |yq. For n large enough, the distribution
of θn will be very close to the desired distribution. In Section 5 we shall make this more precise.



Chapter 2

Monte Carlo Simulation

Generating uniformly–distributed random numbers, sampling from non-uniform
probability distributions, Estimators and Monte-Carlo mehods, Variance Reduction
Methods for MC simulation.

2.1 Generating Uniform Random Numbers

All the methods that we shall describe within this course inherently assume the availability of a
stream u1, u2, u3 . . . of random numbers which are the realisation of a sequence of independent,
identically random variables which are Up0, 1q–distributed, i.e. having uniform distribution on
p0, 1q. In general, there are two main methods to produce such a stream. The first approach
relies on some physical phenomenon that is expected to be random which can be measured
to obtain a stream of random numbers with a given distribution. One such approach (used by
HotBits service at Fourmilab in Switzerland) involves measuring radioactive decay: the emis-
sion times of particles from a radioative source, measured using a Gieger-Muller tube. The times
between successive decay events are known to be iid exponentially distributed random variables,
which are then transformed to a Up0, 1q–distributed iid sequence. Other approaches which use
a physical source of noise involve measuring atmospheric noise (as is done at Random.org), etc.

The second method involves using a deterministic algorithm which can produce sequences
of numbers which in a statistical sense is very close to being random (i.e. the sequence passes
a stringent number of statistical tests). These pseudo-random number generators (PRNGs) are
the standard way of generating uniform random numbers of computers nowadays. Although
it was not uncommon in the past that software packages would make use of PRNGs with poor
properties, most modern software libraries provide high-quality PRNG routines.

Virtually all pseudo-random number generators can be viewed as a recursive algorithm, for
which, given an initial seed x0, produces a sequence u0, u1, u2, . . . P r0, 1s, constructed by

ui “ gpxiq, where xi “ fpxi´1q, i ě 1.

We note that if we use the same value of x0 in two separate simulations then the PRNG will
produce the same sequence of pseudorandom numbers. In practice the set of possible values of
the pxiqiPN is finite, and thus the PRNG will eventually repeat, i.e. xl`d “ xd for some l. The
smallest value of d for which this occurs is known as the period of the PRNG. Clearly we want
the period to be as long as possible.

7



8 Chapter 2 Monte Carlo Simulation

Example 2.1. A simple example of a PRNG is the linear congruential generator (LCG), defined
by the recurrence relation:

un`1 “
xn`1

M
, where xn`1 “ paxn ` cq mod M.

Clearly, the period of the linear congruential generator is less or equal to M , but will be less in
general, depending on the choice of a and c. The Hull-Dobell theorem provides necessary and
sufficient conditions which a, c and M must satisfy so that the LCG has full period for all seed
values. For example glibc’s rand() implementation uses:

M “ 232 a “ 22695477, and c “ 1.

In practice, the LCG should not be used in Monte–Carlo simulations, as it does not produce
sufficiently independent samples. Most modern software packages make use of high quality
PRNGs such as the Mersenne Twister, which is used by MATLAB, Julia, and GNU-R. For the
remainder of the module we shall assume that we are provided with a sequence of iid uniformly
distributed random numbers, without worrying about their provenance.

2.2 Generating Non–Uniform Random Numbers

Code examples for this section can be found in:
http://nbviewer.jupyter.org/url/dl.dropboxusercontent.com/u/65686487/
workbook1.ipynb

2.2.1 Inverse Transform Method

Suppose now that we wish to produce samples of a random variable X with non-uniform
distribution. For some one–dimensional random variables we can use the inverse transform
method. Indeed, suppose that X has cumulative distribution function F pxq, i.e.

F pxq “ P rX ď xs .

If the cumulative distribution function is strictly increasing and continuous, then define Gpuq “
F´1puq, i.e. x “ Gpuq is the unique solution of F pxq “ u. In the more general scenario (for
example if the distribution has jumps), then we define G to be the following function:

Gpuq :“ inf tx : F pxq ě uu , 0 ă u ă 1.

Then, once again, for 0 ă u ă 1, it follows that F pGpuqq “ u. The inverse transform method
for sampling producing samples of X is then as follows:

The Inverse Transform Method

1. Generate a random number u from Up0, 1q.
2. Compute x “ Gpuq.
3. Take x to be a sample of the random variable X with cdf F .

The reason this approach works follows from the subsequent lemma.

http://nbviewer.jupyter.org/url/dl.dropboxusercontent.com/u/65686487/workbook1.ipynb
http://nbviewer.jupyter.org/url/dl.dropboxusercontent.com/u/65686487/workbook1.ipynb
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Lemma 2.1. If U is a random variable on uniformly distributed on p0, 1q, then the random
variable GpUq has cdf F .

Proof. One can check that,
Gpuq ď x ðñ u ď F pxq.

Let x P R and consider the cdf of GpUq:

P rGpUq ď xs “ P rU ď F pxqs “ F pxq,

since U is uniformly distributed.

Example 2.2. Suppose we wish to sample from an expontential distribution Exppλq with rate λ.
The cdf on r0,8q is given by F pxq “ 1´ e´λx. Applying the inverse transform method it follows
that

X :“ ´
1

λ
logp1´ Uq, U „ Up0, 1q

is Exppλq–distributed. Note that, since 1 ´ U is also Up0, 1q–distributed, we can simply use
X “ ´ 1

λ logpUq.

Exercise 2.1 (Generalized Bernoulli distribution). Suppose X is a discrete valued-random
variable taking values i with probability pi for i “ 1, . . . , k where

řk
i“1 pi “ 1. Use the inverse

transform method to derive an algorithm to sample from this distribution.

Exercise 2.2 (Cauchy Distribution). The standard Cauchy distribution is a continuous probability
distribution having probability density function

fpxq “
1

πp1` x2q
.

It is the distribution of a random variable given by the ratio of two independent standard
Gaussian variables. Use the inverse transform method to derive an algorithm to sample from this
distribution.

Exercise 2.3 (Logistic Distribution). The logistic distribution is a continuous probability distri-
bution whose cumulative distribution function is the logistic function, i.e.

F pxq “
ex

1` ex

Use the inverse transform method to derive an algorithm to sample from this distribution.

2.2.2 Rejection Sampling

Suppose that we wish to generate samples of a random variable X with a known and computable
density fpxq (which still might have a very complicated form). If there is a density gpxq on the
same state space from which we can easily generate samples, and the condition

fpxq ďMgpxq, @x, (2.1)
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Figure 2.1: Target distribution fpxq with proposal distribution gpxq

holds for some constant M ă 8, (see Figure 2.1) then we can use rejection sampling to generate
samples of the density fpxq from a stream of samples of gpxq. The idea is that we generate a
sample x from the proposal density gpxq. Then one acceptsX “ xwith probability fpxq{Mgpxq,
otherwise we reject it and repeat until a sample is finally accepted. The algorithm is given as
follows:

Rejection Sampling Method

1. Generate sample x from density gp¨q and let u „ Up0, 1q.
2. If u ă fpxq

Mgpxq , then accept the sample X “ x and stop.
3. Otherwise, reject the sample and return to step 1.

Remark 2.2. The Rejection Sampling Method can be used to sample from both discrete and
continuous distributions: in the discrete case we replace the pdfs f and g by pmfs.

For the continuous case, we first prove that the samples generated by the rejection algorithm
are distributed according to fpxq.

Lemma 2.3. Let Z be the random variable given by the output of rejection sampling algorithm.
Then Z is distributed according to the density f .

Proof. We shall assume that the state space E is given by p´8,`8q, noting that the result holds
for other domains in a similar manner. Let Y be a random variable having density g.

Denote by A “ 1 the event that the sample with distribution Y was accepted, i.e. the event
U ă fpY q{MgpY q where U „ Up0, 1q, Y „ gp¨q. Then the probability of an acceptance event
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occurring is given by

P rA “ 1s “

ż `8

´8

P rA “ 1 |Y “ ys gpyq dy “

ż `8

´8

gpyq
fpyq

Mgpyq
dy “

1

M

ż `8

´8

fpyq dy “
1

M
,

and moreover, for fixed r P R:

P rY ă r,A “ 1s “

ż r

´8

«

ż fpxq{Mgpxq

0
du

ff

gpxq dx “
1

M

ż r

´8

fpxq dx.

Therefore,

P rZ ď rs “ P rY ď r |A “ 1s “
P rY ď r , A “ 1s

PrA “ 1s
“

ż r

´8

fpxq dx,

so that the random variable Z has the desired density f .

Since f and g are both densities (i.e. integrate to 1), it follows that M ě 1. For the sake of
efficiency we want the rejection algorithm to reject as few samples as possible. From the previous
proof, the acceptance probability is given by PrA “ 1s “ 1

M . Thus on average the rejection
algorithm must generate M proposals to produce a single sample. Thus, for the best performance,
the bound M must be chosen as close to 1 as possible, in particular g should as close to f as
possible.

Example 2.3 (Sampling from the Gamma distribution). The gamma distribution of order k P N,
k ą 0, is the waiting time of the kth event in a Poisson random process of unit mean. When
k “ 1 it is the waiting time for the first event, i.e. just an exponential distribution. The gamma
distribution has probability density

fpxq “
xa´1e´x

Γpaq
, x ą 0.

To sample from this distribution we can use rejection sampling using a Cauchy distribution as
proposal. We first need to establish condition (2.1). Computing the ratio of fpxq{gpxq for a ą 1:

fpxq{gpxq “
π

Γpaq
xa´1p1` x2qe´x

“
π

Γpaq

´

e´x`pa´1q logpxq ` e´x`pa`1q logpxq
¯

The term pa ´ 1q logpxq ´ x attains its maximum when x “ a ´ 1 and similarly the term
pa` 1q logpxq ´ x attains it maximum when x “ a` 1, so we can bound both terms above by:

fpxq{gpxq ď
π

Γpaq

´

pa´ 1qpa´1qe´pa´1qπ ` πpa` 1qa`1e´pa`1q
¯

“: M.

As aÑ8, the value of M behaves like a3{2 (exercise), so that the performance of the rejection
sampler becomes poor for large a. Indeed, this is an extremely poor choice of proposal density!
In the exercise sheets we shall carefully investigate a much more reasonable choice for g.
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However, a rejection algorithm based on the above example would have a problem: if a P N
then Γpaq “ pa ´ 1q! which we can compute exactly, but if a R N, then we must resort to
computing integrals to approximate this special function. If possible we should avoid computing
the normalisation constant entirely.

Indeed, in many cases arising in applications, one does not know the normalising constant
of the target density f , i.e.

ş8

´8
fpxq dx “ Z ‰ 1. Similarly, even though one might be able to

generate samples with distribution g, the normalisation constant needn’t be known. In this case,
we can still apply rejection sampling. Indeed, suppose

ż 8

´8

fpxq dx “ Z and
ż 8

´8

gpxq dx “ Z 1,

and
fpxq ďMgpxq, x P R. (2.2)

If f̃pxq and g̃pxq are the corresponding normalisation distributions, then (2.2) is equivalent to

f̃pxq “
fpxq

Z
ďM 1 gpxq

Z 1
“M 1g̃pxq, x P R,

where M 1 “ Z1M
Z . In particular, if we implement a rejection sampling algorithm for f̃ using g̃ as

proposal, then the accept/reject condition for accepting a sample x „ g is given by

u ď
f̃pxq

M 1g̃pxq
, where u „ Up0, 1q.

From the definition of M 1, f̃ and g̃ this is equivalent to

u ď
fpxq

Mgpxq
, where u „ Up0, 1q.

The implication of this is that we can safely ignore the normalising constant from the start:
accepting a sample with probability fpxq{Mgpxq is equivalent to f̃pxq{M 1g̃pxq. In this case, the
probability of accepting a proposal is Z{MZ 1.

Exercise 2.4. Repeat the above exercise using unnormalised densities.

Exercise 2.5 (Generating Gaussians using Rejection Sampling). Using the Cauchy distribution as
proposal, use the rejection algorithm to generate samples from the standard Gaussian distribution
fpxq “ e´x

2{2{
?

2π. Would it be possible to work the other way round, i.e., use rejection
sampling to produce Cauchy distributed draws from using a Gaussian proposal distribution?

2.2.3 Sampling from Gaussian distributions

Ideally we would like to sample from the Gaussian distribution using the inverse tranform method,
however there is no closed form formula for the cdf 1?

2π

şx
´8

e´y
2{2 dy. One possible approach

outlined in Exercise 2.5 suggests using a rejection sampler with a Cauchy proposal distribution.
However, it turns out that by applying a clever transformation, one can directly obtain a pair of
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iid standard Gaussian random variables from a pair of independent U r0, 1s–distributed RVs.

One such method is the Box-Muller algorithm, which is based on the observation that a pair
pX,Y q of independent standard normals will have pdf:

fpx, yq “
1
?

2π
e´x

2{2 1
?

2π
e´y

2{2 “
1

2π
e´px

2`y2q{2.

Consider the random variables pR,Θq where R ą 0 and 0 ď Θ ă 2π such that

pX,Y q “ RpcospΘq, sinpΘqq,

which correspond to a polar coordinate representation of pX,Y q. Clearly, since the pX,Y q is
rotationally symmetric around the origin, the variable Θ is uniformly distributed on r0, 2πs. So
we can write Θ “ 2πU1, where U1 „ U r0, 1s. Moreover, the cdf ofR can be computed explicitly
as:

P rR ď rs “
1

2π

ż r

0

ż 2π

0
e´r

12{2r1 dr1 dθ “

ż r

0
e´r

12{2r1 dr1 “ 1´ e´r
2{2.

The function F prq “ 1´ e´r
2{2, r ą 0 can be easily inverted. Indeed, we can use the inverse

transform method to generate samples of R as follows

R “
a

´2 logpU2q, U2 „ U r0, 1s.

Thus we can produce two independent standard normals X and Y as follows:

X “
a

´2 logpU2q cosp2πU1q, Y “
a

´2 logpU2q sinp2πU1q, (2.3)

where U1 and U2 are iid U r0, 1s rvs. The actual verification of this fact is left as an easy exercise.

Exercise 2.6. Show that the coupled random variables pX,Y q as defined in (2.3) have the correct
distribution.

Proof. First we note that if

x “
a

´2 logpu2q cosp2πu1q, y “
a

´2 logpu2q sinp2πu1q,

then

u1 “ e´px
2`y2q{2 and u2 “

1

2π
tan´1py{xq.

Denote by fX,Y px, yq the joint density of the random vector pX,Y q,

fX,Y px, yq “
1

2π

ˇ

ˇ

ˇ

ˇ

Bpu1, u2q

Bpx, yq

ˇ

ˇ

ˇ

ˇ

,

so that
fX,Y px, yq “

1

2π
e´px

2`y2q{2



14 Chapter 2 Monte Carlo Simulation

Once we can generate N p0, 1q–randomly distributed rvs, it is straightfoward to generate
N pµ, σ2q–distributed numbers by applying the transformation

µ` σZ, Z „ N p0, 1q.

(Exercise: Prove this!) While the Box-Muller algorithm is a perfectly good method to sample
from a Gaussian distribution, in practice it is quite slow, due to the fact that we have to compute
sin, cos and log functions Most software libraries provide access to highly-optimized routines for
generating Gaussian distributed random numbers. Perhaps surprisingly, a common method for
generating Gaussians is using the inversion method! Even though, the CDF of a Gaussian doesn’t
have a closed form inverse, one can approximate it using a high-order polynomial (typically
quintic) and inverse that instead. Another method used nowadays is the Ziggurat algorithm,
which is a class of rejection sampling. This algorithm is beyond the scope of the course, and
the curious reader is invited to consult the paper The Ziggurat Method for Generating Random
Variables by Marsaglia and Tsang.

2.2.4 Multivariate Gaussian Distributions

Let us recall the definition of a Multivariate Gaussian distribution. Let m P Rn and Σ P Rnˆn be
symmetric and positive definite. The random variable X : Ω ÞÑ Rn with pdf

γΣ,mpxq :“ pp2πqndetΣq´
1
2 exp

ˆ

´
1

2

@

Σ´1px´mq, px´mq
D

˙

(2.4)

is termed a multivariate Gaussian or normal random variable. The mean is

EpXq “ m,

and the covariance matrix is

E
´

pX ´mq b pX ´mq
¯

“ Σ,

where x¨, ¨y denotes the standard Euclidean inner product, and pA b Bqi,j “ AiBj , for i, j P
t1, . . . , nu. Since the mean and variance specify completely a Gaussian random variable on Rn,
the Gaussian is commonly denoted by N pm,Σq.

As in the univariate case, we can obtain a random variable X with distribution N pm,Σq from a
N p0, Iq–distributed rv Y via a transformation.

Lemma 2.4. Let Y „ N p0, Inˆnq, i.e.

Y1, . . . , Yn „ N p0, 1q iid.

Let C be a real matrix such that CCJ “ Σ and define

X “ m` CY,

them X „ N pm,Σq.
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Proof. The density of Y is given by

fY pyq “
1

p2πqn{2
exp

ˆ

´
1

2
xy, yy

˙

.

The joint density of the new variables is

fXpxq “ fY pypxqq |Jpxq| ,

where Jpxq denotes the Jacobian matrix of partial derivatives pByi{Bxjqi,j and where, in coordi-
nate form

xi “ mi `

n
ÿ

j“1

Cijyj , i “ 1, . . . , n.

Then Jpxq “ C´1, and

|CCJ| “ detpCCJq “ detpCqdetpCJq “ detpΣq,

thus |C´1| “ |Σ|´1{2. Moreover,

xy, yy “ xpx´mq,Σ´1px´mqy.

The result then follows from the definition of N pm,Σq given by (2.4).

As a particular example, consider the two dimensional case. Suppose we wish to generate a
sample of a pair of standard Gaussian random variables with correlation ρ, i.e. we want

pX,Y q „ N p0,Σq,

where

Σ “

ˆ

1 ρ
ρ 1

˙

,

It is straightforward to check that for

C “

ˆ

1 0

ρ
a

1´ ρ2

˙

,

we have CCJ “ Σ, so that we can simulate pX,Y q „ N p0,Σq by generating pX1, X2q „

N p0, Iq and then setting pX,Y qJ “ CpX1, X2q
J, i.e.

X “ X1, Y “ ρX1 `
a

1´ ρ2X2.

Exercise 2.7. Suppose we wish to sample a pair of Gaussian random variables X1, X2 having
means µi, variances σ2

i and correlation ρ. By assuming that the Cholesky decomposition of the
covariance matrix is of the form

C “

ˆ

a11 0
a21 a22

˙

,

find expressions for a11, a21 and a22 and solve them to generate samples from X1, X2.
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More generally, a natural choice for C is the matrix square root of Σ, i.e. the nonnegative
(symmetric) square root of Σ. One possible way of computing this is via diagonalisation, i.e. we
diagonalise Σ

Σ “ BDBJ,

for an orthogonal matrix B and where D “ diag pλ1, . . . , λnq. Note that since Σ is symmetric
and positive definite, then λi ě 0, for i “ 1, . . . , n. Then we can write the square root of C as

C “ B
?
DBJ,

where D “ diag
´

λ
1{2
1 , . . . , λ

1{2
n

¯

. An alternative computationally simpler approach is to use the
Cholesky decomposition. Given a symmetric, positive definite matrix Σ, this algorithm produces
a lower triangular matrix L such that

LLJ “ Σ.

While the Cholesky decomposition is convenient and many efficient implementations exist, the
computational cost of the factorisation is Opn3q, which is prohibitive when n is large. On the
other hand, when computing large stream of iid samples from N pm,Σq it is only necessary to
compute the Cholesky decomposition once at the beginning.

2.3 Monte Carlo Simulation

As we described in the introduction, given a random variable X with density p, our objective is
to estimate expectations of the form

I “ E rfpXqs “
ż

fpxqppxq dx.

The Monte Carlo approach assumes we can produce a sequence x1, x2, . . . , of independent
samples with distribution p, we then approximate I using

În :“
1

n

n
ÿ

i“1

fpxiq.

Example 2.4. As a toy example, we shall approximate π using Monte Carlo Methods. Consider
a 2ˆ 2 square B Ă R2 with an inscribed circle C of radius 1, see Figure 2.2. Clearly

π

4
“

ş ş

C dx1dx2
ş ş

B dx1dx2
“ E r1CpXqs ,

where X is uniformly distributed on B, and

1Cpxq “

#

1 if x P C,
0 otherwise

.

To sample uniformly on B, we generate u1, u2 „ U r0, 1s and then use X “ px1, x2q where

x1 “ 2u1 ´ 1 and x2 “ 2u2 ´ 1. (2.5)
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This results in a sequence tXiuiPN of samples. The Monte Carlo estimator to compute E r1CpXqs
is then given by

În “
1

n

n
ÿ

k“1

1CpXkq.

Figure 2.2: Monte Carlo Method to approximate π

Figure 2.3: Plot of the family of estimators În over n “ 1, . . . N .

Exercise 2.8. Show that one can instead use E rfpU1, U2qs, where U1, U2 „ Up0, 1q and

fpu1, u2q “ 1tu2
1 ` u

2
2 ď 1u,
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Figure 2.4: Plot of a single Monte Carlo estimator În over larger numbers of steps.

to approximate π
4 .

The quantity În is known as an estimator, i.e. a quantity obtained from a sequence of observed
data used to approximate a quantity of interest. In our case, the observed data is the set of samples
x1, . . . , xn, while the quantity of interest is E rfpXqs. Before we study the properties of În let us
recall the following important limit theorems for iid sequences of random variables.

Theorem 2.5 (Strong Law of Large Numbers). Let tZiuiPN be a sequence of iid integrable
random variables with EpZiq “ µ and consider

Sn :“
1

n

n
ÿ

i“1

Zi.

Then Sn converges to µ almost surely, that is,

P
´

lim
nÑ8

Sn “ µ
¯

“ 1.

The strong law of large numbers provides us with information about the behavior of a sum of
random variables (or a large number or repetitions of the same experiment) on average. While
Sn converges almost surely to the expected value, this estimate will possess fluctuations around
the average value. The central limit theorem allows us to quantify the fluctuations of this finite
average around the mean. For the purposes of this module, we only state it in the one–dimensional
case.

Theorem 2.6 (Central Limit Theorem). Let tZiuiPN be a sequence of iid, square integrable1

random variables with EpZiq “ µ and V arpZiq “ σ2. Then

?
npSn ´ µq

d
ÝÑ N p0, σ2q.

1a rv Z is square integrable if E|Z|2 ă 8



2.3 Monte Carlo Simulation 19

i.e.

lim
nÑ8

P
ˆ

a ă

řn
i“1 Zi ´ nµ

σ
?
n

ă b

˙

“
1
?

2π

ż b

a
e´

x2

2 dx, @a ď b P R.

Both the law of large numbers and the central limit theorem have been studied in great
generality, and the assumptions of the random variables being iid can be relaxed considerably.

Given the above two results we can now study the properties of the estimator În in more
detail. First we make the following definitions:

Definition 2.1. A family of estimators pθ̂nqnPN for θ is said to be

1. unbiased if
Erθ̂ns “ θ, @n P N;

2. asymptotically unbiased if
Erθ̂ns Ñ θ, as nÑ8;

3. weakly consistent if
lim
nÑ8

θ̂n “ θ, in probability,

i.e. for all a ą 0

P
”
ˇ

ˇ

ˇ
θ̂n ´ θ

ˇ

ˇ

ˇ
ą a

ı

Ñ 0, as nÑ8.

4. is strongly consistent if
lim
nÑ8

θ̂n “ θ, almost surely;

5. and is asymptotically normal if

?
n
´

θ̂n ´ θ
¯

d
ÝÑ N p0, σ2q, as nÑ8.

Clearly, if θ̂ is unbiased then it is asymptotically unbiased, and moreover if θ̂ is strongly
consistency then it is also weak consistency. We now demonstrate that all these properties hold
for the estimator Monte Carlo estimator În for I

Proposition 2.7. Assume that I “ ErfpXqs exists. Then În is an unbiased, strongly consistent
estimator for I .

Proof. Clearly

E
”

În

ı

“ E

«

1

n

n
ÿ

i“1

fpXiq

ff

“
1

n

n
ÿ

i“1

E rfpXiqs “ E rfpXqs “ I,

so that În is unbiased. The strong consistency is a consequence of the law of large numbers
applied to Zi “ fpXiq, which is applicable as ErfpXqs is assumed to exist.
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Although it already follows from the previous result, it is quite straightforward to directly
prove weak consistency of În, as this is left as an exercise. While consistency guarantees that În
will converge to the correct value as nÑ8, in practice we will only compute În for some finite
(but large) value of n. It is therefore important to have some quantitative measurements of the
fluctuations of În around I for large n. This is one of the benefits of knowing that the estimator
is asymptotically normal. We shall prove that În is asymptotically normal using central limit
theorem.

[Typo fixed here]

Proposition 2.8. Assume that E rfpXqs and σ2 “ Var rfpXqs exist, then

Var
”

În

ı

“
σ2

n
,

and
În ´ I

σ{
?
n

d
ÝÑ N p0, 1q, as nÑ8, (2.6)

where d
ÝÑ denotes convergence in distribution. In particular, În is asymptotically normal.

Proof. Using the fact that the Xi are iid:

Var
”

În

ı

“

n
ÿ

i“1

Var
„

fpXiq

n



“

n
ÿ

i“1

Var rfpXiqs

n2
“
σ2

n
.

We now apply the CLT, with Zi “ fpXiq, and µ “ I to obtain (2.6).

Proposition 2.8 provides us with a means to quantify how good an estimate În is of I .
Applying Chebychev’s inequality directly we obtain the bound

P
„

ˇ

ˇ

ˇ
În ´ I

ˇ

ˇ

ˇ
ą a

σ
?
n



ď

Var
”

În

ı

a2σ2{n
“

1

a2
.

While this bound is rigorous and holds uniformly over n, it is not useful in practice as it is very
course. Of course, if one knows some special property about the distribution of X , then one can
derive tighter inequalities than those obtained via Chebychev’s inequality.

Fortunately, in the large n limit we can obtain a much tighter bound on the error, which holds
only in an asymptotic sense (i.e. for n sufficiently large):

În ´ I

σ{
?
n
« N p0, 1q,

which implies that

P
ˆ

ˇ

ˇ

ˇ
În ´ I

ˇ

ˇ

ˇ
ą a

σ
?
n

˙

« 2 p1´ Φpaqq ,
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where Φp¨q denotes the cdf of a standard Gaussian distribution. Thus, for a p1 ´ αq100%
confidence interval for I , we choose c “ cα such that 2p1´ Φpcαqq “ α, so that

ˆ

În ´ cα
σ
?
n
, În ` cα

σ
?
n

˙

, (2.7)

is a p1´ αq100% confidence interval for I .

To use (2.7) in practice, we would need to know the value of σ which is the standard devi-
ation of fpXq. In general, we will not have a closed form expression for this. Instead, we would
make use of an estimator σ̂npfq, given by

σ̂2
npfq “

1

n´ 1

n
ÿ

i“1

´

fpXiq ´ În

¯2
,

and then use
ˆ

În ´ cα
σ̂n
?
n
, În ` cα

σ̂n
?
n

˙

, (2.8)

as approximate p1´ αq100% confidence intervals for I .

Exercise 2.9. Show that σ̂n is an unbiased estimator for σ2.

These confidence intervals give us a means of estimating how many samples xi we need
to generate before the estimator În is within a specific tolerance of I . The salient point is the
following: regardless of the dimension of the state space, i.e. if Ω “ R or if the state space is
Ω “ R1000, the rate of convergence is still σ{

?
n, which roughly speaking, means that

error „
1

?
cost

.

Based on this apparent independence of the error on dimension, many would claim that Monte
Carlo methods beat the curse of dimensionality. There is slightly more to the story however, since
σ can depend on dimension, sometimes very badly.

The interval estimator (2.8) provides us with a practical stopping criterion to stop an MC
simulation (this will be further explored in the code examples). Note that, however, the confi-
dence intervals make use of the central limit theorem, and thus, (2.8) should only considered
valid in the large n limit.

2.4 Variance Reduction techniques MC Simulation

From (2.7) is it clear that, for standard MC simulations, the performance (i.e. the number of
samples required to approximate I within a given tolerance) depends strongly on σ2. More
generally, a natural way to measure the accuracy of an estimator is via the mean squared error,
MSE:

MSEpθ̂nq “ E
”

pθ̂n ´ θq
2
ı

.
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In general, the MSE can be decomposed as follows:

E
”

pθ̂n ´ θq
2
ı

“ E
”

pθ̂n ´ Eθ̂n ` Eθ̂n ´ θq2
ı

“

´

Eθ̂n ´ θ
¯2
` E

´

θn ´ Eθ̂n
¯2

“ B2
n ` Vn,

where Bn “ Eθ̂n ´ θ is the bias of the estimator θ̂n and Vn “ Varrθ̂ns is the variance of the
estimator. To compute the MSE for the standard MC estimator

În “
1

n

n
ÿ

i“1

fpxiq,

for I “ ErfpXq, we first note that since În is unbiased, Bn “ 0 for all n. Moreover the variance
satisfies

Vn “
VarrfpXqs

n
.

Therefore

MSEpθ̂nq “
VarrfpXqs

n
“
σ2

n
,

which is consistent with the error estimator obtained via the CLT in (2.7).

The performance of MC simulation is strongly dependent on the variance of the estimator.
In some situations, this can be huge (this will be explored in worksheets), which means that
prohibitively many samples would be required to approximate I within a given tolerance. This
has motivated the study of variance reduction methods which modify the standard estimator
În to reduce the variance (and thus the MSE). We shall discuss a number of standard variance
reduction approaches here.

2.4.1 Control Variates

Suppose we wish to compute I “ ErZs. In our case, Z “ fpXq. suppose we can find a random
variable W (known as a control variate) with known expectation ErW s. Then, for some constant
α, let

Y “ Z ` αpW ´ ErW sq.

Clearly, ErY s “ ErZs ` αE pW ´ ErW sq “ ErZs. The variance however, is given by

Var rY s “ VarrZs ` α2VarrW s ` 2αCov rZ,W s .

We want to choose α so that VarrY s is as small as possible. Clearly, this happens when

α “ ´
Cov[Z, W]

VarrW s
,

and the minimum variance is then given by

VarrZs ´
pCovrZ,W sq2

VarrW s
,
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which is always less that VarrZs. Thus no matter how we choose W , there will always be a
reduction in variance provided we choose the correct value of α.

Suppose we wish to use Monte-Carlo simulation to approximate ErfpXqs for some rv X . A
suitable control variate for Z is then W “ gpXq where ErW s is known, and ideally, f is close to
g. When then apply standard MC simulation to estimate

I “ ErhpXqs, where hpxq “ fpxq ` α pgpxq ´ Ergsq ,

where α is chosen as above. The MSE of the modified estimator În will then be σ2
h{n, where

σ2
h “ σ2

f ´
CovrfpXq, gpXqs2

VarrgpXqs
.

In practice, the optimal constant α is not computable. Instead, we approximate it via an estimator
based on empirical values:

α̂ “
Ĉf,g

Ĉg,g
,

where

Ĉf,g :“
1

n´ 1

N
ÿ

n“1

´

fpxiq ´ Îf

¯´

gpxiq ´ Îg

¯

,

and

Ĉg,g :“
1

n´ 1

n
ÿ

i“1

´

gpxiq ´ Îg

¯2
,

and where Îf and Îg are the sample averages:

Îf :“
1

n

n
ÿ

i“1

fpxiq and Îg :“
1

n

n
ÿ

i“1

gpxiq.

We can extend the approach to multiple control variates. In this case, we would consider a
modified random variable for the form

Y “ Z `
M
ÿ

i“1

αipWi ´ ErWisq.

One obtains an expression for the optimal αi in a similar manner.

Example 2.5. Consider a variance reduction scheme using multiple control variates, namely we
construct an unbiased estimator of I by computing the expectation of

Y “ Z ` α1pW1 ´ ErW1sq ` . . .` αmpWm ´ ErWmsq,
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where each αi P R. Clearly, ErY s “ ErZs “ I . Our objective is to choose α1, . . . , αm so
that the variance of the estimator based on Y is smaller than the variance of that using Z. The
variance of Y is given by

VarrY s “ VarrZs ` 2
m
ÿ

i“1

αiCov rZ,Wis `

m
ÿ

i“1

m
ÿ

i“1

αiαjCov pWi,Wjq .

By taking the derivatives with respect to α “ pα1, . . . , αmq, it is straightforward that the minimum
variance is attained by the solution to the linear equation

Mα “ F,

where Mi,j “ CovrWi,Wjs and Fi “ CovrZ,Wis, for i “ 1, . . . ,m and j “ 1, . . . ,m. As
before, we will not know the coefficients of the matrix M or the vector F analytically, and
one must perform simulation runs to approximate these values. However, a convenient way
of estimating the optimal coefficients α, is to observe that αopt “ ´βopt, where βopt is the
(least-squares) solution to the following linear regression:

Z “ a` β1W1 ` β2W2 ` . . .` βmWm ` ε,

where ε is an error term. Many software packages provide commands to automatically output the
values of b. For example in MATLAB there is the regress command, and lm in GNU-R and
glm in Julia.

2.4.2 Variance Reduction by Conditioning

Once again, suppose we wish to estimate ErZs for some random variable Z. Clearly, if Zc “
ErZ |W s for some random variable W , then

ErZcs “ ErZs.

To compute the variance of the random variable Zc we use the law of total variance

Lemma 2.9. Let X and Y be random variables such that variance of Y is finite, then

Var rY s “ EX rVarrY |Xss ` VarX pE rY |Xsq .

Proof.

VarrY s “ ErY 2s ´ pErY sq2

“ E
“

ErY 2 |Xs
‰

´ pE rErY |Xssq2 ,

using the law of total expectation. Now

E
“

ErY 2 |Xs
‰

“ E
”

VarrY |Xs ` pE rY |Xsq2
ı

.

and using the fact that

Var rErY |Xss “ E rErY |Xs2s ´ pErE rY |Xssq2 ,

then the result follows.
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Applying the above lemma with Y “ Z and X “W we obtain:

VarrZs “ VarpEpZ |W qq ` E pVar rZ |W sq

“ VarpZcq ` E pVar rZ |W sq ě VarpZcq,

Thus by conditioning Z with respect to any random variable W we always get a reduction in
variance. This motivates the idea of carefully choosing W so that the conditional expectation is
a) Computable b) gives a signficant variance reduction.

Example 2.6. Consider the problem of approximating π, via monte carlo integration, using
ErZs, where Z “ fpU1, U2q with

fpu1, u2q “ 41tpu2
1 ` u

2
2 ă 1uq,

and where U1, U2 „ Up0, 1q. Take

Zc “ ErZ |U1s “ 4P
`

U2
2 ă 1´ U2

1 |U1

˘

“ 4
b

1´ U2
1 .

We’ll approximate the reduction of variance using this estimator in the worksheets.

Example 2.7. Conditioning is particularly useful when we the underlying random model has
some natural hierarchical structure. Take this very simple case where

Y „ Expp1q and given Y “ y,X “ N py, 4q.

Our objective is to compute the probality of the event X ą 1, i.e. p “ PrX ą 1s. Using standard
MC simulation, we’d generate an iid sequence tuiuiě1 with distribution Up0, 1q and tziuigeq1
with distribution N p0, 1q and calculate the proportion of times that

xi “ 2zi ´ logpuiq ą 1.

To apply conditioning we write down p as an integral:

p “

ż 8

0

˜

ż 8

1

e´px´yq
2{p2¨4q

2
?

2π
dx

¸

e´y dy

“

ż 8

0

˜

ż 8

p1´yq{2

e´z
2{2

?
2π

dz

¸

e´y dy

“

ż 8

0
p1´ Φpp1´ yq{2qqe´y dy,

where Φp¨q is the cdf of N p0, 1q. Therefore

PrX ą 1 |Y “ ys “ P
„

Z ą
1´ y

2



“ 1´ Φpp1´ yq{2q.

The conditioned Monte Carlo scheme would then be as follows:

1. Let tuiu be iid Up0, 1q sequence, and set yi “ ´ logpuiq.
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2. Compute Îcn “
1
n

řn
i“1wi, where

wi “ 1´ Φ

ˆ

1´ yi
2

˙

, i “ 1, . . . , n.

As we shall see in the worksheets, by using conditioning we obtain a reduction in variance by a
factor of 10, and by introducing a further trick, we can obtain a variance reduction to the order
of 100.

2.4.3 Importance Sampling

Suppose we want to compute I “ E rfpXqs where f is an observable which is nearly zero
outside a region A, such that PpX P Aq is small. It can be that the region A has small volume,
or it may be that A lies in the tail of the distribution of X . Either way, using a “vanilla” Monte
Carlo simulation to generate samples of X will only rarely produce samples in the set A, and an
exhorbitant number of samples must be generated before the estimator În starts to approximate I
by a reasonable tolerance.

Intuitively if we can somehow reweight the samples we generate in such a way that samples are
generated more frequently within A, while still computing the corrected expected value I , then
we would be able to drastically improve performance. This is the main idea behind importance
sampling: we modify our distribution to oversample from the “important” region A, and then we
somehow adjust their relative contribution in the sample average n´1

řn
i“1 fpXiq so as to obtain

the correct expectation. Importance sampling can bring enourmous gains, making an otherwise
infeasible problem amenable to standard Monte Carlo. On the other hand, when used poorly it
can yield estimators which have infinite variance, whereas a vanilla Monte Carlo scheme would
have had finite variance.

We should note that importance sampling is more than just a variance reduction method, it
is a new sampling scheme in its own right, as it allows us to generate samples of one distribution
given that we can sample from another.

Basic Importance Sampling

We shall present the idea on R, nothing that it holds similarly for more general domains. Suppose
that X has positive density ppxq on Rd, so that I “

ş

fpxqppxq dx. Suppose that q is another
probability density function on R, then we can write

I “

ż

fpxqppxq dx “

ż

fpxqppxq

qpxq
qpxq dx “ E rfpY qwpY qs ,

where wpxq “ ppxq{qpxq and Y „ qp¨q. Our original goal was to compute the expectation of
f with respect to X . Instead we compute the expectation of f with respect to Y , and made
an adjustment wpxq, known as a likelihood ratio to compensate for sampling from q instead
of p. The distribution q is the importance distribution and p is the nominal distribution. The
importance distribution q doesn’t need to be positive everywhere, for the above expectation to be
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finite, we merely require that qpxq ą 0 whenever fpxqppxq ‰ 0.

The importance sampling estimator for I “ E rfpXqs is

Îisn “
1

n

n
ÿ

i“1

fpXiqppXiq

qpXiq
, Xi „ q. (2.9)

Note that the estimator needn’t have lower variance than the original MC estimator. Indeed,
it is possible that În has finite variance, while Îisn has infinite variance! The following result
characterises the variance of the IS estimator:

Proposition 2.10. Suppose that qpxq ą 0 whenever fpxqppxq ‰ 0 and let Îisn be given by (2.9).
Then ErÎisn s “ I and VarpÎisn q “ σ2

q{n where

σ2
q “

ż

pfpxqppxqq2

qpxq
dx´ I2 “

ż

pfpxqppxq ´ Iqpxqq2

qpxq
dx. (2.10)

Proof. That ErÎisn s “ I follows from the discussion above. The expression for σ2
q in (2.10) is

left as an easy exercise.

We note that it is not apriori true that σ2
q is finite! Indeed, it is possible that σ2 ă 8 while σ2

q

is infinite, which suggests a poor choice of qpxq. Either way, this should be checked for every
case. Equation (2.10) illustrates how importance sampling can succeed or fail. The numerator of
the second integrand is small when fpxqppxq ´ Iqpxq is close to zero, i.e. when qpxq is nearly
proportional to fpxqppxq. From the denominator, we see that in regions where qpxq is small, this
lack of proportionality is greatly magnified.

So what would be the optimal choice for q?

Proposition 2.11. The density q˚ that minimises the variance σq is

q˚pxq “
|fpxq|ppxq

ş

|fpyq|ppyq dy
,

In particular, if f ě 0, then σq “ 0, so that q˚pxq is a zero variance estimator.

Proof. By the previous lemma, the variance is minimised if and only if
ż

fpxq2ppxq2

qpxq
dx,

is minimised. We have for any density q:
ż

fpxq2ppxq2

qpxq
dx “

ż

fpxq2ppxq2

qpxq2
qpxq dx

“ EY„q
„

fpxq2ppxq2

qpxq2



ě

ˆ

EY„q
„

fpxq2ppxq

qpxq

˙2

,
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by Jensens inequality. Now since

ˆ

EY„q
„

fpxq2ppxq

qpxq

˙2

“

ˆ
ż

|fpxq|ppxq dx

˙2

,

this implies that for any density q we have

VarrIisn pqqs ě
1

n

˜

ˆ
ż

|fpxq|ppxq dx

˙2

´ I2

¸

.

Plugging in q “ q˚ we see that this inequality is attained for q “ q˚, so that the result follows.

For f ě 0, it follows that |fpxq| “ fpxq so that the variance reduces to zero.

The previous result gives us a zero–variance estimator, at least for non-negative f . Of course,
this is useless in practice, since we would need to compute I to be able to compute q˚pxq,
however, it provides insight as to what a good choice for q shuold be. Intuitively, it is best for q
to have mass (i.e. peaks in the density) wherever, fp does. In general, choosing such a q requires
experience and/or numerical experiment.

Expontential Tilting

A common way of generating an importance distribution q from the original density p is to use
the moment generating function (MGF) of p (assuming it is finite). Denote by Mpptq the MGF of
p given by

Mpptq “ E
“

etX
‰

, X „ p.

We consider the tilted density of p given by

qpxq “
ppxqetx

Mpptq
,

for ´8 ă t ă 8. Here we assume a priori that it exists. If we want to sample more often from a
region where X is typically large, we might want to use a tilted density with t ą 0 as a candidate
for q. Similarly if we want to sample more often from the region where X tends to be small, then
we can use a tilted density with t ă 0.

Example 2.8. Suppose that X is an exponential random variable with mean 1{λ. Then ppxq “
λe´λx for x ě 0 and it is easy to see that the corresponding tilted distribution is given by
ptpxq “ Ce´pλ´tqx, where C is the normalising constant.

As an example, let X „ N pµ, σ2q be a normal random variable, and suppose we wish to
estimate I “ PpX ą x0q for some x0 which is large. We apply exponentially tilting, to tilt the
pdf of X towards larger values so that we are able to obtain some samples within the desired
region, and then use the importance weights to correct for our tilting. If X has pdf ppxq, then let

qpxq “
ppxqetx

Mpptq
,
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If ppxq is the normal density, then by completing the square:

qpxq9e´px´µq
2{2σ2

etx “ e´px´µ´tσ
2q2{2σ2

eµt`t
2σ2{2,

so that
qpxq “ N pµ` tσ2, σ2q, Mp “ eµt`t

2σ2{2.

Quite fortunately we are able to generate samples from the tilted distribution, since it is once
again a Gaussian distribution (side note: this is not a coincidence, and will hold true for any
distribution ppxq within the exponential family). The importance sampling weight function is
wpxq “ ppxq{qpxq “ e´txMpptq so that

wpxq “ e´tpx´µ´tσ
2{2q.

The importance sampling scheme using this tilted distribution is thus as follows:

Exponentially Tilted Importance Sampler for I

1. Generate samples yi „ N pµ` tσ2, σ2q, for i “ 1, . . . , n.

2. Compute wi “ e´tpyi´µ´tσ
2{2q, for i “ 1, . . . , n.

3. Compute the estimator

Îin “
1

n

n
ÿ

i“1

wi1 ryi ą x0s .

We have not specified how to choose t. Heuristically, we would expect that a good choice of t
is one such that the mean of the tilted distribution equals x0, i.e. we would choose µ` tσ2 “ x0.
To be a bit more precise, we could attempt to derive an optimate t by minimising the variance of
the estimator, i.e. we minimise

ż

pfpxqppxqq2

qpxq
dx´ I2,

with respect to t. Therefore, for the case where fpxq “ 1rx0,8s, the optimal t is one which
minimises

ż 8

x0

ppxqe´tpx´µ´tσ
2{2q dx “Mpptq

ż 8

x0

ppxqe´tx dx.

Sampling from Bimodal distributions (Not examinable)

In many applications we encounter distributions p which are multimodal, possessing well-
separated modes. Alternatively, it could be that fpxqppxq is only non-zero in multiple distinct
regions. In this case, a natural choice of q for importance sampling is a mixture distribution

qα “
J
ÿ

j“1

αjqj ,
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Figure 2.5: Importance sampling for computing P rX ą x0s, where x0 “ 5 and X „ N p0, 1q
(pdf in blue). Corresponding tilted potential has mean 0 and variance 1 (pdf dashed)

where αj ě 0 and
řJ
j“1 αj “ 1 and qj are distributions. Based on knowledge of p (via ex-

ploratory runs), one then seeks a choice of the αj and qj which matches the peaks in fp.
Mixtures are typically easy to sample from. To sample from qα we generate a generalised
Bernoulli random variable S taking values i “ 1, . . . , J with probabilities α1, . . . , αJ , respec-
tively. Then if J “ j, we return a sample from distribution qj . The corresponding importance
sampling estimator is then given by

Îin “
1

n

n
ÿ

i“1

fpyiqppyiq
řJ
j“1 αjqjpyiq

,

where y1, . . . , yn are iid samples generated from qα as described above. An example is shown in
Figure 2.6 for a bimodal distribution using a Gaussian mixture 0.5N p30, 10q ` 0.5N p´30, 10q
Here we immediately notice an issue! Indeed, while the Gaussian mixture correctly captures
the peaks, it will not produce enough samples near the origin, possibly giving rise to a increase
in variance due to the correction wpxq for these points. Situations like these can result in the
importance sampling performing very poorly, and can arise very easily. One fix is to increase the
variance of each component of the Gaussian mixture. In the worksheets, we will study an idea
known as defensive importance sampling.

Self-Normalising Importance Sampling

In most practical situations we will not be able to compute the normalisation constants for
ppxq and qpxq, i.e.

ş

ppxq dx “ Z ‰ 1 and
ş

qpxq dx “ Z̃ ‰ 1. Since we need to evaluate
wpxq “ ppxq{qpxq the previous importance sampler is not applicable in general. However, it is
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Figure 2.6: Sampling from a bimodal density ppxq (blue) using a Gaussian mixture ofN p˘30, 10q
with α1 “ α2 “ 0.5 (orange). Can you spot the problem with using such a importance density?

possible to devise an alternative importance sampling estimator based on the observation that:

EX„p rfpXqs “
EY„q rfpY qwpY qs

EY„q rwpY qs
, (2.11)

where wpxq “ ppxq{qpxq is the (unnormalized) likelihood ratio. The proof of this fact is
straightforward. Indeed,

EX„p rfpXqs “
ş

fpxqppxq dx
ş

ppxq dx

“

ş

fpxqppxqqpxqqpxq dx
ş ppxq
qpxqqpxq dx

“

ş

fpxqwpxqqpxq dx
ş

wpxqqpxq dx

“
EY„qrfpY qwpY qs

EY„qrwpY qs
.

Note that unlike for the standard importance sampling scheme, it is not sufficient that ppxqfpxq ‰
0 ñ qpxq ą 0. In this case, we require the stronger condition that ppxq ą 0 ñ qpxq ą 0. We
can formulate the normalised importance sampling estimator as follows:
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Self Normalised Importance Sampler

1. Draw yi iid samples of q, for i “ 1, . . . , n.

2. Compute wi “ ppyiq{qpyiq, for i “ 1, . . . , n.

3. Generate the estimator

Înn “

řn
i“1wifpyiq
řn
i“1wi

.

Note that 1
n

řn
i“1 fpyiqwpyiq and 1

n

řn
i“1wpyiq are both unbiased and consistent estimators

of EqrfpY qwpY qs and EqrwpY qs, respectively. However, Înn , being a ratio of estimates, will be a
biased estimator for finite n. However, in the limit as n Ñ 8, we are guaranteed that Înn will
converge almost surely to the expectation I . Indeed, we have the following result, which we shall
state on R, nothing that it readily holds for more general domains.

Proposition 2.12. Assume that ppxq ą 0 ðñ qpxq ą 0, and let f : R Ñ Rsuch that
EX„prfpXqs exists. Let y1, . . . , yn be iid random variables distributed according to q, then the
estimator

Înn “

řn
i“1wifpyiq
řn
i“1wi

,

is strongly consistent.

Proof. [The proof of this result is not examinable] There exist two sets A and B in the sigma
algebra F such that

A “

#

ω P Ω :
1

n

n
ÿ

i“1

fpyiqwpyiq Ñ ErfpY qwpY qs

+

, and PpAq “ 1

and

B “

#

ω P Ω :
1

n

n
ÿ

i“1

wpyiq Ñ ErwpY qs

+

, and PpBq “ 1

Then AXB has measure 1, and so, there exists a set C of measure 1 such that

C “

"

ω P Ω :

řn
i“1 fpyiqwpyiq
řn
i“1wpyiq

Ñ I

*

,

so that Înn Ñ I , holds P-a.s.

The self–normalised importance sample estimator can only be considered reliable when the
weights are not too varied. In extreme cases, one of the wi may be much larger than all the others,
so effectively we only have one sample. A natural way of identifying this collapse if via the
effective sample size:

ESS “
p
řn
i“1wiq

řn
i“1w

2
i

“
w2

w2
,
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wherew “ 1
n

řn
i“1wi andw2 “

řn
i“1w

2
i . The effective sample size gives the average number of

samples that would have been required had naive MC sampling been used instead. If the weights
are unbalanced, this this will be small, which implies that the result is similar to perfoming
standard MC over ESSˆ n samples.



Chapter 3

Markov Chains and Markov-Chain Monte-Carlo

One of the most complete accounts on Markov chains can be found in the book [11]. For Markov
Chains on discrete state spaces, one can consult [1]. In the beginning of this section we shall
formulate all our ideas on discrete state space, noting that in many cases the concept extends
naturally to continuous state spaces. First we recall some importance definitions. In the following,
let pΩ,F ,Pq be a probability space.

Definition 3.1 (Markov Chain). A discrete-time stochastic process tXnunPN, Xn : pΩ,F ,Pq Ñ
pS,Sq on a state space S is a Markov chain if

PpXn`1 P B |X0, X1, . . . , Xnq “ PpXn`1 P B |Xnq, @B P S, n P N.

If the state space S is discrete we assume that S is the σ-algebra of all subsets of S. If the
chain is started at x, we shall use the notation

PxpXn P Bq :“ PpXn P B |X0 “ xq.

The finite dimensional distributions of a Markov chain with initial distribution µ can be expressed
through the relation

PµpX0 P B0, X1 P B1, . . . , Xn P Bnq “

“

ż

B0

µpdy0q

ż

B1

PpX1 P dy1 |X0 “ y0q . . . ,

ż

Bn

PpXn P dyn |Xn´1 “ yn´1q.
(3.1)

Our main interest will be a particular class of Markov chain, namely time-homogenous
markov chains:

Definition 3.2 (Time–homogeneous markov chain). A markov chain tXnu is time-homogeneous
if

PpXn`1 P B |Xnq “ PpX1 P B |X0q, @n ě 0.

The Markov property and time-homogeniety imply that we can write

PpXn`1 P B |Xn “ xq “: ppx,Bq,

34
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for some function p : S ˆ S Ñ r0, 1s called the transition function. For fixed x P S, ppx, ¨q is a
probability measure, and pp¨, Bq is a measurable map. Therefore we rewrite (3.1) as

PµpX0 P B0, X1 P B1, . . . , Xn P Bnq “

ż

B0

µpdy0q

ż

B1

ppy0, dy1q . . .

ż

Bn

ppyn´1, dynq.

When the state space S is discrete (finite or countable), we can introduce a transition matrix
p “ tppx, yq, x, y P Su, where

ÿ

yPS

ppx, yq “ 1, and ppx, yq ě 0, @x, y P S.

Clearly
ppx, yq :“ PpX1 “ y |X0 “ xq “ PxpX1 “ yq.

Clearly

PµpX0 “ x0, X1 “ x1, . . . , Xn “ xnq “ µpx0qppx0, x1q . . . , ppxn´1, xnq.

For all n ě 1, we denote pnpx, yq “ PxpXn “ yq.
The next theorem is an extremely importance consequence of Markovianity.

Theorem 3.1 (Chapman-Kolmogorov Equation). Let Xn be a time-homogeneous Markov chain
with discrete state space. Then for any m,n ě 0,

PxpXn`m “ yq “
ÿ

zPS

PxpXn “ zqPzpXm “ yq.

Example 3.1 (Finite state Markov Chain). Consider the Markov chain on a state space having
finitely many states. Then we can express the transition probabilities as a transition matrix
P “ pppx, yqqx,yPS . For example, the following matrix defines a Markov chain on a finite state
space taking 5 values.

P “

¨

˚

˚

˚

˚

˝

0 0 1 0 0
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 1 0 0

˛

‹

‹

‹

‹

‚

(3.2)

The condition that
ř

yPS ppx, yq “ 1 translates to P.1 “ 1, where 1 denotes the all-ones vector.

Example 3.2 (Random Walk on the Integers). Let ξ1, ξ2, . . . be iid random variables taking
values in Z with Γpjq “ Ppξn “ jq. The random walk Ψn is defined as Ψn “ Ψn´1` ξn,, n ě 1.
Let us calculate the transition probabilities of the chain:

PpΨ1 “ y |Ψ0 “ xq “ PpΨ0 ` ξ1 “ y|Ψ0 “ xq

“ Ppx` ξ1 “ yq “ Γpy ´ xq.

Therefore, ppx, yq “ Γpx´yq. Notice that the transition probability of going from x to y depends
only on the increment x´ y and not on the particular values of x and y.
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Figure 3.1: Graph structure corresponding to the Markov chain with transition matrix (3.2)

Example 3.3 (Ehrenfest chain). A box contains N air molecules. The box is divided into two
chambers, that communicate through a small hole. The state of the system is determined once we
know the number k of molecules contained in the left chamber at each moment in time. Assuming
only one molecule per timestep can go through the hole, at time n` 1 either one molecule has
gone from left to right (so that state goes from k Ñ k ´ 1), or one molecule from right to left (so
that k Ñ k ` 1). The transition probabilities of the chain on state space S “ t0, 1, . . . , Nu, are
given by

ppk, k ´ 1q “ k{N and ppk, k ` 1q “ pN ´ kq{N,

for all k ě 0, with ppj, kq “ 0 otherwise.

3.0.1 Stationary Processes

We say that a Markov chain Xn is stationary if, for every n P N, the joint distribution

PpXk P B0, Xk`1 P B1, Xk`2 P B2, . . . , Xk`n P Bnq

is independent of the offset k ą 0. In particular, from the n “ 1 case

ErXis “ ErX0s “: I, @i P N

and for n “ 2,
VarrXis “ VarrX0s “: σ2, @i P N,

and
CovrXi, Xjs “ Cpj ´ iq, @i, j P N.

In the previous section we considered stochastic processes of the form tXnuně0 where each rv
Xn was identically distributed with distribution π, but also independent. For stationary processes
we relax the assumption of independence, allowing correlation between values of the chains at
different times.
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As in the previous section, given a stationary sequence Zn, we can construct time-averages
of the form

In “
1

n

n
ÿ

i“1

Zi.

Then ErIns “ I “: ErX0s, for all n ě 1. Therefore, if we could generate realisations of the
chain Zi, then In would be an unbiased estimator for I . What is the variance of In?

Var

«

ÿ

i

Zi

ff

“

n
ÿ

i“1

n
ÿ

j“1

CovpZi, Zkq

“

n
ÿ

i“1

VarpZiq ` 2
n´1
ÿ

i“1

n
ÿ

j“i`1

CovpZi, Zjq.

Since the process is stationary, then VarpZnq is independent of n, and similarly CovpZn, Zn`kq
is independent of n. Thus

Var

«

ÿ

i

Zi

ff

“ nVarpZ1q ` 2
n´1
ÿ

k“1

pn´ kqCovpZj , Zj`kq

“ nVarpZ1q ` 2
n´1
ÿ

k“1

pn´ kqCpkq

Therefore

nVar rIns “ σ2 ` 2
n´1
ÿ

k“1

n´ k

n
Cpkq (3.3)

Taking nÑ8, suppose that the limit

lim
nÑ8

«

σ2 ` 2
n´1
ÿ

k“1

n´ k

n
Cpkq

ff

“ σ2 ` 2
8
ÿ

k“1

Cpkq, (3.4)

exists, then we might hope for a central limit theorem to hold, similar to Theorem 2.6 for the
process In, with

?
npIn ´ Iq converging in distribution to a Gaussian distribution with mean 0

and variance given by the RHS of (3.4). As we shall see in the following section, this will hold
true, provided an additional condition holds.

3.0.2 Stationary Distributions and Ergodicity

Definition 3.3 (Stationary Measure). A probability measure π on S is a stationary distribution
for the Markov chain Xn with transition matrix p if

ÿ

x

πpxqppx, yq “ πpyq. (3.5)

Equivalently, π is a stationary distribution if Xn „ π implies that Xn`1 „ π.
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Clearly, if π is a stationary distribution then
ÿ

x

πpxqpnpx, yq “ πpyq, for all n ě 1.

For a N state Markov chain, a stationary distribution can be expressed as a N–dimensional vector.
Then if the chain has transition matrix P , condition (3.5) is equivalent to

P ˚π “ π.

Definition 3.4 (Reversibility). If a measure π satisfies

πpxqppx, yq “ πpyqppy, xq, @x, y P S, (3.6)

then π is a reversible measure.

The equality (3.6) is also called the detailed balance condition, and is a fundamental building
block of the Metropolis-Hastings algorithm.

Exercise 3.1. Identify a stationary distribution of the matrix P given in (3.2), and determine
whether the matrix is reversible.

Theorem 3.2. If a measure π satisfies the detailed balance condition (3.6) then it is stationary

Proof. Just sum over x on both sides of (3.6) to get
ÿ

xPS

πpxqppx, yq “ πpyq
ÿ

xPS

ppy, xq “ πpyq,

where the last equality follows from the fact that p is a transition matrix.

So why do we call chains that satisfy (3.6) reversible? Let Xn be Markov chain which admits
a stationary distribution π and suppose thatX0 „ π. For fixed n P N consider the “time–reversed”
process Ym “ Xn´m. Then for every n P N, Ym is a time-homogenous Markov chain with
Y0 „ π. The transition probabilities qpx, yq of Ym are given by:

qpx, yq “ PpY1 “ y |Y0 “ xq “ PpXn´1 “ y |Xn “ xq

“ PpXn “ x |Xn´1 “ yq
πpyq

πpxq
“
ppy, xqπpyq

πpxq
.

If the DB condition holds, it follows that qpx, yq “ ppx, yq, for all x, y, and in this case, the chain
Xn is said to be time–reversible. We now introduce the most important theoretical concept in this
section

Definition 3.5 (Ergodicity). A Markov chain is said to be ergodic if it admits a unique stationary
probability distribution. In this case, the invariant distribution is said to be the ergodic measure
for the chain.

Roughly speaking, in order for a process to be ergodic it has to
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1. Eventually explore the entire space, i.e. for every point x in space, there will exist a n for
which Xn is in some sense close to x.

2. Explore the space in a “homogenous way”: the measure π controls how frequently the
process will explore a given region of space, i.e. if for some set A, πpAq is small then Xn

will visit A rarely, whereas if πpAq is large the process will visit Xn often. Indeed, the
physicists’ interpretation of ergodicity is “space averages equals time average”.

3. The limiting behaviour forgets the initial condition from which it started from.

There are a number of very specific conditions which are sufficient for a given Markov chain
to be ergodic. The precise details are beyond the scope of this course, and we shall defer the
interested reader to [11]. We shall only mention them briefly. The following conditions1 are
required for a Markov chain to be ergodic, i.e. to possess a unique invariant distribution.

• Irreducible: Any set A can be reached from any other set B with nonzero probability.

• Positive Recurrent: For any set A, the expected number of steps required for the chain to
return to A is finite.

• Aperiodic: For any set A, the number of steps required to return to A must not always be
a multiple of some value k.

Roughly speaking, positive recurrence ensures the existence of an invariant measure, while
irreducibility ensures the uniqueness of the invariant measure. The final question of establishing
the convergence of ppx, yq to πpyq for all x, namely

ÿ

yPS

|pnpx, yq ´ πpyq| Ñ 0,

is guaranteed by aperiodicity. Clearly, πpyq represents the probability for the chain to be in state
y as nÑ8. It is important that convergence to π happens irrespective of the initial data that we
pick, i.e. the initial condition is forgotten in the limit.

In the previous chapter we considered stochastic processes of the form tXnuně0 , where Zn
were independent random variables distributed according to some common distribution π. The
existence of a limit for the sample mean

Sn “
1

n

n
ÿ

i“0

Zi,

was guaranteed by the strong law of large numbers. The Markov chains we are now considering
do not fall in this class of process, indeed, the random variables Xn will not be identically
distribution, and certainly not independent (indeed, we expect correlation between Xn and Xn`1

in general). Nonetheless, in some sense, we can obtain a similar result, at least when the Markov
Chain Xn is ergodic. Indeed, this is how the concept of “space averages equals time averages” is
formalized.

1 these conditions are valid for discrete state spaces, for continous state spaces strong conditions are required
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Theorem 3.3 (Ergodic Theorem). Let Xn be an ergodic Markov chain with unique invariant
distribution π. Then for any integrable function, the limit

1

n

n´1
ÿ

i“0

fpXiq Ñ

ż

fpxqπpdxq,

as nÑ8, for P-almost surely every x.

When f “ 1A for some A P F , then the above limit says exactly that, asymptotically, space
averages equal time averages.

A natural question is whether a corresponding central limit holds to characterise the fluctu-
ations of n´1

řn´1
i“0 fpXiq around the mean ErfpXqs, for X „ π. In the case that the chain is

reversible, then a central limit was established by Kipnis and Varadhan [7], using a proof, which
although is extremely elegant, will not be studied in this course.

Theorem 3.4 (Central Limit Theorem for Stationary, Reversible Markov Chains). If Xn is an
ergodic reversible Markov chain with invariant distribution π, and suppose that X0 „ π, so that
Xn is stationary. Then the central limit theorem applies, i.e.

?
n

˜

1

n

n´1
ÿ

i“0

pfpXiq ´ Eπrf sq

¸

d
ÝÑ N p0, σ2pfqq,

provided that

0 ă σ2pfq “ VarrfpX0qs ` 2
8
ÿ

i“1

Cov rfpX0q, fpXkqs ă 8. (3.7)

If it exists, then σ2pfq is known as the asymptotic variance.

Note that (3.7) is the nÑ8 limit of (3.3) where Zi “ fpXiq.

3.1 Markov Chain Monte Carlo

In the previous section we studied the very basic theory of Markov chains. While we focused
on finite or countable state spaces, much of what we said can be readily extended to Rd–valued
Markov chains, either directly, or with some small modifications of the required assumptions.
Rather than delve into the details of this, we shall simply claim that all the previously stated
results hold for general state spaces, referring the interested reader to [11] for justification. In this
section we want to look at a major application of theory that we have described so far: Markov
Chain Monte Carlo methods (MCMC)

In Chapter 2 we introduced Monte Carlo simulation as a means to compute expectations of
the form ErfpXqs, where X „ π. The entire method hinges on a single assumption: that it is
possible and feasible to generate samples π. In many scenarios this is simply not true, particularly
when working with high-dimensional models. Suppose however that we have a Markov chain
Xn which is erogdic with unique stationary distribution π. This implies three things:
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1. If Xn „ π, then Xn`k „ π, for all n ě k.

2. Denoting the distribution of the random variable Xn by LpXnq, then LpXnq Ñ π, as
nÑ8, regardless of the distribution of X1.

3. The ergodic theorem implies that

1

n

n
ÿ

i“1

fpXiq Ñ Eπrf s, as nÑ8,

for all integrable functions f .

Suppose our objective is to compute

I “ Eπrf s “
ż

Rd

fpxqπpxq dx,

then if we could somehow construct an ergodic process with unique invariant distribution π then
the most natural estimator for I would be to simulate Xi up to time n and use the time-average:

În “
1

n

n
ÿ

i“1

fpXiq,

as an estimator for I . Clearly, the iid chains where Xi „ π, which we considered in Chapter
2 are a special case of what we are describing. However, we are describing a far more general
situation where we generate a sequence of correlated random variables from a Markov chain.
This idea of specifically constructing a Markov chain which is ergodic with respect to a given
target distribution is the underpinning of Markov Chain Monte Carlo methods (MCMC). These
methods have been around almost as long as standard MC, both of which originate from Los
Alamos in the 1940s. It is not a coincidence that the invention of MC and MCMC methods coin-
cide with the development of the first computer, the ENIAC. Indeed, one of the first algorithms to
run on the ENIAC was a MC method used by Von Neumann to solve some problems related to
fission and themonuclear physics. While MCMC methods were used throughout various areas of
physics after the 1940s, their impact on Statistics wasnt really felt until the early 1990s. A nice,
short-history of Markov Chain Monte Carlo methods can be found in [14]

The consistency of În is guaranteed by the ergodic theorem, however one fundamental dif-
ference is that:

ErÎns “
1

n

n
ÿ

i“1

ErfpXiqs ‰
1

n

n
ÿ

i“1

EX„πrfpXqs “ I,

i.e. În is a biased estimator for I . Of course, if we set X1 „ π, then it follows from property (1)
that ErfpXiqs “ EX„πrfpXqs, so that În will be unbiased. Of course, this assumes that we are
somehow able to generate samples from π, which defeats the purpose of all this. The reason that
În is unbiased is that in the distribution of Xn is very different from π, when n is not large (i.e.
in the transient phase). Property 3 suggests that we can reduce this bias by introducing a burn-in
phase, namely we discard the first n0 samples for some n0 ą 0, and instead use the estimator:

În0,n “
1

n

n0`n
ÿ

i“n0

fpXiq.
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As we shall see, constructing a Markov chainXn which is ergodic with respect to π is possible for
a wide range of target distributions. The main challenge faced with MCMC is deciding when to
stop. Ideally, we could attempt to exploit any asymptotic normality (i.e. CLT) of În to construct
confidence intervals, but since În is based on a single realisation of a Markov chain, computing
variance estimators is problematic.

We shall address these problems throughout this chapter, but for now, let us focus on an extremely
powerful method for constructing Markov chains.

3.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is one method which can be used to construct Markov
chains which are ergodic with respect to a given target distribution. The idea is a natural generali-
sation of the rejection algorithm which we described in Section 2.2.2. Indeed the MH method is
based on an accept-reject step which is required to ensure that the resulting chain exhibits the
correct stationary distribution.

Suppose that we are given a target density πpxq, known only up to a normalisation constant,
and we have an associated conditional density qp¨ |xq which is easy to sample from, known as
the proposal density. There are additional theoretical requirements on πpxq and qpy|xq which
we shall elaborate further on, but first let us describe the algorithm. The Metropolis-Hastings
algorithm associated with the target density π and conditional density q is then defined through
the following algorithm:

Metropolis-Hastings algorithm

Suppose that we the chain has state Xn at time n. Define

1. Generate Y „ qp¨ |Xnq.

2. With probability αpXn, Y q accept the proposal Y , i.e. set Xn`1 “ Xn, where

αpx, yq “ min

"

1,
πpyqqpx |yq

πpxqqpy |xq

*

.

3. Otherwise reject the proposed sample, and set Xn`1 “ Xn.

The probability αpx, yq is known as the Metropolis-Hastings acceptance probability. As for
the rejection sampler, to accept a sample with probability p, we generate U „ Up0, 1q and accept
the sample if U ă p, and reject otherwise. Note that since we have πpyq above and below in the
acceptance probability, the normalisation constants will cancel out. This is crucial as it allows us
to sample from π without having an expression for the normalisation constant.

Suppose that we are working in a discrete state space 2. The chain generated by the MH
algorithm is clearly a time-homogeneous Markov process. What is the transition matrix of the

2the argument for continuous state spaces is entirely equivalent
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chain Xn generated by the MH algorithm? Suppose that the current state is Xn “ x, then the
probability that Xn`1 “ y where x ‰ y is given by

ppx, yq “ qpy |xqαpx, yq, x ‰ y,

i.e. from state x the MH algorithm proposes y and it is accepted. On the other hand, if x “ y,
then either the MH algorithm proposes x and it is accepted, or some other z is proposed, and it
is rejected. We write the correspnding transition matrix as:

ppx, xq “ qpx |xqαpx, xq `
ÿ

zPS

p1´ αpx, zqqqpz |xq.

In a more compact form we can write the transition matrix as

ppx, yq “ qpy |xqαpx, yq ` δxpyq
ÿ

zPS

p1´ αpx, zqqqpz |xq. (3.8)

Given this expression we establish that π is a stationary distribution of Xn, by showing that
π is reversible with respect to Xn.

Proposition 3.5. The density π is reversible with respect to the transition density (3.8).

Proof. First consider the case where x ‰ y:

πpxqppx, yq “ πpxqqpy |xqαpx, yq

“ πpxqqpy |xqmin

ˆ

1,
πpyqqpx | yq

πpxqqpy |xq

˙

“ min pqpy |xqπpxq, πpyqqpx | yqq

“ min

ˆ

qpy |xqπpxq

πpyqqpx | yq
, 1

˙

πpyqqpx | yq

“ αpy, xqπpyqqpx | yq.

The analogous condition for when x “ y then holds immediately.

It follows directly from Theorem 3.2 that π is an invariant distribution of Xn. To be of
practical use we must establish conditions for which Xn is ergodic. The following result
establishes fairly general conditions under which this is true

Theorem 3.6. Assume that π is bounded and positive on every compact set the domain. If there
exist positive numbers ε and δ such that

qpy |xq ą ε if |x´ y| ă δ,

then the Metropolis-Hastings Markov chain is ergodic with respect to π. In particular, for all
integrable functions f:

lim
nÑ8

1

n

n
ÿ

i“1

fpXiq “ Eπrf s, for a.e.X1
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and we have convergence of the distribution of Xn to π in total variation, i.e.

lim
nÑ8

ÿ

yPS

∣∣∣∣∣ÿ
xPS

pnpx, yqµpxq ´ πpyq

∣∣∣∣∣ “ 0,

for every initial distribution X1 „ µ, where pnpx, yq denotes the transition matrix for n steps of
the MH chain.

The above two conditions are not very stringent and are very easy to verify in general.
However, having merely an ergodic chain is not enough for a Markov chain to be useful in practice
for sampling. In practice, we would want to quantify the rate of convegence to equilibrium. One
“qualitative” convergence rate property is uniform ergodicity, i.e. that

‖Pnpx, ¨q ´ πp¨q‖TV ďMρn, n “ 1, 2, 3, . . . , (3.9)

for some ρ ă 1 and M ă 8, where Pnpx, ¨q denotes the distribution of Xn at time t, given that
X1 “ x, and the distance ‖¨‖TV denotes total variation distance3, i.e.

‖µ´ ν‖TV “ sup
APF

|µpAq ´ νpAq|.

A slightly weaker property is geometric ergodicity, which holds if

‖Pnpx, ¨q ´ πp¨q‖TV ďMpxqρn, n “ 1, 2, 3, . . . ,

for some ρ ă 1, where Mpxq ă 8, for π-.a.e. x P S. The difference between geometric
ergodicity and uniform ergodicity is that now the constant M may depend on the initial state
x. Of course, if the state space S is finite, then all irreducible and aperiodic Markov chains are
geometrically (in fact, uniformly) ergodic. However, for infinite S this is not the case. The ma-
chinery for demonstrating these results can be found in [11]. What about the chain Xn generated
by the Metropolis-Hastings chain? Is it uniformly, geometrically ergodic, or neither? The answer
is that it depends on the proposal density and on the tails of the target distribution π.

Before we study some of standard choices of proposals let us consider a simple example to
illustrate how the Metropolis–Hastings algorithm works. Suppose we wish to sample from a
bimodal distribution with density (up to normalisation constant) is given by

πpxq “ e´px
2´1q2 .

As a proposal density, we shall use a uniform distribution U rx´ r, x` rs centered around x with
width r, i.e. qpy |xq “ 1

2r1rx ´ r, x ` rspyq. Noting that qpy |xq “ qpx | yq, we can write the
acceptance probability as:

αpx, yq “ min

ˆ

1,
πpyq

πpxq

˙

.

The corresponding MH algorithm for this scheme is then given by

3for discrete spaces this is equivalent to
ř

yPS

∣∣ř
xPS p

n
px, yqµpxq ´ πpyq

∣∣ ďMρn, where X1 „ µ.
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Given the state Xn

1. Sample Y „ U rx´ r, x` rs and u „ U r0, 1s

2. If u ă min
´

1, πpY qπpXnq

¯

, accept Xn`1 “ Y

3. Otherwise Xn`1 “ Xn.

Therefore, we see that the acceptance rule is straightforward: if πpY q ą πpXnq accept
the proposed density, otherwise reject with probability πpY q{πpXnq. In Figure 3.5 we plot a
simulation of the MH scheme for this problem for N “ 104 steps starting from X1 “ 1.0. We
choose r “ 1.0. We plot the distribution of the 104 samples and compare with the exact density
(normalised). We see that after 104 the distribution is very close to the target distribution. Since
the proposal density can make jumps of size 1, it is relatively easy for the chain to jump from the
x “ 1 mode to the x “ ´1 mode. We also plot the time series ofXn over n, and see that the chain
appears to explore the state space quite uniformly. We repeat the results in Figure 3.6 with r “ 0.1.
In this case the proposal density will only generate local moves of length 0.1. Therfore, once the
chain is stuck in a given mode, it is relatively hard for it to escape to the other mode. Indeed, from
the time series plot we see that the chain only spends about 20% of the time around the x “ ´1
mode, and the estimator În fails to converge within N “ 104 time steps. Finally, we perform the
same experiment with r “ 0.01 in Figure 3.7. In this case we see the chain is not able to cross
modes even once inN “ 104 timesteps, since the proposal density will only take very small steps.

From this example it is clear that the choice of proposal distribution plays a huge role in the
behaviour of the chain, and the quality of the estimator În. This motivates us to explore a few
possible choices for qp¨ |xq.

3.2.1 The choice of proposal density

As with the rejection method, there are many possible choices for the conditional proposal density,
and the choice of this proposal will affect the performance of the sampler. We now explore three
classes of proposals.

The independence Sampler

Although the proposal distribution qp¨ |xq is allowed to depend on the current state of the chain,
there is no obligation for this to be the case. Indeed we can choose a proposal which is independent
of the present state of the chain, that is qpy |xq “ gpyq. In this case, the resulting algorithm,
known as the independence sampler becomes
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The independence sampler

Given the state Xn

1. Sample Y „ gpyq.

2. If u ă min
´

1, πpY qgpXnq

πpXnqgpYtq

¯

, accept Xn`1 “ Y

3. Otherwise Xn`1 “ Xn.

Note that although the proposal generates independent samples, the resulting chain Xn is not,
because the probability of accepting the proposed state Y will depend on Xn. You might ask at
this point, why not use the rejection algorithm straight off, with gp¨q as the proposal density for
the candidate distribution ppxq. One clear advantage of the independence sampler is that one
doesn’t need to know the uppoer bound M “ supxπpxq{gpxq beforehand. Therefore, in cases
where we cannot efficiently compute M , or it is so large that the rejection algorithm performs
poorly, then one should definitely consider using the independence sampler.

A natural observations is that when M “ supx πpxq{gpxq “ 8, while the rejection algorithm
cannot be used, the independence sampler would still work in theory. However, as described in
Robert and Casella (2004), the performance of the independence sampler in such cases tends
to be very poor. On the other hand, suppose that M “ supx πpxq{gpxq ă 8, then we have the
following result:

Theorem 3.7 (Mengersen and Tweedie (1996)). The independence sampler produces a uniformly
ergodic chain if there exists a constant such that

πpxq ďMgpxq, x P suppπ. (3.10)

In this case,

‖Pnpx, ¨q ´ π‖ ď 2

ˆ

1´
1

M

˙n

.

On the other hand, if there exists a set of x with positive measure such that (3.10) does not hold,
then Xn is not geometrically ergodic.

Exercise 3.2. Indeed, let’s return to exercise 2.5, sampling a standard Cauchy random variable
using a Gaussian proposal, i.e.

ppxq “
1

πp1` x2q
and gpxq “

1

2π
e´x

2{2.

Implementing this in Julia, the histogram for 106 samples is shown in Figure (3.2). From this plot,
we observe that the chain fails to capture the tail behaviour of the distribution. Indeed, when
in the tails of the distribution the probability of acceptance is extremely small. For example, for
Xn “ 10, the probability of accepting a state is given by

ż 8

´8

e´x
2{2p1` x2q

1` y2
dy « 6.12ˆ 10´20,
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Thus, the sampler is extremely unlikely to ever accept a state proposed too far away from the
origin.

Figure 3.2: Distribution of independence sampler for standard Cauchy target distribution using
Gaussian proposals.

Random Walk Metropolis Hastings

While the independence sampler will eventually produce of the target distribution, it is wasteful
in this sense that the proposed state is independent from the current. A far more natural approach
is to consider a local exploration of the neighbourhood of the current value of the Markov chain.
The idea is to generate Y according to:

Y “ Xn ` ζ,

where ζ is a random perturbation with some given distribution g indepedendent of Xn, which is
assumed to be symmetric around 0, i.e. gpyq “ gp´yq for all y. Possible choices would be

1. gpyq is uniform, so that Y „ UpXn ´ δ,Xn ` δq item gpyq is Gaussian, so that Y „

N pXn, δ
2q.

Associated with each distribution is a scaling parameter δ which controls the size of the “jump”
from the current state Xn.

Note that the proposal density can be expressed as qpy |Xnq “ gpy ´ Xnq, and the symme-
try assumption implies that qpy |Xnq “ qpXn | yq. The corresponding MH algorithm, known as
the Random-Walk Metropolis Hastings algorithm (RWMH) is given by
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Random Walk Metropolis Hastings

Given the state Xn

1. Sample Y “ Xn ` ξ, where ξ „ g.

2. If u ă min
´

1, πpY qπpXnq

¯

, accept Xn`1 “ Y

3. Otherwise Xn`1 “ Xn.

An interpretation of the acceptance probability is that “uphill" proposals (proposals which
take the chain closer to a local mode) are always accepted, whereas “downhill” proposals are
accepted with probability exactly equal to the relative “heights” of the posterior at the proposed
and current values. Although the shape of the distribution g clearly has some effect on the chain’s
performance, the most crucial parameter to calibrate is step-size δ. Intuitively, and from the
examples we shall see in the worksheets, there is a tradeoff to be made when choosing δ: choosing
δ too large, many proposals might be generated in regions where the target density πpxq is much
smaller, resulting in them being rejected, especially when the current state is close to a mode of
π. On the other hand, if we choose δ too small, proposals are likely to be accepted, but the chain
will not “explore” the state space too quickly, and it will take longer for the distribution of the
chain to converge to equilibrium, and the estimator În to converge to I . We shall discuss this
briefly in later in this chapter.

Although the random walk proposal is a very natural one, the RWMH algorithm does not
give rise to a uniformly ergodic chain Xn. Indeed, if π ą 0, then RWMH is never uniformly
ergodic. However, it is possible to establish conditions under which the chain is geometrically
ergodic, namely the log-concavity of π in the tails, i.e. if there exists κ ą 0 and x1 such that

log πpxq ´ log πpyq ě κ|y ´ x|, (3.11)

for y ă x ă ´x1 or x1 ă x ă y. For positive symmetric densities (3.11) is enough to ensure
geometric ergodicity.

Langevin proposals (MALA)

While the random walk proposal is a natural choice of proposal density, it does not make any
effective use of the local structure of the target density. For, since the gradient∇πpXnq will point
towards the local mode of the distribution, it would be natural to somehow bias proposals to
prefer this direction, while still allowing a certain amount of randomness to promote exploration.
This has motivated the introduction of proposals based on the overdamped Langevin SDE4 :

dXt “ ∇ log πpXtq dt`
?

2 dWt,

where Wt is a standard Brownian motion. The proposal is given by an Euler-Maruyama discreti-
sation of the proposal, with step size δ, namely

Xn`1 “ Xn `∇ log πpXnqδ `
?

2δξn,

4Don’t worry if you’re unfamiliar with this notation, this will be the main topic of the next chapter
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where ξi „ N p0, Iq, iid. The magnitude of the random jump is therefore controlled by the
stepsize δ. The proposal conditional density is given by

qpy|xq9 exp

ˆ

´
|y ´ x´∇ log πpxqδ|2

4δ

˙

Note that the proposal density is not symmetric, so we will not obtain the same cancellations
in the acceptance probability that we had for the independence sampler and RWMH. The main
advantage of the MALA scheme as that it proposes moves into region of high target probability,
thus which are more likely to be accepted. This comes at the cost of needing to compute the
gradient of the log density. In many applications, this is known exactly, however when it isn’t this
can be replaced by numerical approximations. The qualitative rate of convergence to equilbrium
depends strongly on the tails of the distribution π. Indeed, for a distribution with very light
tails, for example if πpxq9 expp´γ|x|βq, for β ą 2 then the corresponding Markov chain is not
geometrically ergodic.

3.2.2 Performance and Tuning of Metropolis Hastings

The theoretical results of the previous section provide us with very natural conditions to ensure
that the chain Xn converges to stationarity5. Under additional conditions, we can even show that
the convergence is exponentially fast. Thus, even though În is a biased estimator of Eπrf s, we
know that we can mitigate this bias by discarding a sufficiently long burn-in simulation. However,
these theoretical guarantees do not tell us when to stop with any confidence. Ideally we would
like to have a test which based on a simple run tells us when the bias is sufficiently small, so that
the chain has converged to stationarity.

This very important need has motivated a flurry of so called convergence diagnostics. These
diagnostics are empirical tests which, given multiple realisations of the chain, can give a measure
in confidence that the chain has reached stationarity. Examples of these methods are Geweke’s
statistic, Gelman and Rubin’s method, Raftery and Lewis and Heidelberg and Welch Diagnostic.
As much as they are important for the practical use of MCMC, we shall skip the details of these
methods, and merely refer the interested reader to Chapter 8 of [13].

Even if we assume that the chain Xn is in stationarity (or sufficiently close), so that the bias in
the estimator În can be neglected, we still have to deal with the fluctuations of În around the
mean. Recall that for a stationary chain

nVarrÎns “ Varπrf s ` 2
n´1
ÿ

k“1

CovrfpX0q, fpXkqs

“ Varπrf s

«

1` 2
n´1
ÿ

k“1

ρk

ff

,

where ρk “ CovrfpX0q, fpXkqs{σ
2
f is the autocorrelation of fpXnq. If the autocorrelations were

zero, then the variance would be σ2
f{n, which corresponds to having an iid chain. For general

5i.e. the distribution of Xn converges to target distribution π
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MCMC however, ρk’s will not be zero, and we clearly desire them to be as small as possible to
ensure that the chain performs effectively. The autocorrelations are heavily dependent on the
proposal distribution, so this question boils down to making a good choice of q. For the particular
cases of RWMH or MALA, the autocorrelation will depend very strongly on the step size δ:

1. When δ is very small, proposals will be made which are very close to the current state.
Even though such proposals are very likely to be accepted, the chain isn’t really moving
very quickly, and we expect there to be strong correlation between subsequent samples.

2. When δ is too large, proposals are very likely to be rejected, thus the chain will spend a lot
of time in the same state before the next acceptance event occurs.

Clearly, there is a sweet-spot for δ between these two extremes which minimises the correlations.
In an ideal world we’d like to make an “optimal” choice of proposal density. At this point, it
might not even be clear that there is a well-defined criterion of optimality. Clearly, an ideal choice
would be to choose qp¨ |xq “ πp¨q. This is optimal, in the sense that the autocorrelation will be
zero, however it is obviously useless in practice. We need to adopt a practical criterion which
allows the comparison of proposal densities in situations where we don’t know much about the
target distribution. One natural criterion would be an estimate of the autocorrelation, which can
be easily estimated from a single realisation of the chain. Indeed, given values X1, . . . , Xn of the
chain, the sample autocovariance function is

γ̂h “
1

n

n´|h|
ÿ

i“1

pXi`|h| ´XqpXi ´Xq, for ´ n ă h ă n,

and the sample autocorrelation function is given by

ρ̂h “
γ̂h
γ̂0
.

Plots of the autocorrelation for different lag provide a very convenient means of eyeballing the
performance of a chain, and many statistical computing libraries come equipped with functions
to compute sample autocorrelation from data sets. For example, GNU-R has the acf function
which generates a very helpful plot, while the Statsbase.jl library in Julia provides the
autocor function.

Due to the autocorrelations, the variance of the estimator În for I “ EπrfpXqs always be
larger than that of an estimator generated via an empirical average of IID samples from π (assum-
ing that exists). This gives rise to a useful criterion for performance: If we were able to produce
IID samples Yi of π, for what value of N would 1

N

řN
i“1 fpYiq have the same variance as the

MCMC estimator? That is, for what value of N do we have

VarrÎns “
1

n
Varπrf s

«

1` 2
n´1
ÿ

k“1

ρk

ff

“
Varπrf s
N

.

This suggests that every n samples of the MCMC estimator corresponds to [added clarification
here:]

N “
n

1` 2
řn´1
k“1 ρk

,



3.2 The Metropolis-Hastings Algorithm 51

samples of a (hypothetical) IID sampler. In most real world scenarios, p1` 2
řn´1
k“1 ρkq ą 1, so

that N ă n, however, it is possible for the autocorrelations to be sufficiently negative that the
sum becomes negative. In This motivates the notion of effective sample size, defined by

ESSrÎns “
1

1` 2
ř8
k“1 ρk

The effective sample size is typically approximated from a single time-series of the chain, either
by computing the sample autocorrelation of the chain, or based on spectral methods. In the coda
library in R, this functionality is provided by the effectiveSize function. In Julia, similar
functionality is found in the MCMC.jl package.

Another useful criterion is the acceptance rate, i.e. the average rate at which states are ac-
cepted by the MH chain. This can be easily computed directly from the algorithm by measuring
the empirical frequency of acceptance. While we can optimise the independence sampler by
maximising the acceptance rates, as mentioned above, maximising the acceptance rate will not
result in the best algorithm for the RWMH and MALA schemes. The question is whether one
can find an “optimal” acceptance rate against which to calibrate the step size in the proposal.
In Roberts et. al (1997) the authors study optimal proposals for RWMH, and they show that
optimality in high dimensions d " 1 is achieved if δ “ Opd´1q and the overall acceptance rate
is « 0.234. For MALA, Roberts and Rosenthal later showed that optimality is acheived when
δ “ Opd´1{3q and the overall acceptance rate is« 0.574. These approximations are not universal
(these hold specifically for certain classes of target distribution, and in stationarity), but they are a
good “default” calibration candidate.

Constructing Confidence Intervals for MCMC

This is not examinable, but might be useful for assignment.
As in the case of MC estimators, we would like to construct confidence intervals for MCMC
simulations to quantify the confidence confidence in the estimator În of I . Knowing that the CLT
holds for the chain, and given an approximation for the asymptotic variance given by (3.7) one
can then construct confidence intervals. Here we briefly describe a different approach based on
batch means. Let Zi “ fpXiq. The key idea is that, provided a CLT holds,6 then the batch-means

Zkpnq “
1

n{m

kn{m
ÿ

i“pk´1qn{m

Zi,

are asymptotically iid with N pI, σ2m{Nq marginals. In particular, for Zpnq “ pZ1pnq ` . . .`
Zmpnqq{m, one can then use a standard result that

?
m
Zpnq ´ I

smpnq
D
ÝÑ Tm´1,

where Tm´1 is a Student t r.v. with m´ 1 degrees of freedom, and [Fixed typo here]

s2
mpnq “

1

m´ 1

m
ÿ

k“1

pZkpnq ´ Zpnqq
2.

6we actually need a functional CLT, something slightly stronger than the CLT described above
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Hence, for an asymptotic 100p1´ δq% confidence interval, we compute the 1´ δ{2 quantile of
Tm´1, say t1´δ{2, and then the confidence interval for I is given by

Zpnq ˘ t1´δ{2
smpnq
?
m

.

The quality of the confidence interval depends on the degree to which the batch means are iid
normal, which can be improved by taking large batches, which suggests one should choose a
small number m of batches, say 5´ 30.

3.3 Multilevel Sampling

In this section we describe a few ideas used to improve the efficiency of Monte Carlo simulations.
We shall focus on two general ideas:

• Introducing an auxiliary distribution, of which π is a marginal distribution.

• Run multiple “companion” chains in parallel which are ergodic with respect to different
distributions, and use the information in each chain to “bridge” across difficult regions in
the state space (i.e. across wells).

Given a target distribution of the form

πpxq9 expp´Hpxqq,

our idea is to ontroduce an auxiliary “temperature” parameter, and consider the “tempered”
distribution

πT pxq9 expp´Hpxq{T q.

The motivation behind the tempered distribution is that the modes in πT “flatten out” as T in-
creases, while the modes of πT become more extreme as T Ñ 0. See Figure 3.3. The companion
chains would consist of a collection of parallel running Markov chains indexed by T , each ergodic
with respect to πT . The idea is that if a MCMC sample can move freely among the augmented
system according to the Metropolis rule, then good results can be obtained for the distribution
with the lowest temperature T “ 1.

This philosophy has motivated numerous different samplers which exploit this tempering to
drastically improve the performance of MCMC, particularly for distributions possessing strong
multimodality. Examples include umbrella sampling (which we’ll discuss in workbooks), bridge
sampling, path sampling, and numerous others. Here we will focus on two particular examples.

3.3.1 Simulated Tempering

This method was proposed by Marinari and Parisi [10] and Geyer and Thompson [3]. The idea is
that one constructs a family of distributions

Π “ tπipxq | i P Iu,
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Figure 3.3: Example of tempering a probability distribution, comparing T “ 1 (blue), T “ 2
(orange), T “ 10 (green) and T “ 100 (red).

where

πipxq9 expp´Hpxq{Tiq,

for an appropriate temperature schedule Ti The new target distribution

πstpx, iq9ci expp´Hpxq{Tiq,

is defined on the augmented space px, iq P X ˆ I . The constants ci are chosen so that each
tempered distribution has roughly equal chance of being visited. Roughly you’d want ci “ Zi “
ş

e´Hpxq{Ti dx, but we are not able to compute these in general, and the ci are typically tuned via
approximate runs. After setting up the augmented distribution, a standard MCMC sampler can be
used to draw samples from πst. The intuition behind ST is that by heating up the distribution
repeatedly, the new sampler can escape from local modes and increase its chance of reaching
other parts of the state space.

Simulated Tempering

Start with i0 “ 0. Suppose that the current state is pXn, inq, then

1. Draw u „ Up0, 1q.
2. If u ď α0, let in`1 “ i and sample Xn`1 from an MCMC scheme for πi.
3. If u ą α0 let Xn`1 “ Xn and propose a transition i Ñ i1, from a transition

function αpi, i1q and let in`1 “ i1 with probability

min

"

1,
c1iπ

1pxqαpi1, iq

ciπipxqαpi, i1q

*

;

otherwise set in`1 “ in
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The αpi, jq is the transition matrix for the Markov chain in. Geyer and Thompson suggest
setting

αpi, i` 1q “ αpi, i´ 1q “ 0.5,

and αp1, 2q “ 1 “ αpm,m´ 1q, where m “ maxrIs, which corresponds to a random walk on
I with reflecting boundaries. The constant α0 is chosen to determine the frequency with which a
replica exchange occurs.

3.3.2 Parallel Tempering

The parallel tempering is a very powerful and widely used variant of the simulated tempering
algorithm. Some people also refer to it as replica exchange Monte Carlo. Instead of augmenting
the state space from X to X ˆ I as in simulated tempering, we instead directly deal with the
product space X1 ˆ . . .ˆX|I|, where Xi are identical copies of X . For a family of distributions
Π “ tπi | i P Iu, we define a joint probability distribution on the produce space as

πptpx1, . . . , xIq “ ΠiPIπipxiq,

and run parallel MCMC chains on all of the Xi. Instead of transitioning between temperatures
iÑ i1 as we did in simulated tempering, we instead swap replicas, see Figure 3.4. The algorithm

 

Figure 3.4: Illustration of replica exchange in parallel tempering

is given as follows:

Parallel Tempering

Let the current state be pX1
n, . . . , X

I
nq.

1. Draw u „ Up0, 1q.
2. If u ď α0 perform a parallel step: update every Xi

n to Xi
n`1 via a standard MCMC

scheme ergodic with respect to πi.
3. If u ą α0 we conduct a swapping step: we randomly choose a neighbouring pair,

say i and i` 1 and propose swapping Xi
n with Xi`1

n with probability:

min

"

1,
πipX

i`1
n qπi`1pX

i
nq

πipXi
nqπi`1pX

i`1
n q

*
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This scheme is extremely powerful in simulating complicated systems such as bead polymers
and other molecular structures. Also very popular to similar grid based statistical physics models,
such as Ising models, etc. Note that unlike simulated tempering, parallel tempering does not need
any fine-tuning to adjust the constants ci. One still needs to make a good choice of the heating
schedule T1, . . . , TN . The problems of parallel tempering are mainly related to the obvious space
cost of keeping track of multiple replicas of the Markov chain. Also, since the system is much
larger, typically more time will be required to equilibrate it. Information between neighbouring
chains is propagated via swap operations, and these are determined by a slow random walk. This
will be a bottleneck of the algorithm.
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(a) Histogram from 104 samples compared with exact
distribution

(b) The time series of Xn over n

(c) Estimator În for EX„πrXs over n

Figure 3.5: Simulation results when r “ 1.0.
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(a) Histogram from 104 samples compared with exact
distribution

(b) The time series of Xn over n

(c) Estimator În for EX„πrXs over n

Figure 3.6: Simulation results when r “ 0.1.
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(a) Histogram from 104 samples compared with exact
distribution

(b) The time series of Xn over n

(c) Estimator În for EX„πrXs over n

Figure 3.7: Simulation results when r “ 0.01.



Chapter 4

Continuous Time Markov Processes

Introduction and Definitions, Simulating Gaussian Processes, Stochastic Differential
Equations

Having explored Markov chains and their application to sampling from probability distributions,
let us now turn our focus from discrete Markov chains to continuous time Markov processes.
As opposed to the previous section, our main interest and application here will not be related to
sampling or to computing expectations (although one can certainly do this). Rather our initial
focus will be on methods for the accurate and efficient simulation of continuous time Markov
processes. For the sake of completeness let us recall some definitions relating to continuous time
Markov processes. More details can be found in [8].

Definition 4.1 (Continuous time stochastic process). Let pΩ,F ,Pq a probability space, and
pE,Gq a measurable space. A continuous time stochastic process is a collection of random
variables X “ tXt ; t P T u such that for each fixed t P T , Xt is a random variable from
pΩ,F ,Pq to pE,Gq, where

1. T “ r0,8q, or;

2. T “ r0,M s.

The set Ω is known as the sample space, and E is said to be the state space of the stochastic
process Xt.

While for Markov chains it was at times more convenient to explain results for discrete state
spaces, all the exposition here will be for continuous state spaces. Thus, for the remainder of this
chapter, we shall work with the state space E being Rd.

Recall that a stochastic process X may be viewed as a function of both t P T and ω P Ω.
We sometimes write Xptq, Xpt, ωq or Xtpωq. There are two ways of viewing the stochastic
process: If we fix ω, we can consider the (non-random) map:

tÑ Xpt, ωq P E, for fixed ω P Ω,

i.e. we are looking at the path Xtpωq “: ωptq, i.e. we identify the sample space Ω with the set of
paths from 0 to T . Alternatively, we can fix t and consider the map

ω Ñ Xpt, ωq P E, for fixed t P T,

59
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then this is a random variable, which gives us a snapshot of what is happening (non-deterministically)
to all sample points ω P Ω at a fixed time t. Heuristically, this view corresponds Xt being ob-
tained by performing an experiment at each time t P T , which determines the evolution of the
stochastic process. Although both viewpoints are equivalent, both can useful in different contexts,
as we shall see in the remainder of this chapter.

Definition 4.2 (Finite-dimensional distributions). Given a stochastic process Xt, the family of
distributions

PpXt1 P B1, . . . , Xtk P Bkq,

for all k P N, t1, . . . , tk P T and B1, . . . , Bk P G “ BpRdq are the finite dimensional distribu-
tions of the process Xt.

One might wonder, whether, given a given set of distributions arise as the finite dimensional
distributions of a given stochastic process. This is clearly not true in general. However, the Kol-
mogorov extension theorem (see for example [12, Theorem 2.1.5]) provides a set of consistency
conditions in order for a family of distributions to be the FDDs of some stochastic process.

Definition 4.3. Two stochastic processes Xt and Yt taking values in E are (stochastically)
equivalent if PrXt “ Yts “ 1 for all t P T . If Xt and Yt are stochastic equivalent, then Xt is
said to be a version of Yt (and vice versa).

If two stochastic processes are equivalent, then they have the same finite dimensional dis-
tributions, the converse is not true, and there will be many versions of the same process. The
stochastic processes we are mainly interested in for this chapter all possess an continuous version:

Definition 4.4 (Continuous processes.). LetXt be a continuous-time stochastic process. We will
say that Xt is continuous if it has continuous paths, i.e. if the maps tÑ Xtpωq are continuous
for a.e. ω P Ω.

As before, our main focus will be on Markov processes. In the continuous time scenario, the
most natural characterisation of Markovianity is via filtrations.

Definition 4.5. A filtration on pΩ,Fq is a family of sub-σ algebras tFtutPI such that Ft Ă F
for all t P T and

Fs Ă Ft, if s ď t.

The process tXtutě0 is Ft-adapted if the random variable Xt is Ft-measurable for every t ě 0.

The most natural filtration to consider is the one generated by the process itself, i.e. the
filtration

FXt “ σptXsu0ďsďtq,

being the smallest σ-field with respect to which Xs is adapted. The σ-algebra Ft contains all the
information available to us about a process up to and including time t. We interpret A P FXt to
mean that by time t, an observer of X knows whether or not A has occurred.
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Definition 4.6. Let Xt be a stochastic process defined on pΩ,F ,Pq with values in Rd and let Ft
be the natural filtration generated by tXt; t ě 0u. Then tXt; t ě 0u is a Markov process if

PpXt P Γ |Fsq “ PpXt P Γ |Xsq,

for all s, t P T with t ě s and Γ P BpRdq.

Definition 4.7. A Markov process Xt is time-homogeneous if

PpXt P Γ |Xsq “ PpXt´s P Γ | X0q, @Γ P G, and t ě s ě 0.

The function
P px, t, Bq “ PpXt P B |X0 “ xq, @t ě 0

is the transition probability function of the process Xt. If we can write

P px, t,Γq “

ż

Γ
ppx, t, yq dy, t ą 0, x P Rd.

then we call ppx, t, yq the transition density.

Note that the filtration Ft is generated by events of the form tXt1 P Γ1, Xt2 P Γ2, . . . , Xtn P

Γnu, for 0 ď t1, . . . ,ă tn ď t and Γi P BpRdq. Markovianity of Xt is thus equivalent to the
hierarchy of equations

PpXt P Γ |Xt1 , . . . , Xtnq “ PpXt P Γ |Xtnq, a.s,

for n ě 1 and 0 ď t1 ă t2 ă . . . ă tn ď t with Γ P BpRdq.

The transition probability function P px, t,Γq is a probability measure on pRd,BpRdq, in particu-
lar, P px, t,Rdq “ 1 for all t ě 0 and x P Rd.

4.1 Gaussian Stochastic Processes

A very important class of continuous-time processes is that of Gaussian processes, which arise in
many applications

Definition 4.8. A one-dimensional continuous-time Gaussian process is a stochastic process for
whichE “ R and all the FDDs are Gaussian, i.e., every finite dimensional vector pXt1 , Xt2 , . . . , Xtkq

is aN pµt1,...,tk ,Kt1,...,tkq random variable for some vector µt1,...,tk and a symmetric non-negative
definite matrix Kt1,...,tk , for all k P N and t1, t2, . . . , tk P R.

It is straightforward to extend the above definition to arbitrary dimensions. A key feature of
Gaussian process is that they are completely characterised by their their mean µptq :“ EXt and
covariance function

Cpt, sq “ E rpXt ´ µptqqpXs ´ µpsqqs .
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The natural question that arises is, given a mean function µptq and a covariance function
Cpt, sq, does there exist a Gaussian process Xt with the given mean and covariance. The answer
is affirmative provided the covariance Cpt, sq is non-negative definite, that is,

k
ÿ

i“1

k
ÿ

j“1

Cpti, tjqcicj ě 0, (4.1)

for all k P N, t1, . . . tk P R, c1, . . . , ck P R.

Remark 4.1. Note that condition (4.1) is equivalent to having the matrix Ct1,...,tk is positive
definite on Rk, for all k P N, where pCt1,...,tkqi,j “ Cpti, tjq, for all i, j.

Proposition 4.2. For any function µ : T Ñ R and any non-negative definite function C :
T ˆ T Ñ R, there exists a Gaussian process Xt on T such that

ErXts “ µptq, and CovpXt, Xsq “ Cpt, sq.

The proof of this proposition follows by applying the Kolmogorov consistency theorem.
See [16, Proposition 4.24.2]. Note that we have not made any claims on the continuity of the
process whose existence is guaranteed by the previous proposition. Some well-known examples
of Gaussian processes are the following:

1. Brownian motion:µptq “ 0, and Cpt, sq “ minpt, sq.

2. Ornstein Uhlenbeck Process:µptq “ 0, Cpt, sq “ expp´|t´ s|q.

3. Squared Exponential Process: µptq “ 0, Cpt, sq “ expp´|t´ s|2q.

4. Fractional Brownian Motion:µptq “ 0, Cps, tq “ pt2H ` s2H ´ |t ´ s|2Hq{2, where
H P p0, 1q is called the Hurst parameter.

4.2 Stationary Processes

As in the discrete time case, the concept of stationarity carries over to continuous time processes.
The general idea remains the same: their statistics remain invariant under time translations. We
distinguish between two types of stationary processes: strictly stationary processes whose FDD
are translation invariant with respect to time, and weakly stationary processes whose first two
moments are constant over time.

Definition 4.9. A stochastic process is called (strictly) stationary if all FDDs are invariant under
time translation: for all k P N, for all times ti P T , and tΓiuki“1 Ă B,

PpXt1 P Γ1, . . . , Xtk P Γkq “ PpXs`t1 P Γ1, . . . , Xs`tk P Γkq,

for s ą 0 such that s` ti P T , for every i “ 1, . . . k.
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In particular, setting k “ 1, Definition 4.9 implies that the law of Xt does not depend of t.
Stationary processes therefore describe phenomena which do not change in time.

Let Xt be a real-valued random process on the probability space pΩ,F ,Pq with finite second
moment (i.e. Xt P L

2pΩ,Pq for all t P T ). Assume that Xt is strictly stationary. Then

ErXt`ss “ EXt, @s P T,

from which we conclude that EXt “ EX0 is constant, and moreover we have that

E rpXt1`s ´ µqpXt2`s ´ µqs “ E rpXt1 ´ µqpXt2 ´ µqs , @s P T.

This implies that the covariance function Cpt, sq only depends on the difference t´ s:

Cpt, sq “ Cpt´ sq.

This motivates the following definition.

Definition 4.10. A continuous time stochastic process tXtutPT is wide sense stationary (WSS)
or second order stationary or weakly stationary if it has finite first and second moments and

1. EpXtq is constant, i.e. it does not depend on t;

2. CovpXt, Xsq is a function of the difference t´ s;

The function Cpt´ sq “ CovpXt, Xsq is the autocovariance function of the process X . No-
tice that for mean-zero processes, Cptq “ EpXtX0q, whereas Cp0q “ EX2

t , which is finite, by
assumption. Since we have assumed that Xt is a real valued process, we have that Cptq “ Cp´tq,
@t P R.

From the discussion above, it is clear that a strictly stationary L2pΩq random variable is also
wide-sense stationary. The converse is not true in general. An exception to this is the case of
Gaussian processes:

Lemma 4.3. A Gaussian process is strictly stationary if and only if it is weakly stationary.

Proof. We know that Gaussian distributions are determined by their mean vector and covariance
matrix. Since the mean and covariance of a weakly stationary process do not change when the
times are shifted, this implies that the finite dimensional distributions are invariant under time
shift.

4.3 Brownian Motion

Definition 4.11 (Standard Brownian Motion). We define a Wiener Process or Brownain Motion
BM to be a real-valued stochastic process pBtqtě0 such that

1. W0 “ 0,

2. Wt ´Ws „ N p0, t´ sq for all 0 ď s ď t,
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3. Increments over non-overlapping time intervals are independent: for all n P N and
t1, . . . , tn, such that 0 ď t1 ă t2 ă . . . ă tn, the increments Wt1 ,Wt2 ´Wt1 , . . . ,Wtn ´

Wtn´1 are independent.

From the definition it follows that

1. Wt is a Gaussian process.

2. µptq “ ErWts “ 0, for all t ě 0.

3. Covpt, sq “ EpWtWsq “ minpt, sq. Indeed, suppose s ď t, then

ErWtWss “ E rpWt ´Ws `WsqWss “ E
“

W 2
s

‰

“ s.

4. From (ii), it follows that for all a ď b

PrWt P pa, bqs “
1

?
2πt

ż b

a
e´

x2

2t dx.

One can easily generalise the above definition to higher dimensions: an n-dimensional
standard BM is an n-vector pW1ptq, . . . ,Wnptqq of indendent, one dimensional BMs.

Example 4.1 (Brownian motion as the limit of a Random Walk). [I’m rewriting this with Xi

taking values ˘1.] We can use the CLT to show that Brownian Motion arises as a rescaled
random walk. To this end, let Bν,τptq denote the position of our particle at time t “ nτ and let
pXiqi be i.i.d random variables with PpXi “ ´1q “ 1

2 “ PpXi “ 1q. The nwe can define the
random walk Bν,τ ptq taking value

Bν,τ ptq “ Snν,

at time t “ nτ , where Sn “
řn
i“1Xi One can check that EpBν,τ ptqq “ 0 and

V arpBν,τ ptqq “ ν2n “ ν2n “ t
ν2

τ
.

Now, assuming ν2{τ “ 1, we can rewrite the above as

Bν,τ ptq “
Sn
?
n

?
nν “

Sn
?
n

?
t.

Applying the Central Limit Theorem for IID sequences, given in theorem 2.6, we obtain

lim
nÑ8
t“nτ

Ppa ď Bν,τ ptq ď bq “ lim
nÑ8

P
ˆ

a
?
t
ď

Sn
?
n
ď

b
?
t

˙

“
1
?

2π

ż b?
t

a?
t

e´x
2{2 dx.

We have thus proved that, for each t, Bν,τ ptq
D
ÝÑWt, as nÑ8 where τ “ t{n.
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Actually we have a far more powerful result known as a functional central limit theorem
which shows that a similar limit exists in more general scenarios.

Theorem 4.4. (Donsker’s theorem) Let tXiuiě0 be iid random variables with EX1 “ 0 and
EX2

i “ 1. Define
Sn “ X1 `X2 ` . . .`Xn.

Let

Znptq “
Srnts
?
n
, 0 ď t ď 1.

Then Zn
D
ùñW where W is a Brownian motion on r0, 1s.

Proof. The interested reader is invited to consult [8].

4.4 Simulating Gaussian Processes

Suppose we wish to simulate a Gaussian process Xptq with given mean µptq and covariance
Cps, tq at a finite number of timesteps, say t0, . . . , tN . By definition of the Gaussian process, the
random vector

X “ pXpt0q, Xpt1q, . . . , XptN qq,

is a multivariate Gaussian random variable with mean given by

m “ pµpt0q, . . . , µptN qq P RN (4.2)

and N ˆN covariance matrix

Σi,j “ CovpXptiq, Xptjqq. (4.3)

We know that the matrix Σ is both symmetric and non-negative definite. Thus, as described in
Section 2.2.4, we can generate samples from N pm,Σq by using a Cholesky decomposition of Σ.

Sampling from Gaussian Process: Method 1

Suppose we wish to sample Xptq over timesteps t0 to tN :

1. Generate the mean vector m as in (4.2).
2. Generate the covariance matrix Σ as in (4.3).
3. Generate sample from the distribution N pm,Σq.

Exercise 4.1. Implement code to generate samples of the four well known Gaussian processes
described previously.

The above method is exact, in the sense that we are able to exactly simulate the value of Xptq
at the fixed timesteps t0, . . . , tN . Of course, this is only possible for finitely many points, and if
we wish to generate samples from Xpt1q where t1 lies between two points, then we can employ
some interpolation, which will result in bias being introduced. By increasing N the mesh will get
finer, and the interpolation error (and thus the bias) will decrease, however we must be mindful of
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the ocmputational cost. The cost of the Cholesky algorithm is OpN3q, which grows quite quickly.

A very useful property of multivariate Gaussian random variables is that if we condition on
part of the random vector, the resulting distribution remains Gaussian. To see this, suppose that

X „ N pm,Σq,

and suppose that we can write X as X “ pX1,X2q
J, and

Σ “

„

Σ11 Σ12

Σ21 Σ22



Proposition 4.5. Given X “ pX1,X2q
J „ N pm,Σq, then the marginal distributions of X1

and X2 satisfy:
X1 „ N pm1,Σ11q,

X2 „ N pm2,Σ22q.

The conditional distribution of X2 conditional on X1 is a multivariate normal with

ErX2 |X1s “m2 ` Σ21Σ´1
11 pX1 ´m1q.

and
VarpX2 |X1q “ Σ22 ´ Σ21Σ´1

11 Σ12.

Proof. Exercise (to be put in Exercise sheet.)

Using these properties we can develop are more efficient scheme to sample Gaussian pro-
cesses, more specifically to interpolate between already simulated points of a Gaussian process.
The idea is to draw new points conditional on the values that we have already generated. For
example if we have previously generated a sample of the Gaussian process at values 0.5 and 1.0,
then we subsequently generate exact samples at points 0.25 and 0.75 conditional on Xp0.5q and
Xp1.0q.

As a particular example consider the folowing recursive algorithm. Suppose we wish to generate
Xn`1 at time tn`1 given that we have already generated X0, . . . , Xn. We thus need to specify
the conditional distribution of Xn`1 given X0, . . . , Xn. Writing [Typo fixed here:]

Rn`1 “

„

Rn rn
rJn Cptn`1, tn`1q



,

where rn,i “ Cptn`1, tiq. Using Proposition 4.5 we know that Xn`1 „ N pm,σ2q where

m “ µptn`1q ` rn ¨R
´1
n ppXpt0q, . . . , Xptnqq ´ pµpt0q, . . . , µptnqqq

J,

and
σ2 “ Cptn`1, tn`1q ´ rn ¨R

´1
n rn.

A very efficient scheme can be constructed by combining this update formula with the Cholesky
decomposition.
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Exercise 4.2. Suppose additionally that the Gaussian process Xptq is Markovian, so that in
particular, you only need to know the value of Xptnq to generate Xptn`1q. Construct a scheme
to iteratively sample Xptiq over a sequence of points t0 ă t1 ă t2 ă . . . .

1. In the case of Brownian motion, show that the update formula can be written as:

Xpti`1q “ Xptiq `
`
a

ti`1 ´ ti
˘

Z,

where Z „ N p0, 1q.

2. Derive a similar update formula for the stationary Ornstein-Uhlenbeck process with mean
0 and covariance Cps, tq “ exppα|t´ s|{2q.

4.4.1 Simulating Stationary Gaussian Processes

While the above methods are applicable for simulating general Gaussian processes on gen-
eral meshes t0 ă t1 ă . . . ă tN they are computationally expensive, since they ultimately
will require OpN3q floating point operations to generate a single sample. However, in the
particular case where we wish to simulate a stationary Gaussian process on a regular mesh
t0,∆t, 2∆t, . . . , N∆tu, then we can reduce the problem to a discrete Fourier transform and
obtain an almost magical speedup by employing a Fast-Fourier Transform.

Indeed, suppose we wish to simulate a stationary Gaussian process Xptq with mean µ “ 0
and covariance Cpt, sq “ Cpt ´ sq. Then given timesteps t0,∆t, 2∆t, . . . , n∆tu, the random
vector pXpt1q, Xpt2q, . . . , Xptnqq has a covariance matrix of the form:

Σ “

¨

˚

˚

˚

˚

˚

˚

˝

c0 c1 c2 ¨ ¨ ¨ cn
c1 c0 c1 ¨ ¨ ¨ cn´1

c2 c1 c0
. . . cn´2

...
...

...
. . .

...
cn cn´1 cn´2 ¨ ¨ ¨ c0

˛

‹

‹

‹

‹

‹

‹

‚

.

Notice that the matrix Σ is symmetric, and is constant along the diagonals of the matrix. This
matrix is a symmetric Toeplitz matrix.

Definition 4.12. (Toeplitz Matrix) A matrix Σ is said to be a Toeplitz matrix, if each diagonal
takes a constant value, that is

Σi,j “ Σi`1,j`1,

for all i, j P t1, . . . , n´ 1u.

Definition 4.13. A circulant matrix is a matrix of the form:

A “

¨

˚

˚

˚

˚

˚

˚

˝

a0 an´1 ¨ ¨ ¨ a2 a1

a1 a0 ¨ ¨ ¨ a3 a2
...

. . . . . . . . .
...

...
...

...
. . .

...
an an´1 an´2 ¨ ¨ ¨ a0

˛

‹

‹

‹

‹

‹

‹

‚

.
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A circulant matrix is constructed by starting with a vector a “ pa0, . . . , anq as the first row,
and obtaining the each row by a periodic left shift of the previous row.

The important observation that we shall make use of is that we can embed Σ in a 2n ˆ 2n
circulant matrix as follows:

Π “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

c0 c1 c2 ¨ ¨ ¨ cn cn´1 cn´2 cn´3 ¨ ¨ ¨ c1

c1 c0 c1 ¨ ¨ ¨ cn´1 cn cn´1 cn´2 ¨ ¨ ¨ c2

c2 c1 c0
. . . cn´2 cn´1 cn cn´1 ¨ ¨ ¨ c3

...
...

...
. . .

...
...

...
...

. . .
...

cn cn´1 cn´2 ¨ ¨ ¨ c0 c1 c2 c3 ¨ ¨ ¨ cn´1

cn´1 cn cn´1 ¨ ¨ ¨ c1 c0 c1 c2 ¨ ¨ ¨ cn´2

cn´2 cn´1 cn ¨ ¨ ¨ c2 c1 c0 c2 ¨ ¨ ¨ cn´3
...

...
...

. . .
...

...
...

...
. . .

...
c1 c2 c3 ¨ ¨ ¨ cn´1 cn´2 cn´3 cn´4 ¨ ¨ ¨ c0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Unfortunately, this matrix will not be nonnegative definite in general, which we require, however
this will hold under some additional assumptions.

Lemma 4.6. Suppose that c0 ě c1 ě ¨ ¨ ¨ ě cn ě 0 and

2ck ď ck´1 ` ck`1,

for k “ 1, . . . , n´ 1, then C is a covariance matrix, i.e. C is nonnegative definite.

Why are we interested in this representation? At first glance this might seem like a futile
exercise, however the importance of this embedding arises from the connection between circulant
matrices and the discrete Fourier transform.

Definition 4.14. Given a vector x “ px0, . . . , xnq
J P Cn, define the discrete Fourier transform

of x by the vector

pFxqj “
n´1
ÿ

k“0

e´p2πi{nqjkxk “
n´1
ÿ

k“0

ωjkxk,

for j “ 0, . . . , n´ 1 where ω “ e´2πi{n.

Therefore the computing discrete fourier transform of x is equivalent to computing Fx,
where

F “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 ¨ ¨ ¨ 1
1 ω ω2 ¨ ¨ ¨ ωn´1

1 ω2 ω4 . . . ω2pn´1q

...
. . . . . . . . .

...
...

...
...

. . .
...

1 ωn´1 ω2pn´1q ¨ ¨ ¨ ωpn´1q2 .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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It turns out that F´1 “ F {n. Normally, computing the matrix-vector produce Fx would require
Opn2q operations, however using a Fast Fourier Transform reduces this to Opn log nq steps. The
connection to circulant matrices is the following. Let b “ pb0, b1, . . . , bn´1q

J be a complex
valued vector, and let B be the circulant matrix generated by b, i.e.

B “

¨

˚

˚

˚

˚

˚

˚

˝

b0 bn´1 ¨ ¨ ¨ b2 b1
b1 b0 ¨ ¨ ¨ b3 b2
...

. . . . . . . . .
...

...
...

...
. . .

...
bn´1 bn´2 ¨ ¨ ¨ b1 b0

˛

‹

‹

‹

‹

‹

‹

‚

.

We then have the following fundamental result: [Typo here was fixed]

Lemma 4.7. The circulant matrix B is diagonalized by the DFT matrix F . More specifically,

B “ FDF´1,

where D is a diagonal matrix containing the eigenvalues of B, λ0, . . . , λn´1,

λi “ pFbqi.

This factorization is very commonly exploited in both numerical PDE schemes, as well as
methods to perform efficient matrix-vector multiplication. Our objective is to generate a sample
from the Gaussian distribution N p0,Πq, which entails computing a square root of the matrix Π.
To this end, assuming that B is non-negative definite (i.e. nonnegative eigenvalues) define

E “ Fdiag
ˆ

!

a

λi{n
)n´1

i“0

˙

.

Then
EE

J
“ Fdiag

´

tλi{nu
n´1
i“0

¯

F “ FdiagpλiqF´1 “ B.

Therefore, E is the square root of B in Cnˆn. Now that E is a complex–valued matrix. Let us
write E “ E1 ` iE2 for real valued matrixes. Then

EE
J
“ E1E

J
1 ` E2E

J
2 ` ipE2E

J
1 ´ E1E

J
2 q,

and since B is real-valued, B “ E1E
J
1 ` E2E

J
2 . Now let Z1 and Z2 be N p0, Iq and define

X “ EZ “ pE1 ` iE2qpZ1 ` iZ2q “ pE1Z1 ´ E2Z2q ` ipE2Z1 ` E1Z2q.

Letting X1 “ RerXs, then
ErX1s “ 0,

and
VarpX1q “ VarpE1Z1 ´ E2Z2q “ E1E

J
1 ` E2E

J
2 “ B.

This give us a method for sampling a stationary Gaussain process at equidistant intervals.
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Generating a stationary Gaussian process

Assume µ “ 0 and we are given covariance C and let ti “ i∆t, i “ 0, . . . , n´ 1.

1. Set c “ pc0, c1, . . . , cn´1, cn, cn´1, . . . , c1q, where ci “ Cpt0, tiq.

2. Set λ “ Fc using FFT.

3. Generate Z “ Z1 ` iZ2, Z1,Z2 „ Np0, Iq.

4. Compute Y “
a

diagpλ{nqZ.

5. Compute V “ FY using FFT.

6. Output X “ RepV0, . . . , Vnq
J.

If we performed naive matrix-vector multiplications this algorithm would cost Opn2q, how-
ever using the FFT, the algorithm is Opn log nq.

So what happens when the embedding circulant matrix is not nonnegative definite? Then
we cannot use this approach directly. However, there are two possible approaches to generate a
sample in this case:

1. Embed the symmetric Toeplitz in an even larger circulant matrix.

2. Use only the positive part of the circulant matrix.

As discussed in [18] it is typically always possible choose an large circulant matrix which is
nonnegative definite. In this case, we can use the above exact scheme for generating the sample.
If we must resort to option (2), then the procedure is approximate. However, one can typically
quantify the error incurred in this case, so the approach is still feasible.

While this algorithm provides a perfectly adequate scheme for simulating stationary Gaussian
processes, the true power of this method can be seen when using it to simulate stationary Gaussian
random fields, i.e. a Rd–indexed Gaussian process. Indeed, many scientific computing software
libraries provide algorithms for simulating stationary GRFs based on circulant embeddings. See
[9] for more information.

Exercise 4.3. Consider the stationary Gaussian process with exponential covariance Cpτq “
e´|τ |{l.

1. Implement a method for simulating this process in a programming language of your choice.

2. (Challenging optional exercise:) Show that the eigenvalues λi in this case are always
positive.

4.5 SDEs and Diffusion Processes

One very important class of continuous-time stochastic processes arise as solutions of Stochastic
Differential Equations (SDEs). These models play a prominent role in a range of application
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areas, including biology, chemistry, epidemiology, mechanics, microelectronics, economics, and
finance. A complete understanding of SDE theory requires some familiarity with advanced
probability and stochastic processes (though I certainly wouldn’t want to deter an interested
reader from [12] and [6]). Hopefully you will developed an understanding of the use of SDEs in
the Applied Stochastic Processes or another equivalent module. In this section we shall describe
how to simulate SDEs numerically, and analyse the behaviour and performance of each scheme.

At the simplest level, we can consider an SDE as adding a noise term to the right-hand side of a
differential equation. We would like to construct the stochastic analogue of the ODE:

9xptq “ fpxq, xp0q “ x0,

which has solution of the form

xptq “ x0 `

ż t

0
fpxpsqq ds,

that is, an SDE for Xt
9Xt “ fpXtq ` gpXtqζt, Xp0q “ x0, (4.4)

where ζt is a source of noise. In most situations, scientists and engineers consider systems where
ζt is white, in particular, the noise satisfies the following properties:

1. Eζt “ 0.

2. ζt is independent of ζs if s ‰ t. Formally Epζtζsq “ δpt´ sq.

3. ζt is strictly stationary.

Unfortunately, no such process exists as a function in the space of real-valued paths. In any
case, our intuition at this point is that a good candidate for ζt would be the derivative of Brownian
motion, in some sense, so that ζt “ 9Wt “

dW
dt is formally the derivative of Brownian motion.

Clearly 9Wt doesn’t exist in any ordinary sense of the derivative. Following our intuition from
ODEs, by a solution of this SDE, we mean a stochastic process Xt which satisfies

Xt “ x0 `

ż t

0
fpXsq ds`

ż t

0
gpXsq dWs.

The second term
ş

gpXsq dWs is a stochastic integral, which has yet to be defined. In the next
section we will construct a meaningful interpretation which corresponds to our intuition as to
how a process driven by white noise should behave.

4.5.1 Stochastic Integrals

Unless otherwise stated, throughout this section we will be referring to real-valued stochastic
processes. Inspired by the construction of the Riemann integral, we want to do something similar
to define the stochastic integral. In doing so we need to bear in mind that we are attempting
to integrate a stochastic process - as opposed to a function - with respect to another stochastic
process, and while the integral of a function is, for a fixed T , the stochastic integral is a random
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variable.

1. Analogous to step functions, we define an elementary or simple process on r0, T s, to be a
process of the form

ψpt, ωq “
K
ÿ

j“0

φjpωq1rtj ,tj`1s
,

where t0 “ t0, t1, . . . , tK “ T u is again some partition of the interval r0, T s and the φ1js
are random variables, (a.s.) uniformly bounded in j and ω. For processes of this form, it
seems reasonable to define

ż T

0
ψpt, ωqdWt :“

K
ÿ

j“0

φjpωqpW ptj`1q ´W ptjqq,

thus mimicking a Riemann-Stieljes integral. The W ptj`1q ´W ptjq is an increment of the
Brownian motion, which we know has distribution N p0, tj`1 ´ tjq.

2. Then given a process fpt, ωq we wish to find a sequence ψn of elementary processes that
approximate fpt, ωq and define the stochastic integral

şT
0 fps, ωqdWs to be the limit of the

stochastic integrals of the ψn.

For a very simple example, consider if φj “ 1 for all j, so that

ψpt, ωq “
K
ÿ

j“0

1rtj ,tj`1s
“ 1.

In this case,

ż T

0
1 dWt “

K
ÿ

j“0

W ptj`1q ´W ptjqq

“WtK ´Wt0

“WT .

Thus in this case, we’re just adding up the increments of W ptq, to get W pT q. In the more general
case, roughly speaking, we’re weighting the increments with a random variable φjp¨q. This
construction sounds reasonable, however, there are a couple of problems and points to clarify.
Firstly, assuming that the process above does work, we would expect the limit to be independent
of the point t˚ P rtj , tj`1s that we choose to approximate the integrand. It turns out that this is
not the case, even if the integrand is continuous. We can show this fact with an example

Example 4.2. Suppose we want to calculate
şT
0 WtdWt. We consider a partition with mesh size

2´n and approximate the integral with the elementary process

φn “
ÿ

jě0

W ptjq1rtj ,tj`1s
.
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Then, for every n P N,
E
ÿ

jě0

W ptjqrW ptj`1q ´W ptjqs “ 0,

since W ptj`1q ´ W ptjq is independent of W ptjq. However, if instead we approximate the
integrand with the process ψ̃n “

ř

jě0W ptj`1q1rtj ,tj`1s
, then

E
ÿ

jě0

W ptj`1q rW ptj`1 ´W ptjqs “ E
ÿ

jě0

pW ptj`1q ´W ptjqq rW ptj`1 ´W ptjqs
nÑ8
ÝÝÝÑ T.

(4.5)

Brownian motion is continuous so what is the problem? Both ψn and ψ̃n seem perfectly
reasonable approximating sequences, so why are we obtaining different results? The problem
is that Brownian motion, being a.s. non-differentiable, simply “varies too much” in the interval
t˚ P rtj , tj`1s and this leads to the phenomenon illustrated above.1 There is no way around this
pickle, it is simply a fact that different choices of t˚ P rtj , tj`1s lead to different definitions of
the stochastic integral. The most popular choices are

1. t˚ “ tj which gives the Itô integral, and

2. t˚ “ ptj ` tj`1q{2 which gives the Stratonovich integral.

We will discuss the differences between these two stochastic integrals later on. For the moment,
we will stick to the choice t˚ “ tj , i.e. the Itô interpretation of the stochastic integral.

4.6 Stochastic integral in the Itô sense.

In these notes we will not go through all the details of the proofs of the construction of the Itô
integral. A very accessible construction of the stochastic integral can be found in [12].

To construct an Itô integral
şT
0 fpt, ωq dWt, we require the following assumptions on f :

1. fpt, ωq is B ˆ F-measurable where B is the Borel σ-algebra of r0, T s.

2. fpt, ¨q is Ft adapted for all t ě 0, where Ft is the natural filtration associated with the BM
Wt;

3. E
şT
0 fpt, ωq

2dt ă 8.

Definition 4.15. We denote by J p0, T q, or simply J the class of stochastic processes fpt, ωq :
Rě0 ˆ Ω Ñ R for which the above three properties hold.

Now that know how to interpret
şT
0 fpt, ωqdWt, at least in the Itô sense. Let us now list all

the properties that help in the calculation of the stochastic integral

Theorem 4.8 (Properties of the Itô integral.). For every f, g P J p0, T q, t, s P r0, T s and for
every α, β P R:

1Note that, Riemann-Stieljes integrals
şT

0
fpxqdgpxq over f with respect to g requires that g has bounded total

variation. However, Brownian motion has a.s. infinite total variation.
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1. Additivity:
şt
0 fdWt “

şS
0 fdWt `

şT
S fdWt

2. Linearity:
şT
0 pαf ` βgqdWt “ α

şT
0 fdWt ` β

şT
0 gdWt;

3. E
şT
0 fdWt “ 0,

4. IT :“
şT
0 fdWt is FT -measurable

5. It admits a continuous version

6. Itô isometry:

E
ˆ
ż T

0
fdWt

˙2

“ E
ż T

0
f2dt,

or, more generally,

E
ˆ
ż t

0
fpuqdWu

ż s

0
gpuqdWu

˙

“ E
ż minpt,sq

0
fpuqgpuq du

7. If fptq is a deterministic function, then It is a Gaussian random variable with mean zero,
and variance

şt
0 f

2psq ds.

Definition 4.16. Let pΩ,F ,Pq be a probability space and Ft a filtration to which the process Mt

is adapted. We say that Mt is a (square-integrable) Ft-martingale if E|Mt|
2 ă 8 and

ErMt |Fss “Ms, @t ě s.

Proposition 4.9. For f P J pr0, T sq, the Itô stochastic integral It “
şt
0 fps, ωqdWs is a square-

integrable Ft-martingale.

4.7 The Itô Formula

Having constructed the Itô integral, we can now make sense of what it means for a process Xt to
satisfy

dXt “ bpt, ωq dt` σpt, ωqdWt,

namely, a process which satisfies

Xt “ X0 `

ż t

0
bps, ωq ds`

ż t

0
σps, ωqdWs.

We will call Xt an Itô process. At this point you should be convinced that the Itô integral doesn’t
follow the usual integration rules. The Itô formula provides us with a chain rule for Itô processes.

Theorem 4.10 (Itô’s formula). Let Xt be given by

dXt “ bpt, ωqdt` σpt, ωqdWt.

Let fpt, xq be a C1,2 function (i.e. C1 in time, C2 in space),then the process Yt “ fpXtq satisfies

dfpXtq “

ˆ

Btfpt,Xtq ` Bxfpt,Xtqbpt, ωq `
1

2
Bx,xfpt,Xtqσ

2pt, ωq

˙

dt`Bxfpt,Xtqσpt, ωqdWt.

(4.6)
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4.7.1 Multidimensional Itô Processes

Our construction of Itô processes can be generalised to higher dimensions. Indeed, we can
construct an Rd-valued Itô process, written as:

dXt “ bpt, ωq dt` σpt, ωqdWt, (4.7)

where
b : r0, T s ˆ Ω Ñ Rd,

σ : r0, T s ˆ Ω Ñ Rdˆm,

and where Wt is an m-dimensional Brownian motion. In this case
şt
0 σps, ωqdWs is simply a

d-vector of Itô integrals, where the ith component is given by

„
ż t

0
σdW i

s



i

“

ż t

0

m
ÿ

j“1

pσqi,jdW j
s .

Itô’s formula is then generalised as follows. If g “ gpt, xq : r0,8qˆRd Ñ R and Yt “ gpt,Xtq,
the multidimensional Itô formula reads:

dYt “Btgpt,Xtq dt`
d
ÿ

i“1

Bxigpt,Xtq dX
i
t `

1

2

d
ÿ

i,j“1

Bxi,xjgpt,Xtq drX
i, Xjst

“Btgpt,Xtq dt`
d
ÿ

i“1

Bxigpt,Xtq dX
i
t `

1

2

d
ÿ

i,j“1

Bxi,xjgpt,Xtq

m
ÿ

l“1

σi,lσj,l dt,

or in vector notation

dYt “ Btgpt,Xtq dt`∇gpt,Xtq ¨ dXt `
1

2
pσσJq : ∇∇gpt,Xtq dt,

where A : ∇∇f “
řd
i,j“1Ai,jBxi,xjf .

4.8 Stochastic Differential Equations

Let Wt, t ě 0 be a Brownian motion process. An equation of the form

dXt “ bpt,Xtq dt` σpt,Xtq dWt, X0 “ η (4.8)

where bpt, xq and σpx, tq are given, the initial state η is a given random variable and Xt is the
unknown process is called a (Itô) stochastic differential equation (SDE), driven by Brownian
motion. The functions bpt, xq and σpx, tq are known as the drift and diffusion coefficients respec-
tively. The solution of such an equation, if it exists, is called an Itô diffusion.

First we will specify what it means to be a solution of an SDE. Let Wt be a Brownian mo-
tion, and let Gt be the filtration generated by Wt and the initial state η.
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Definition 4.17. An process Xt is called a strong solution of the SDE (4.8) if it is Gt-adapted,
and for all t ą 0, the integrals

şt
0 bps,Xsq ds and

şt
0 σps,Xsq dWs exist, with the second being

an Itô integral, and

Xt “ η `

ż t

0
bps,Xsq ds`

ż t

0
σps,XsqdWs.

Such a solution is unique if, whenever X̂t is another strong solution, PpXt ‰ X̂tq “ 0, for all
t ě 0.

As with ODEs, we want to establish some general conditions under which the strong solution
exists and is unique. The following theorem provides sufficient conditions to existence. Perhaps
unsurprisingly, the proof is quite similar to the proof of the analogous Picard existence theorem
for ODEs.

Theorem 4.11 (Existence and Uniqueness). If the following conditions are satisfied

1. b and σ are locally Lipschitz in x uniformly in t, that is, for every T and N , there exists a
constant K “ KpN,T q such that, for all |x|, |y| ď N and 0 ď t ď T :

|bpt, xq ´ bpt, yq| ` |σpt, xq ´ σpt, yq| ď K|x´ y|,

2. The coefficients b and σ satisfy the linear growth condition:

|bpt, xq| ` |σpt, xq| ď Kp1` |x|q,

3. The initial state η is independent of pWt, 0 ď t ď T q and Eη2 ă 8.

Then there exists a unique strong solution Xt of the SDE (4.8). Xt has continuous paths, and
moreover

E
ˆ

sup
0ďtďT

X2
t

˙

ď Cp1` Eη2q,

where the constant C depends only on K and T .

Remark 4.12. In particular, if the coefficients b and σ have continuous first derivatives, then the
local-Lipschitz condition holds.

Theorem 4.13. Assume the conditions of Theorem 4.11 hold. The strong solution Xt of the SDE
(4.8) is a Markov process.

4.8.1 Some examples of SDEs

Example 4.3. Ornstein-Uhlenbeck process Consider a particle of unit mass moving with mo-
mentum pptq at time t moving within a fluid, subject to irregular “kicks” due to neighbouring
particles. The dynamics of the particle can be modelled by a dissipative force ´λpptq and a
fluctuating force σ 9ξptq, where 9ξptq is the white noise process. Newton’s second law gives us:

9pptq “ ´λpptq ` σ 9ξptq,
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which can be interpreted as the following SDE:

dPt “ ´λPt dt` σ dWt.

This is known as the Ornstein Uhlenbeck process. It is one of the few SDEs that can be solved
exactly. Those who attended the Applied Stochastic Processes course will be very familiar with
this process. We shall revisit properties of this process later on.

Example 4.4. Langevin equation If the particular described above is imbued with a potential
energy V pqq at position q P R, then the dynamics of the system will be described by the following
SDE

dQt “ Pt dt

dPt “ r´λPt ´ V
1pQtqs dt` σdWt,

for parameters λ, σ ą 0. The particle is then characterised by a position Qt and a momentum Pt.
This is a multidimensional SDE which can be written as

dXt “ bpXtq dt` Σ dWt,

for Xt “ pqt, ptq
J, where

bppq, pqq “

ˆ

p
´λp´ V pqq

˙

,

and

Σ “

ˆ

0 0
0 σ

˙

An interesting feature of this process is that the noise acts only on the momentum. We shall revisit
properties of this process later on.

Example 4.5. Duffing-van der Pol equation Consider the following SDE

dQt “ Pt dt

dPt “ r´Ptpλ`Q
2
t q ` pαQ´Q

3qs dt` σQt dWt,

which comprises a nonlinear dissipation with parameter λ, and a conservative force arising from
the potential V pqq “ q4{4´ αq2{2 where α is a tilting parameter.

Unlike the previous two examples, this SDE has multiplicative noise, i.e. the noise term
depends on the state of the process.

4.9 Numerical methods for Itô Diffusions

While there are a few examples where SDEs can be solved explicitly, like ODEs these tend to be
quite exceptional. In general, for nonlinear drift or diffusion functions, the explicit solution will
not be available and one must resort to numerical techniques. In this section we shall examine
numerical approximations Xn of the solution Xptnq of an SDE

dXt “ bpXtq dt` σpXtq dWt, (4.9)

where tn “ n∆t for some n P N.
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4.9.1 The Euler-Maruyama Scheme

A very simple approach is the Euler-Maruyama method, whose derivation we now sketch. Given
a time interval rtn, tn`1s, since Xt is markovian

Xptn`1q “ Xptnq `

ż tn`1

tn

bpXpsqq ds`

ż tn`1

tn

σpXpsqq dWs.

Assuming that σ and b are sufficiently smooth so that they do not vary to much over rtn, tn`1s,
we would feel justified in making the following approximation:

Xn`1 “ Xn ` bpXnq

ż tn`1

tn

`σpXnq

ż tn`1

tn

dWs

“ Xn ` bpXnq∆t` σpXnq∆Wn

where ∆Wn “ W ptn`1q ´ W ptnq „ N p0,∆tIq. Note that we approximate σpXsq with
σpXptnqq consistent with the definition of the Itô integral. This is the Euler-Maruyama method:

Definition 4.18 (Euler-Maruyama method). For time step ∆t ą 0 and initial condition X0, the
Euler-Maruyama approximation Xn to Xpn∆tq is defined by

Xn`1 “ Xn ` bpXnq∆t` σpXnq∆Wn,

where ∆Wn “
ştn`1

tn
dW prq “W ptn`1q ´W ptnq and W is a standard Brownian motion.

The Gaussian increments are IID and easy to sample. A typical algorith for generating a sam-
ple path X0, . . . , XN approximating Xp0q, . . . , XptN q using the Euler-Maruyama discretisation
is given by:

Euler-Maruyama Approximation

Set X0 to be initial state and let ∆t ą 0,

1. For n “ 1 to N :

a) Sample ξ „ N p0, Iq.
b) Set Xn`1 “ Xn ` bpXnq∆t`

?
∆tσpXnqξ.

4.9.2 The Milstein scheme

The idea of Milstein’s method is to improve on the approximation

ż tn`1

tn

σpXuq dWu « σpXnq

ż tn`1

tn

dWu.

To do this, we use the Itô formula to get an expression for gpXuq. We will focus on the case
where Xt is a scalar diffusion. We shall use the following lemma
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Lemma 4.14. Let ∆t ą 0 and n P N. Then we have the following result:

ż pn`1q∆t

n∆t

ż s

n∆t
dWu dWs “

1

2
p∆W 2

n ´∆tq,

where ∆Wn “Wpn`1q∆t ´Wn∆t.

Proof. Let fpxq “ x2, then applying Itô’s formula to fpWtq:

dW 2
t “ 2Wt dWt,`dt,

which implies that

ż pn`1q∆t

n∆t
Wt dWt “

1

2

˜

ż pn`1q∆t

n∆t
dW 2

t ´

ż pn`1q∆t

n∆t
dt

¸

“
1

2

´

W 2
pn`1q∆t ´W

2
n∆t `∆t

¯

,

as required. Furthermore, we have that

ż pn`1q∆t

n∆t

ż s

n∆t
dWu dWs “

ż pn`1q∆t

n∆t
Ws dWs ´Wn∆tpWpn`1q∆t ´Wn∆tq

“
1

2
W 2
pn`1q∆t `

1

2
W 2
n∆t ´

1

2
∆t´Wn∆tWpn`1q∆t

“
1

2
p∆W 2

n ´∆tq.

As before a single increment of the solution Xt from tn to tn`1 is given by

Xtn`1 “ Xtn `

ż tn`1

tn

bpXsq ds`

ż tn`1

tn

σpXsq dWs. (4.10)

Applying Itô’s formula to the drift and diffusion coefficients we obtain

bpXsq “ bpXtnq `

ż s

tn

LbpXuq du`

ż s

tn

b1σpXuq dWu,

and
σpXsq “ σpXtnq `

ż s

tn

LσpXuq du`

ż s

tn

σ1σpXuq dWu,

where Lfpxq “ bpxqf 1pxq` 1
2σpxqf

2pxq is the generator of the SDE. Substituting these formulas
into (4.10) writing Xk “ Xk∆t, to get

Xn`1 “ Xn ` bpXnq∆t` σpXnq∆Wn

`

ż tn`1

tn

ż s

tn

LbpXuq du ds`

ż tn`1

tn

ż s

tn

pb1σqpXuq dWu ds

`

ż tn`1

tn

ż s

tn

LσpXuq du dWs `

ż tn`1

tn

ż s

tn

σ1σpXuq dWu dWs.
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Up to now we have not made any approximations. We now discard any terms which are higher
than ∆t. To do so, we note that for α, β ě 0, we have p∆tqαp∆Wnq

β “ Opp∆tqα`β{2q.
Applying Lemma 4.14 we have that

Xn`1 “ Xn ` bpXnq∆t` σpXnq∆Wn ` pσ
1σqpXnq

ż tn`1

tn

ż s

tn

dWu dWs ` op∆tq

« Xn ` bpXnq∆t` σpXnq∆Wn `
1

2
pσ1σqpXnqp∆W

2
n ´∆tq,

where ∆W 2
n “

`

Wpn`1q∆t ´Wn∆t

˘2. This leads to the approximating process defined on
0 “ t0 ă t1 ă . . . ă tN “ T , where tn´1 ´ tn “ ∆t, by

Xn`1 “ Xn ` bpXnq∆t` σpXnq∆Wn `
1

2
pσ1σqpXnqp∆W

n
n ´∆tq.

Noting that

Wpn`1q∆t ´Wn∆t „ N p0,∆tq,

we have that ∆W 2
n has the same distribution as ξ2

n where ξn „ N p0, 1q. The Milstein algorithm
to approximate a scalar diffusion process is thus given as follows:

Milstein Approximation

Set X0 to be initial state and let ∆t ą 0,

1. For n “ 1 to N :

a) Sample ξ „ N p0, 1q.
b) Set Xn`1 “ Xn ` bpXnq∆t`

?
∆tσpXnqξ `

1
2∆tpσ1σqpXnqpξ

2 ´ 1q.

Note that for processes with additive noise (i.e. constant diffusion coefficient), the milstein
approximation reduces to the Euler Maruyama approximation. It is possible to derive an analogous
Milstein approximation for multivariate processes. In general, however, one will have to deal
with Lévy area terms of the form

Aij “

ż t

s

ż r

s
dWippqdWjprq ´

ż t

s

ż r

s
dWjppqdWiprq.

which arise from non-diagonal terms in the diffusion tensor σ. These cannot be handled in the
same manner we dealt with the iterated integral that arose in the scalar version. However, in very
specific cases, sampling of these Levy areas Aij can be avoided. For example, if the diffusion
tensor σpxq is a diagonal matrix, then we have that

Xn`1 “ Xn ` bpXnq∆t` σpXnq∆Wn `
1

2

d
ÿ

k“1

Bσk,k
Bxk

pXnqσk,kpXnqp∆W
2
k,n ´∆tq.
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4.10 Discretisation Error

Unlike the methods we discussed for Gaussian processes, the discretisation schemes that we
have introduced for diffusion processes are not exact. In particular the distribution of the random
vector pX0, X1, . . . , XN qwill be different from that of pX0, X∆t, . . . , X∆N q, although we would
expect that in some sense, the difference vanishes as ∆tÑ 0. Since both the exact and numerical
approximations are random, different means of quantifying the error can be considered.

4.10.1 Strong Error

Let Xt be the solution of the SDE (4.9), and let X̂n be a numerical approximation to Xt, using
the same Brownain motion as Xt does. The strong error of the approximation X̂n at time N∆t is
given by

estrong “ E|XN∆t ´ X̂N |,

for N sufficiently large. For a fixed realisation of the Brownian motion, both Xt and X̂n are
deterministic processes, and |XN∆t´ X̂N | measures the distance between the two solutions after
N steps. The strong error estrong then averages this distance over all realisations of Brownian
motion Wt. We say that a numerical approximation X̂n has strong order r error if, for all N ą 0
there exists δ “ δpNq and a constant K “ KpN, δq such that for ∆t ď δ:

E|X̂n ´Xn∆t| ď Kp∆tqr, @n ď N.

Let X̂EM
n be the Euler-Maruyama approximation given above, with step size ∆t. Under appro-

priate assumptions on the drift b and diffusion coefficient σ, given N ą 0, there is a constant
K ą 0 such that

eEMstrong “ E|X̂EM
n ´Xn∆t| ď K

?
∆t, n ď N,

for all sufficiently small ∆t, so that the Euler-Maruyama approximation has strong order 1
2 error.

Similarly, let XMIL
n be the Milstein approximation, with step size ∆t. Then, under appro-

priate conditions on the drift b and diffusion coefficient σ, given N ą 0, there exists K ą 0 such
that

eMIL
strong “ E|X̂MIL

n ´Xn∆t| ď K∆t, n ď N

for all sufficiently small ∆t. Thus, the Miltein scheme has strong order 1 error.

4.10.2 Weak Error

In some applications we are less interested in the accuracy of the paths of X̂n compared to Xn∆t

and more interested that distribution of X̂n is accurate. This motivates the concept of weak error.
As before, let Xt be the solution of (4.9) and let X̂n be a numerical approximation of Xt. Let
F be a class of functions from Rd Ñ R, typically the set of all bounded, twice differentiable
functions. Then the error in the distribution X̂n can be quantified by

eweakpfq “
ˇ

ˇ

ˇ
ErfpX̂nqs ´ ErfpX∆tnqs

ˇ

ˇ

ˇ
,
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for all f P A, and sufficiently small ∆t. The supremum of this quantity

eweak “ sup
fPA

eweakpfq,

is called the weak error of X̂n at time n∆t. If the weak error is small, the distribution of the
numerical solution is close to the distribution of the exact solution. We say that a numerical
approximation X̂n to X∆tn has weak error order r if, for all N P N, there exists K ą 0 and
δ ą 0 such that

sup
fPA

ˇ

ˇ

ˇ
ErfpX̂nqs ´ ErfpXn∆tqs

ˇ

ˇ

ˇ
ď Kp∆tqr @n ď N.

Let X̂EM
n be the Euler-Maruyama approximation with step-size ∆t. Then under appropraite

conditions on the drift and diffusion coefficients, and A, there exists K ą 0 such that

eEMweak “ sup
fPA

ˇ

ˇ

ˇ
EfpX̂EM

n q ´ EfpXn∆tq

ˇ

ˇ

ˇ
ď K∆t,

for all f P A and sufficiently small ∆t. Similarly, the Milstein approximation XMIL
n satifies

eMIL
weak “ sup

fPA

ˇ

ˇ

ˇ
ErfpX̂MIL

n qs ´ ErfpXn∆tqs

ˇ

ˇ

ˇ
ď K∆t,

for all f P A and sufficiently small ∆t.

4.10.3 An explicit computation of the error

As an explicit demonstration of the above error estimates, let’s focus on a specific diffusion
process, namely Geometric Brownian motion given by

dXt “ λXt dt` σXt dWt, (4.11)

where λ and σ are constants. The benefit of considering this SDE is that we can solve it explicitly.
Indeed, we have the following result.

Lemma 4.15. The solution Xt of the geometric Brownian motion defined by (4.11) is given by

Xt “ X0 exp

ˆˆ

λ´
σ2

2

˙

t` σWt

˙

.

Proof. This can be shown immediately by applying Itô’s formula to the function logXt. Details
of the proof are left as an exercise.

Consider the Euler-Maruyama discretisation of (4.11) given by X̂n, so that

X̂n`1 “ X̂n ` λX̂n∆t` σX̂n∆Wn,

where ∆Wn “Wpn`1q∆t ´Wn∆t. We can rewrite this as

X̂n`1 “ p1` λ∆t` σ∆Wnq X̂n,
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or equivalently,

X̂n “

n´1
ź

i“0

p1` λ∆t` σ∆Wiq X̂0.

Consider now

E
ˇ

ˇ

ˇ
X̂n ´Xn∆t

ˇ

ˇ

ˇ
“ E

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ź

i“0

p1` λ∆t` σ∆Wiq X̂0 ´ e
pλ´σ2{2qn∆t`σWn∆t

ˇ

ˇ

ˇ

ˇ

ˇ

“ E

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ź

i“0

p1` λ∆t` σ∆Wiq X̂0 ´

n´1
ź

i“0

epλ´σ
2{2q∆t`σ∆Wi

ˇ

ˇ

ˇ

ˇ

ˇ

Taylor expanding epλ´σ
2{2q∆t`σ∆Wi up to p∆tq2:

epλ´σ
2{2q∆t`σ∆Wi “ 1`

„ˆ

λ´
1

2
σ2

˙

∆t` σ∆Wi



`
1

2

„ˆ

λ´
1

2
σ2

˙

∆t` σ∆Wi

2

`
1

6

„ˆ

λ´
1

2
σ2

˙

∆t` σ∆Wi

3

` . . .

“1`
“

pλ´ σ2{2q∆t` σ∆Wi

‰

` pλ´ σ2{2qσ∆t∆Wi

`
1

2
σ2r∆Wis

2 `
1

6
σ3r∆Wis

3 `Op∆q2.

From the properties of the quadratic variation of Wt, we have that, locally ∆Wi∆Wi “ ∆t, it
follows that:

epλ´σ
2{2q∆t`σ∆Wi “ 1` λ∆t` σ∆Wi ` pλ´ σ

2{2qσ∆t∆Wi `
1

6
σ2r∆Wis

3 `Op∆tq2.

It follows that
n´1
ź

i“0

r1` λ∆t` σ∆Wis “

n´1
ź

i“0

„

epλ´σ
2{2q∆t`σ∆Wi ´ pλ´ σ2{2qσ∆t∆Wi ´

1

6
σ3r∆Wis

3



“ epλ´σ
2{2qn∆t`σWn∆t ` nOp∆t∆W q ` nOp∆W q3 ` nOp∆tq2.

Therefore, the strong error is

E
ˇ

ˇnOp∆t∆W q ` nOp∆W q3 ` nOp∆tq2
ˇ

ˇ “ E
ˇ

ˇ

ˇ

ˇ

T

∆t
Op∆t∆W q `

T

∆t
Op∆W q3 `

T

∆t
Op∆tq2

ˇ

ˇ

ˇ

ˇ

,

but 1
∆tOp∆t∆W q is Op∆tq1{2, which is the dominant term in sum. Therefore, the EM scheme

has strong error order 1{2.

Exercise 4.4. To demonstrate the weak order of convergence of the Euler-Maruyama scheme,
consider

e “
ˇ

ˇ

ˇ
EfpX̂nq ´ EfpXn∆tq

ˇ

ˇ

ˇ
,

for the particular case that fpxq “ x, and show that it is Op∆tq.
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4.10.4 Implicit Discretisation and Stability Analysis

Besides accuracy, another property which is desired from a numerical approximation of an SDE
is stability, namely that if the solution of the original SDE remains bounded for all time, then
so does the numerical approximation. An unstable numerical scheme can result in the discrete
approximation “exploding”, particularly, if the step size ∆t is sufficiently large. Ensuring stability
can impose strong constraints on the maximum value of the step size ∆t, which, for stiff problems
motivates the use of implicit schemes which are unconditionally stable.

A good illustration of the problems arising from stability can be seen when considering Geometric
Brownian motion

dXt “ λXt ` σXt dWt.

In Figure 4.1 we plot the trajectories of a single path, with parameters λ “ ´10 and σ “ 4 using
an Euler-Maruyama scheme with timesteps ∆t “ 0.25 and ∆t “ 0.00125. We see that for the
large timestep, the numerical approximation of the solution becomes very large, while for the
small timestep the solution remains stable.

Suppose that X0 ‰ 0 is a constant. Consider the mean-square of the exact solution:

ErX2
t s “ ep2λ`σ

2qtX2
0 .

Clearly, ErX2
t s Ñ 0 as tÑ8, if and only if

2λ` σ2 ă 0.

Our question is thus: what conditions must λ and σ2 satisfy for a numerical discretisation to
satify limnÑ Er|X̂2

n|s Ñ 0. Clearly, the constraint will depend on the time-step ∆t.

Definition 4.19. A stochastic process is said to be mean-square stable if limnÑ8 E|X̂n|
2 Ñ 0.

The set of parameters such that this condition holds is called the stability region.

As an example, condition the Euler-Maruyama approximation. As discussed above, we can
write the Euler Maruyama approxiation of Geometric Brownian motion as

X̂n “

n´1
ź

i“0

p1` λ∆t` σ∆WiqX0.

The second moment of X̂n is

ErX̂2
ns “ E

«

n´1
ź

i“0

p1` λ∆t` σ∆Wjq

ff2

X2
0

“

n´1
ź

i“0

E
“

p1` λ∆t` σ∆Wjq
2
‰

X2
0 .

Now

E
“

p1` λ∆t` σ∆Wjq
2
‰

“ 1` 2λ∆t` λ2p∆tq2 ` σ2∆t “ 1`∆tp2λ` σ2 `∆tλ2q.
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For E|Xn|
2 to converge to zero, we require E

“

p1` 2λ∆t` σ∆Wjq
2
‰

ă 1 or equivalently:

2λ` σ2 `∆tλ2 ă 0.

This condition is more restrictive than the stability condition 2λ`σ2 ă 0 for the true solution Xt.
Thus, to achieve stability of the Euler-Maruyama approximation, we must choose the time-step
so that

0 ă ∆t ă
´2pr ` σ2{2q

λ2
.

Exercise 4.5. Repeat the above argument to identify the stability region for the Milstein-Scheme,
and thus identify conditions for which the scheme is mean-square stable.

In many applications, this region is often far to restrictive. As in the case for ODEs, this
motivates the use of so-called implicit schemes. As an example, consider the following implicit
version of the Euler-Maruyama method, known as the θ-Euler-Maruyama method

Definition 4.20. Consider a time-step ∆t ą 0 and initial condition X0 P R. The θ-Euler-
Maruyama approximation Xn of Xp∆tnq is given by

Xn`1 “ Xn ` rp1´ θqbpXnq ` θbpXn`1qs∆t` σpXnq∆Wn,

where θ P r0, 1s is a parameter which controls the degree of implicitness in the drift term.

Thus, in this scheme, the diffusion term is treated explicitly, while the drift term is treated
implicitly according to the parameter θ. When implementing this scheme, given Xn, one must
solve a nonlinear equation to obtain Xn`1, typically using a Newton-Raphson scheme which is
iterative. Thus, in terms of computational cost, we expect the θ method to be far more expensive.

Exercise 4.6. Repeat the above stability calculation for the solutionXn of the θ-Euler-Maruyama
approximation to geometric Brownian motion and show that when

2λ` σ2 `∆tp1´ 2θqλ2 ă 0,

the scheme is mean-square stable. In particular, if θ “ 1{2, the stability condition reduces to

2λ` σ2 ă 0,

independent of the choice of time-step and identical to the stability condition of geometric
Brownian motion.

The above exercise was worked out in class

Exercise 4.7. Repeat the above stability calculation for the solution Xn of the Milstein approxi-
mation to geometric Brownian motion.
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(b) Trajectory of Euler-Maruyama discretisation of GBM with stepsize 0.00125

Figure 4.1: Stability of the Euler-Maruyama discretisation of Geometric Brownian motion
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Further topics: Non-Examinable

5.1 Monte Carlo Estimates of SDEs

An important application of these numerical approximations of SDEs is to generate Monte Carlo
estimates of statistical quantities which depend on the solution of a given SDE. More specifically,
given an SDE

dXt “ bpXtq dt` σpXtq dWt,

many applications often involve computing averages of observables of the solution Xt over a
time interval r0, T s. These observables can either

1. Depend on Xt at a particular time, such as for example ErfpXT qs,

2. Depend on an entire path of the process, for example E
”

şT
T0
gpXsq ds

ı

, for some function

g and T0 ď T , or for example E
”

suptPr0,T s |Xt|

ı

.

Both cases can be expressed as I “ ErF pX¨qs, where F is a function of the path Xt over
r0, T s. In order to estimate this quantity using Monte Carlo integration, we generate independent
realisations X̂p1q, X̂p2q, . . . , X̂pNq of the solution Xt using a numerical approximation. Each
realisation X̂piq is a time-series with tT {∆tu values. We then use the Monte Carlo estimator:

ÎnN “
1

N

N
ÿ

j“1

F ptX̂
pjq
k uk“1,...,nq.

To make things clearer, let’s focus on the case when F pXq “ fpXT q, for some function f . As
with all Monte-Carlo methods, we can get arbitrarily accurate results provided we are willing to
expend sufficient computational effort. What is different in this scenario, is that while for the
standard Monte-Carlo methods described in Chapter 2 the only error was statistical error (i.e. due
to the variance of the fluctuations around the mean), in this case, there is also the discretisation
error of the numerical approximation used. As we discussed in Section 2.4 a natural measure
of accuracy of an estimator is the mean square error. In question 6 of Problem sheet 1 you had
considered an estimator for the density of a distribution, and using MSE studied the tradeoff
between bias and variance, and based on this found an optimal choice of bin-size h.

87
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Let’s perform a similar analysis for the estimator ÎnN . As we’ve seen before, the mean square
error of an estimator În can be decomposed into the variance and the square of the bias. More
specifically

MSEpÎnN q “ E
„

´

ÎnN ´ ErfpXT qs

¯2


“ VarrÎnN s ` BiaspÎnN q
2.

Using the fact that the realisations of the chain are IID, the variance is given by

VarrÎnN s “
1

N
VarrfpX̂N qs.

The bias is given by
ˇ

ˇ

ˇ
biaspÎnN q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
ErÎnN s ´ ErfpXT qs

ˇ

ˇ

ˇ
“ eweakpfq,

i.e. the weak error of the numerical approximation X̂n of XT , for the observable f . Therefore
we have that

MSEpÎnN q “
σ2

N
` eweakpfq

2,

where σ2 “ VarrfpX̂N qs.

The first term of the MSE corresponds to the Monte-Carlo error and will go to zero as N
increases. The second term is the discretization error, and will go to zero as ∆t “ tT {nu Ñ 0.
On the other hand, the total cost of computing a single approximation ÎnN is OpnNq. Here we see
the tradeoff between the bias and the variance. Suppose we have a fixed computational budget K,
then increasing n (to decrease discretization error) means we must decrease N (thus increasing
Monte Carlo error) proportionally to maintain the same computational cost, and vice versa.

It would be nice if we could identify an “optimal” choice of n based on N , like we did in
Question 6 of Problem Sheet 1 for the kernel density estimator. Suppose that we are using an
Euler-Maruyama discretisation to approximate Xt, which has weak error of order 1, and assume
that we can write

eweakpfq « C∆t “
KfT

n
,

for some constant Kf ą 0. The mean-square error can then be written as

MSEpÎnN q «
σ2

N
`

ˆ

KfT

n

˙2

.

Assume also that the computational cost for computing ÎnN is approximately

CpN,nq « CNn.

Suppose we have a fixed computational budget W and we wish to choose N and n accordingly
to minimize the mean square error, i.e. we wish to find a solution to the following constrained
optimisation problem

Minimise
σ2

N
`

ˆ

KfT

n

˙2

,
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subject to CpN,nq “ W . We can find the optimal choice of n using standard calculus by
introducing a lagrange multiplier λ. We solve

BN

˜

σ2

N
`

ˆ

KfT

n

˙2

´ λpCNn´W q

¸

“ 0

Bn

˜

σ2

N
`

ˆ

KfT

n

˙2

´ λpCNn´W q

¸

“ 0,

for the optimal values of N and n so that 1

σ2

N2
“ λCn,

and
2KfT

n3
“ λCN.

At the optimal value, using the constraint W “ CNn we have

2pKfT q
2

Wn2
“
σ2

N
,

so that

n2 “ 2
pKfT q

2

Wσ2
N.

so that the optimal scaling for N and n in terms of W is

n9W 1{3 and N9W 2{3.

Therefore, assuming that the parameters σ2 and Kf are both of order 1 the optimal computational
effort is determined by choosing n to be roughly

?
N . Of course, while we can easily approximate

σ2 numerically, it is not so easy to get accurate estimates of the bias, and so, this approximation
should only be considered a rule of thumb.

5.2 Variance Reduction methods for SDEs

Suppose we wish to use Monte Carlo simulation to approximate ErF pX¨qs, where F is an
observable of the path of the solution of the SDE Xt, over r0, T s. When trying to measure
quantities which involve rare events, then using the standard Monte Carlo estimator we outlined
in the previous section might be prohibitively expensive to procude a sufficiently accurate
approximation. Consider the following example.

Example 5.1. Given the process Xt “Wt, i.e. a standard Brownian motion, suppose we wish to
compute the probability that Xt exceeds c ą 0 within the time r0, 1s, i.e.

I “ P

«

sup
tPr0,1s

Xt ą c

ff

,

1note that we assume these are continuous quantities. We expect that the integer part of the optimal values will
not be too far off.
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where c ą 0. Then by the reflection principle,

P

«

sup
tPr0,1s

Xt ą c

ff

“ 2P rWt ě cs “ 2 p1´ Φ pcqq ď 2e´c
2{2.

So that for c “ 5, the probability is of the order 10´6. Consider a second process Yt defined by
the SDE:

Yt “ a dt`Wt,

where a ą 0 is a constant. Computing the hitting probability for Yt, is given by

Ia “ P

«

sup
tPr0,1s

Yt ą c

ff

“

ż t

0

c
?

2πs3
exp

ˆ

´
pc´ asq2

2s

˙

ds,

so that for a “ 1, Ia “ 5 ¨ 10´5, a “ 2, Ia “ 2 ¨ 10´3, for a “ 5, Ia “ 0.539, etc.

Thus we would be able to compute the hitting probability of Yt much more efficiently. If
possible we would like to implement some form of importance sampling scheme, to be able to
compute I using trajectories of Yt. Girsanov’s theorem provides us with the means to do this, in
quite some generality.

Theorem 5.1 (Oksendal Theorem 8.6.5). Consider the SDEs

dXt “ bpXtq dt` σpXtq dWt, (5.1)

and
dYt “ bpYtq ` γpt, ωq dt` σpYtq dWt, (5.2)

on the time interval t P r0, T s, whereWt is a standard Brownian motion and whereX0 “ Y0 “ x.
Assuming that there exists a process upt, ωq such that

σpYtqupt, ωq “ γpt, ωq,

and that upt, ωq satsifies Novikov’s condition

E
„

exp

ˆ

1

2

ż T

0
u2ps, ωq ds

˙

ă 8.

For t ď T define

Mt “ exp

ˆ

´

ż t

0
ups, ωq dW̃s ´

1

2

ż t

0
u2ps, ωq ds

˙

,

where W̃s is a Brownian motion with respect to the measure Q, then

dPpωq “MT pωqdQpωq,

and so we have that
ErF pXqs “ E pF pY qMT q . (5.3)
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Girsanov’s theorem provides us with a basic tool for importance sampling. To compute (5.3)
numerically we would approximate

ż t

0
ups, ωq dW̃s «

N
ÿ

n“0

upsn, ωq∆W̃n,

and
ż t

0
u2ps, ωq ds «

N
ÿ

n“0

u2psn, ωq∆t,

which would itself contribute additional discretisation error to the estimator, but which can also
be controlled.

Example 5.2. Let’s return to Example 5.1. Then in this case, applying Girsanov theorem:

ErF pX¨qs “ ErF pY¨qMT s,

where

MT “ exp

ˆ

´aW̃T ´
a2T

2

˙

5.3 Inference for Stochastic Differential Equations

Once a stochastic model for a given physical system has been derived, we must choose the
parameters such that the output of the stochastic model agrees with the observed data. In
this section, we present some simples techniques for estimating the diffusion coefficient and
parameters in SDEs. As usual, we shall focus on the one-dimensional case. We shall consider the
following one dimensional Itô SDE of the form:

dXt “ bpXt; θq dt` σpXt; θq dWt, X0 “ x, (5.4)

where θ P Θ Ă RN is a finite set of parameters that we want to estimate from the observations.
The initial conditions can be taken to be either deterministic or random. We assume that we are
provided with observations of the path of the process. This can be either be:

1. Discrete observations Xt0 , Xt1 , . . . , XtN , or

2. The entire path Xt, t P r0, T s.

Some simple examples

• The Ornstein-Uhlenbeck process with unknown drift coefficient α:

dXt “ ´αXt dt` dWt.

• Brownian motion in a bistable potential, with unknown parameters A,B:

dXt “ pAXt ´BX
3
t q dt` dWt.
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5.3.1 Inferring the diffusion coefficient

In order to estimate parameters in the diffusion coefficient, it is natural to use the quadratic
variation of the solution Xt of the SDE (5.4):

xXt, Xty :“

ż t

0
σ2pXs; θq ds “ lim

∆tkÑ0

ÿ

tkďt

ˇ

ˇXtk`1
´Xtk

ˇ

ˇ

2
, (5.5)

where the limit is in probability. When the diffusion coefficient is constant, i.e. σpx; θq ” σ, the
convergence (5.5) is almost sure, i.e.

lim
nÑ`8

n
ÿ

i“1

“

XiT2´n ´Xpi´1qT2´n

‰2
“ σ2T a.s.

Therefore, if we fix the length of the observation r0, T s, and let the number of observations
become infinite, i.e. the high-frequency limit, taking n Ñ 8, we can determine the diffusion
coefficient. We prove a slightly simpler result

Proposition 5.2. Let tXju
J
j“0 be a sequence of equidistant observations of

dXt “ bpXt; θq dt` σ dWt,

with timestep ∆t “ δ and Jδ “ T fixed. Assuming that the drift bpx; θq is bounded, and define

σ̂2
J “

1

Jδ

J“1
ÿ

j“0

pXj`1 ´Xjq
2. (5.6)

Then
ˇ

ˇEσ̂2
J ´ σ

2
ˇ

ˇ ď Cpδ ` δ1{2q.

In particular,
lim

JÑ`8

ˇ

ˇEσ̂2
J ´ σ

2
ˇ

ˇ “ 0.

Proof. We have that

Xj`1 ´Xj “

ż pj`1qδ

jδ
bpXs; θq ds` σ∆Wj ,

where ∆Wj “Wpj`1qδ ´Wjδ „ N p0, δq. We substitute this into (5.6) to obtain

σ̂2
J “ σ2 1

δJ

J´1
ÿ

j“0

p∆Wjq
2
`

2

δJ

J´1
ÿ

j“0

IjMj `
1

δJ

J´1
ÿ

j“0

I2
j ,

where

Ij :“

ż pj`1qδ

jδ
bpXs; θq ds,

and
Mj :“ σ∆Wj .
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Note that E p∆Wnq
2
“ δ. From the boundedness of bpx; θq and using the Cauchy-Schwarz

inequality:

EI2
j ď δ

ż pj`1qδ

jδ
E pbpXs; θqq

2 ds ď Cδ2.

Consequently,

ˇ

ˇEσ̂2
J ´ σ

2
ˇ

ˇ ď
1

δ
EI2

j `
2

δ
E|IjMj |

ď Cδ `
C

δ

ˆ

1

α
EI2

j ` αEM2
j

˙

ď Cpδ ` δ1{2q.

In the above, we used Young’s inequality with α “ δ1{2.

5.3.2 Estimating the drift coefficient

From now on, we assume that we have already estimated the diffusion coefficient, so that we just
set σ “ 1, so that (5.4) becomes

dXt “ bpXt; θq dt` dWt. (5.7)

Our objective is to estimate the unknown parameters in the drift θ P Θ from a time-series of
observations. As we described in the introduction, we use the maximum likelihood estimator
(MLE). Let us describe the general intuition of the MLE. Suppose we have N iid observations of
a random variable X with probability density function fpx |θq. Define the likelihood function is
then defined to be

L
`

txiu
N
i“1 | θ

˘

“

N
ź

i“1

fpxi |θq.

The maximum likelihood estimator (MLE) is then

θ̂ “ arg maxLpx | θq,

with x “ txiu
N
i“1.

Example 5.3. Suppose that x “ txiu
N
i“1 are iid samples from a Gaussian N pµ, σ2q with

unknown parameters µ and σ2. The likelihood function takes the form

Lpx |µ, σq “
1

p2πσ2qN{2
exp

˜

´

řN
i“1pxi ´ µq

2

2σ2

¸

.

The maximum likelihood estimator µ̂ for µ is given by
´

µ̂, σ̂2
¯

“ arg max
µ,σ2

Lpx, µ, σ2q

Maximizing with respect to µ:

µ̂ “
1

N

N
ÿ

i“1

xi.
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Maximizing with respect to σ2:

σ̂2 “
1

N

N
ÿ

i“1

pxi ´ µ̂q
2.

We want to derive maximum likelihood estimators for the parameters in the drift of (5.7).
The observations will either be

1. a series of discrete equidistant observations of the processXt, tXi∆tu
N
i“1, whereN∆t “ T ,

or

2. The entire path Xt, where t P r0, T s.

As a simple demonstration, let us first derive the Maximum Likelihood estimator based on
the Euler-Maruyama discretization of (5.7):

Xn`1 ´Xn “ bpXn; θq∆t`∆Wn.

The distribution function for Brownian motion is

pNW “

N´1
ź

i“0

1
?

2π∆t
exp

ˆ

´
1

2∆t
p∆Wiq

2

˙

“
1

p
?

2π∆tqN
exp

˜

´
1

2∆t

N´1
ÿ

i“0

p∆Wiq
2

¸

.

Similarly, for the law of the discretized process tXnu
N´1
n“0 using the fact that ppXi`1 |Xiq „

N pXi ` bi∆t,∆tq, we can write

pNX “
1

p
?

2π∆tqN
exp

˜

´

N´1
ÿ

i“0

ˆ

1

2∆t
p∆Xiq

2 `
1

2
pbiq

2∆t´ bi∆Xi

˙

¸

.

Now we can calculate the ratio of the laws of the two processes, evaluated at the path tXnu
N´1
n“0 :

pNX
pNW

“ exp

˜

´
1

2

N´1
ÿ

i“0

b2i∆t`
N´1
ÿ

i“0

bi∆Xi

¸

.

Taking the limit as N Ñ8, we get the likelihood:

L
`

tXtutPr0,T s; θ, T
˘

:“ exp

ˆ
ż T

0
bpXs; θq dXs ´

1

2

ż T

0
bpXs; θq

2 ds

˙

.

You might have recognized this expression before. Indeed, from Girsanov’s theorem (previous
section) we know that the law of Xt, denoted by PX is absolutely continuous with respect to
Brownian motion PW , with Radon-Nikodym derivative:

dPX
dPW

“ exp

ˆ
ż T

0
bpXs; θq dXs ´

1

2

ż T

0
bpXs; θq

2 ds

˙

The maximum likelihood estimator given the observed path pXtqtPr0,T s is given by

θ̂ “ arg max
θPΘ

LptXtutPr0,T s; θq.

Assume that there are N parameters to be estimated θ “ pθ1, . . . , θN q, then the MLE is obtained
by solving the equation

∇θLpx | θq “ 0.
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Example 5.4 (MLE for the stationary Ornstein-Uhlenbeck process). Consider the stationary
Ornstein-Uhlenbeck process

dXt “ ´αXt dt` dWt,

with X0 „ N
`

0, 1
2α

˘

. The log-likelihood function is

logL “ ´α

ż T

0
Xt dXt ´

α2

2

ż T

0
X2
t dt.

The Maximum Likelihood estimator is

α̂ “ ´

şT
0 Xt dXt
şT
0 X

2
t dt

.

Of course, we wouldn’t be able to evaluate this estimator. Given a set of discrete equidistant
observations tXju

J
j“0,

α̂ “ ´

řJ´1
j“0 Xj∆Xj

řJ´1
j“0 |Xj |

2∆t
,

where Xj “ Xj∆t and ∆Xj “ Xj`1 ´ Xj . We can show that this Maximum Likelihood
estimator becomes asymptotically unbiased in the large sample limit J Ñ `8, for ∆t fixed.

Exercise 5.1 (Maximum Likelihood estimator for a stationary bistable SDE). Consider the SDE

dXt “ pαXt ´ βX
3
t q dt` dWt.

Our objective is to derive maximum likelihood estimatorrs for α and β for a given observation of
the path Xt, t P r0, T s.

1. Show that the log of the likelihood function is

logL “ αB1 ´ βB3 ´
1

2
α2M2 ´

1

2
β2M6 ` αβM4,

where

Mn

`

tXtutPr0,T s
˘

“

ż T

0
Xn
t dt,

and

BnptXtutPr0,T sq :“

ż T

0
Xn
t dXt.

2. Consequently show that the MLE for α and β are given by

α̂ “
B1M6 ´B3M4

M2M6 ´M2
4

,

and
β̂ “

B1M4 ´B3M2

M2M6 ´M2
4

.
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5.3.3 Inference for SDEs using Bayesian Data Augmentation

This is an extremely brief introduction to the topic of Bayesian parametric inference for SDEs.
The literature on the topic is extensive, the interested reader is invited to consult for example
[15, 17, 2].

As before, we assume that our model is described by a (one-dimensional) Itô SDE of the
form

dXt “ bpXt; θq dt` σpXt; θq dWt, (5.8)

where θ P Θ Ă RK is an unknown parameter. As before, it is assumed that the conditions
under which the SDE is will posed are satisfied. That is, for all θ P Θ, the SDE has a unique,
nonexploding solution. We adopt a Bayesian imputation approach, and work with a discretized
version of (5.8):

Xn`1 “ Xn ` bpXn; θq∆t` σpXn; θq∆Wn.

Clearly,
Xn`1|Xn, θ „ N pXn ` bpXn; θq∆t, σ2pXn; θq∆tq,

which has probability density function

ppy|Xn, θq “
1

a

2π|σ2pXn; θq|∆t
exp

ˆ

´
py ´Xn ` bpXn; θq∆tq2

2σ2pXn; θq∆t

˙

(5.9)

Let us suppose that the observations Xti are available at evenly spaces intervals t0, t1, . . . , with
intervals of length δ “ ti`1 ´ ti. It is typically realistic to assume that ∆t ! δ. In particular,
we shall assume that ∆t “ δ{m, for some positive integer m ą 1. Choosing m large makes ∆t
small, thus reducing the discretisation bias, but also introduces m´ 1 “missing values” between
each pair of observations which must be integrated out of the problem.

To deal with these missing values, we assume that the time interval r0, T s is divided into mT ` 1
equidistant points, and Xt is observed at 0 “ t10, t

1
1, . . . , t

1
n “ T . Collecting all the augmented

data, both missing and observed, we obtain:

X “ pxt10 , Xt11
, . . . , Xt1m´1

, xtm , Xtm`1 , . . . , Xtn´1 , xtnq.

The observed data is thus Dn “ pxt10 , . . . , xt1nq. By adopting a fullying Bayesian approach, we
formulate the joint posterior for parameters and missing data as :

ppθ,X |Dnq9ppθq
n´1
ź

i“0

ppXt1i`1
|Xt1i

, θq,

where ppθq is a prior density for the parameter, and pp¨, Xn, θq is given by (5.9). To infer the
parameters, we must sample from this distribution. Inference may proceed by alternating between
draws of the missing data conditional on the current state of the model parameters, and the
parameters conditional on the augmented data, as follows:
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Bayesian inputation method for nonparametric inference of SDE

1. Initialise all the unknowns. We use linear interpolation of the observed data, to
initialise the missing data points in Xp1q.

2. Draw Xpsq „ pp¨|θps´1q, Dnq.
3. Draw θpsq „ pp¨|Xpsqq.
4. Continue until sufficiently many simulations have been performed.

Steps 2 and 3 involve sampling from a probability distribution for which the normalizing
constant is intractible to compute. This makes Metropolis-Hastings a natural candidate for
producing the samples Xpsq and θpsq. Step 3 can be implemented in a relatively straightforward
manner using Random-Walk proposal, however it is far less clear what is a good proposal for
step 2 without getting an extremely low acceptance rate. For this reason, Gibbs sampling (which
we have not discussed in this module) is typically used instead, for more details see [5, 4].
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