
Introduction

Goals of computer simulation

In a wide variety of scientific disciplines, ranging from physics to biology and economics, the
phenomena under consideration are well-described by mathematical equations. More often than
not, it is too difficult to solve these equations analytically, and so one has to recur to computer
calculations in order to obtain approximate solutions. Computer simulation enables to gain
understanding of the phenomena examined, to explain observations and to make predictions.
It plays a crucial role in a number of practical applications including weather forecasting, drug
discovery through molecular modeling, flight simulation, and structural engineering, to mention
just a few.

Numerical simulation may also be employed in order to calibrate mathematical models of
physical phenomena, particularly when observation through experiment is impractical or too
costly. For example, it is frequently the case that the parameters in mathematical models for
turbulence are estimated not from real data, but from synthetic data generated by computer
simulation of the fundamental equations of fluid mechanics. Relying on “computer experiments”
is attractive in this context because these enable to perform accurate measurements without
disturbing the system being observed. Numerical simulation is also very useful to understand
and build simplified models for physical phenomena at very small scales, if direct observation
is beyond the capabilities of experimental physics.

Sources of error in computational science

It is important for practitioners of computer simulation to be aware of the different sources
of error likely to affect numerical results obtained in applications, which may be classified as
follows:

• Modeling error. There may be a discrepancy between the mathematical model and the
underlying physical phenomenon.

• Data error. The data of the problem, such as the initial conditions or the parameters
entering the equations, are usually known only approximately.

• Discretization error. The discretization of mathematical equations, i.e. turning them
into finite-dimensional problems amenable to computer simulation, adds another source
of error.

1



• Discrete solver error. The method employed to solve the discretized equations, espe-
cially if it is of iterative nature, may also introduce an error.

• Round-off errors. Finally, the limited accuracy of computer arithmetics causes addi-
tional errors.

Of these, only the last three are in the domain of numerical analysis, and in this course we
focus mainly on the solver and round-off errors. The order of magnitude of the overall error is
dictated by the largest among the above sources of error.

Aims of this course

The aim of this course is to present the standard numerical methods for performing the tasks
most commonly encountered in applications: the solution of linear and nonlinear systems of
equations, the solution of eigenvalue problems, interpolation and approximation of functions,
and numerical integration. For a given task, there are usually several numerical methods to
choose from, and these often include parameters which must be fixed appropriately in order to
guarantee a good efficiency. In order to guide these choices, we study carefully the convergence
and stability of the various methods we present. Six topics will be covered in these lecture notes.

• Floating point arithmetic. In Chapter 1, we discuss how real numbers are represented,
manipulated and stored on a computer. There is an uncountable infinity of real numbers,
but only a finite subset of these can be represented exactly on a machine. This subset
is specified in the IEEE 754 standard, which is widely accepted today and employed in
most programming languages, including Julia.

• Solution of linear systems. In Chapter 2, we study the standard numerical methods
for solving linear systems. Linear systems are ubiquitous in science, often arising from
the discretization of linear elliptic partial differential equations, which themselves govern
a large number of physical phenomena including heat propagation, electromagnetism,
gravitation and the deformation of solids.

• Solution of nonlinear equations. In Chapter 3, we present widely used methods for
solving nonlinear equations. Like linear equations, nonlinear equations are omnipresent in
science, a prime example being the Navier–Stokes equation describing the motion of fluid
flows. They are usually much more difficult to solve and require dedicated techniques.

• Solution of eigenvalue problems. In Chapter 4, we present and study the standard
iterative methods for calculating the eigenfunctions and eigenvalues of a matrix. Eigen-
value problems have a large number of applications, for instance in quantum physics and
vibration analysis. They are also at the root of the PageRank algorithm for ranking web
pages, which played a key role in the early success of Google search.

• Interpolation and extrapolation of functions. In Chapter 5, we focus on the topics
of interpolation and approximation. Interpolation is concerned with the construction of
a function within a given set, for example that of polynomials, that takes given values

2



when evaluated at a discrete set of points. The aim of approximation, on the other hand,
is usually to determine, within a class of simple functions, which one is closest to a given
function. Depending on the metric employed to measure closeness, this may or may not
be a well-defined problem.

• Numerical integration. In Chapter 6, we study numerical methods for computing
definite integrals. This chapter is strongly related to the previous one, as numerical
approximations of the integral of a function are often obtained by first approximating the
function, say by a polynomial, and then integrating this approximation exactly.

Why Julia?

Throughout the course, the Julia programming language is employed to exemplify some of the
methods and key concepts. In the author’s opinion, the Julia language has several advantages
compared to other popular languages in the context of scientific computing, such as Matlab
or Python.

• Its main advantage over Matlab is that it is free and open source, with the byproduct that
it benefits from contributions from a large number of contributors around the world. Ad-
ditionally, Julia is a fully-fledged programming language that can be used for applications
unrelated to mathematics.

• Its main advantages over Python are significantly better performance and a more concise
syntax for mathematical operations, especially those involving vectors and matrices. It
should be recognized, however, that although use of Julia is rapidly increasing, Python
still enjoys a more mature ecosystem and is much more widely used.

3


