
Chapter 6

Numerical integration

Introduction

Integrals are ubiquitous in science and mathematics. In this chapter, we are concerned with the
problem of calculating numerically integrals of the form

I =

∫
Ω
u(x)dx, (6.1)

Perhaps somewhat surprisingly, the numerical calculation of such integrals when n � 1 is
still a very active area of research today. In this chapter, we will focus for simplicity on the
one-dimensional setting where Ω = [a, b] ⊂ R. We assume throughout this chapter that the
function u is Riemann-integrable. This means that

I = lim
h→0

n−1∑
i=0

u(ti)(zi+1 − zi),

where a = z0 < · · · < zn = b is a partition of the interval [a, b] such that the maximum spacing
between successive x values is equal to h, and with ti ∈ [xi, xi+1] for all i ∈ {0, . . . , n− 1}.

All the numerical integration formulas that we present in this chapter are based on a deter-
ministic approximation of the form

Î =

m∑
i=0

wiu(xi), (6.2)

where x0 < . . . < xn are the integration nodes and w0, . . . , wn are the integration weights. In
many cases, integration formulas contain a small parameter that can be changed to improve
the accuracy of the approximation. In methods based on equidistant interpolation nodes, for
example, this parameter encodes the distance between nodes and is typically denoted by h, and
we often use the notation Îh to emphasize the dependence of the approximation on h. The
difference Eh = I − Ih is called the integration error or discretization error, and the degree of
precision of an integration method is the smallest integer number d such that the integration
error is zero for all the polynomials of degree less than or equal to d.
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Chapter 6. Numerical integration

We observe that, without loss of generality, we can consider that the integration interval is
equal to [−1, 1]. Indeed, using the change of variable

ζ : [−1, 1] → [a, b];

y 7→ b+ a

2
+

(b− a)

2
y, (6.3)

we have ∫ b

a
u(x)dx =

∫ 1

−1
u
(
ζ(y)

)
ζ ′(y)dy =

b− a

2

∫ 1

−1
u ◦ ζ(y)dy, (6.4)

and the right-hand side is the integral of u ◦ ζ over the interval [−1, 1].

6.1 The Newton–Cotes method

Given a set of equidistant points −1 = x0 < · · · < xm = 1, a natural method for approximating
the integral (6.1) of a function u : [−1, 1] → R is to first construct the interpolating polynomial û
through the nodes, and then calculate the integral of this polynomial. By construction, this
method is exact for polynomials of degree up to m, and so the degree of precision is equal to
at least m. Let ϕ0, . . . , ϕm denote the Lagrange polynomials associated with the integration
nodes. Then we have

I ≈
∫ 1

−1
û(x)dx =

∫ 1

−1

n∑
i=0

u(xi)ϕiu(x)dx =

n∑
i=0

u(xi)

∫ 1

−1
ϕiu(x)dx︸ ︷︷ ︸

wi

.

The weights are independent of the function u, and so they can be calculated a priori. The class
of integration methods obtained using this approach are known as Newton–Cotes methods. We
present a few particular cases:

• m = 1, d = 1 (trapezoidal rule):∫ 1

−1
u(x) dx ≈ u(−1) + u(1). (6.5)

• m = 2, d = 3 (Simpson’s rule):∫ 1

−1
u(x) dx ≈ 1

3
u(−1) +

4

3
u(0) +

1

3
u(1). (6.6)

• m = 3, d = 3 (Simpson’s 3
8 rule):∫ 1

−1
u(x) dx ≈ 1

4
u(−1) +

3

4
u(−1/3) +

3

4
u(1/3) +

1

4
u(1).

• m = 4, d = 5 (Bode’s rule):∫ 1

−1
u(x) dx ≈ 7

45
u(−1) +

32

45
u

(
−1

2

)
+

12

45
u (0) +

32

45
u

(
1

2

)
+

7

45
u(1).
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Chapter 6. Numerical integration

In principle, this approach could be employed in order to construct integration rules of arbitrary
high degree of precision. In practice, however, the weights become more and more imbalanced
as the number of interpolation points increases, with some of them becoming negative. As a
result, roundoff errors become increasingly detrimental to accuracy as the degree of precision
increases. In addition, in cases where the interpolating polynomial does not converge to u, for
example if u is Runge’s function, the approximate integral may not even converge to the correct
value in the limit as m → ∞ in exact arithmetic!

Note that, although it is based on a quadratic polynomial interpolation, Simpson’s rule (6.6)
has a degree of precision equal to 3. This is because any integration rule with nodes and weights
symmetric around x = 0 is exact for odd functions, in particular x3. Likewise, the degree of
precision of Bode’s rule is equal to 5.

6.2 Composite methods with equidistant nodes

A natural alternative to the approach presented in Section 6.1 is to construct an integration rule
using piecewise polynomial interpolation, which we studied in Section 5.1.7. After partitioning
the integration interval in a number of subintervals, the integral can be approximated by using
one of the rules presented in (6.1) within each subinterval.

Composite trapezoidal rule. Let us illustrate the composite approach with an example. To
this end, we introduce a partition a = x0 < · · · < xm = b of the interval [a, b] and assume
that the nodes are equidistant with xi+1 − xi = h. Using (6.4), we first generalize (6.5) to an
interval [xi, xi+1] as follows:∫ xi+1

xi

u(x)dx =

∫ 1

−1
u ◦ ζ(y)dy ≈ u ◦ ζ(−1) + u ◦ ζ(1) = h

2

(
u(xi) + u(xi+1)

)
,

where ≈ in this equation indicates approximation using the trapezoidal rule. Applying this
approximation to each subinterval of the partition, we obtain the composite trapezoidal rule:

∫ b

a
u(x)dx =

n−1∑
i=0

∫ xi+1

xi

u(x)dx ≈ h

2

n−1∑
i=0

(
u(xi) + u(xi+1)

)
=

h

2

(
u(x0) + 2u(x1) + 2u(x2) + · · ·+ 2u(xn−2) + 2u(xn−1) + u(xn)

)
. (6.7)

Like the trapezoidal rule (6.5), the composite trapezoidal rule (6.7) has a degree of precision
equal to 1. However, the accuracy of the method depends on the parameter h, which repre-
sents the width of each subinterval: for very small h, equation (6.7) is expected to provide
a good approximation of the integral. An error estimate can be obtained directly from the
formula in Theorem 5.2 for interpolation error, provided that we assume that u ∈ C2([a, b]).
Denoting by Îh the approximate integral calculated using (6.7), and by ûh the piecewise linear
interpolation of u, we have∫ xi+1

xi

u(x)− û(x)dx =
1

2

∫ xi+1

xi

u′′
(
ξ(x)

)
(x− xi)(x− xi+1)dx.
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Chapter 6. Numerical integration

Since (x− xi)(x− xi+1) is nonpositive over the interval [xi, xi+1], we deduce that∣∣∣∣∫ xi+1

xi

u(x)− û(x)dx
∣∣∣∣ ≤

(
sup

ξ∈[a,b]

∣∣u′′(ξ)∣∣)∫ xi+1

xi

(x− xi)(x− xi+1)dx = C2
h3

12
,

where we introduced
C2 = sup

ξ∈[a,b]

∣∣u′′(ξ)∣∣.
Summing the contributions of all the intervals, we obtain

|I − Î| ≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

u(x)− û(x)dx
∣∣∣∣ ≤ n× C2

h3

12
=

b− a

12
C2h

2. (6.8)

The integration error therefore scales as O(h2). (Strictly speaking, we have shown only that
the integration error admits an upper bound that scales at O(h2), but it turns out that the
dependence on h of this bound is optimal).

Composite Simpson rule. The composite Simpson rule is derived in Exercise 6.2. Given an
odd number n+ 1 of equidistant points a = x0 < x1 < · · · < xn = b, it is given by

Îh =
h

3

(
u(x0)+4u(x1)+2u(x2)+4u(x3)+2u(x4)+ · · ·+2u(xn−2)+4u(xn−1)+u(xn)

)
. (6.9)

This approximation is obtained by integrating the piecewise quadratic interpolant over a par-
tition of the integration interval into n/2 subintervals of equal width. Obtaining an optimal
error estimate, in terms of the dependence on h, for this integration formula is slightly more
involved. For a given subinterval [x2i, x2i+2], let us denote by û2(x) the quadratic interpolating
polynomial at x2i, x2i+1, x2i+2, and by û3(x) a cubic interpolating polynomial relative to the
nodes x2i, x2i+1, x2i+2, xα, for some α ∈ [x2i, x2i+1]. We have∫ x2i+2

x2i

u(x)− û2(x)dx =

∫ x2i+2

x2i

u(x)− û3(x)dx+

∫ x2i+2

x2i

û3(x)− û2(x)dx. (6.10)

The second term is zero, because the integrand is a cubic polynomial with zeros at x2i, x2i+1

and x2i+2, and because ∫ x2i+2

x2i

(x− x2i)(x− x2i+1)(x− x2i+2) = 0.

(Notice that the integrand is even around x2i+1.) The cancellation of the second term in (6.10)
also follows from the fact that the degree of precision of the Simpson rule (6.6) is equal to 3,
and so∫ x2i+2

x2i

û3(x)− û2(x)dx =
1

3
(û3 − û2)(x2i) +

4

3
(û3 − û2)(x2i+1) +

1

3
(û3 − û2)(x2i+2) = 0.
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Chapter 6. Numerical integration

Using Theorem 5.2, we rewrite first term in (6.10) from above as follows:∣∣∣∣∫ x2i+2

x2i

u(x)− û3(x)dx
∣∣∣∣ ≤ ∫ x2i+2

x2i

u(4)
(
ξ(x)

)
24

(x− x2i)(x− x2i+1)(x− x2i+2)(x− xα)dx.

Since this formula is valid for all α ∈ [2i, 2i+ 2], we are allowed to take α = x2i+1. Given that∫ x2i+2

x2i

(x− x2i)(x− x2i+1)
2(x− x2i+2)dx =

4

15
h5,

with an integrand everywhere nonpositive in the interval [x2i, x2i+2], we conclude that∣∣∣∣∫ x2i+2

x2i

u(x)− û3(x)dx
∣∣∣∣ ≤ C4

90
h5, C4 = sup

ξ∈[a,b]
|u(4)(ξ)|.

Summing the contributions of all the subintervals, we finally obtain

|I − Îh| ≤
n

2
× C4h

5

90
= (b− a)

C4h
4

180
. (6.11)

Estimating the error. In practice, it is useful to be able to estimate the integration error
so that, if the error is deemed too large, a better approximation of the integral can then be
calculated by using a smaller value for the step size h. Calculating the exact error I − Îh is
impossible in general, because this would require to know the exact value of the integral, but it is
possible to calculate a rough approximation of the error based on two numerical approximations
of the integral, as we illustrate formally hereafter for the composite Simpson rule.

Suppose that Î2h and Îh are two approximations of the integral, calculated using the com-
posite Simpson rule with step size 2h and h, respectively. If we assume that the error scales
as O(h4) as (6.11) suggests, then it holds approximately that

I − Îh ≈ 1

24
(I − Î2h). (6.12)

This implies that

I − Î2h = (I − Îh) + (Ih − Î2h) ≈
1

16
(I − Î2h) + (Ih − Î2h).

Rearranging this equation gives an approximation of the error for Î2h:

I − Î2h ≈ 16

15
(Îh − Î2h).

Using (6.12), we can then derive an error estimate for Îh:

|I − Îh| ≈
1

15
|Îh − Î2h|. (6.13)

The right-hand side can be calculated numerically, because it does not depend on the exact
value of the integral. In practice, the two sides of (6.13) are often very close for small h. In the
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Chapter 6. Numerical integration

code example below, we approximate the integral

I =

∫ π
2

0
cos(x)dx = 1 (6.14)

for different step sizes and compare the exact error with the approximate error obtained us-
ing (6.13). The results obtained are summarized in Table 6.1, which shows a good match
between the two quantities.

Table 6.1: Comparison between the exact integration error and the approximate integration
error calculated using (6.13).

h Exact error |I − Îh| Approximate error 1
15 |Îh − Î2h|

2−4 5.166847063531321× 10−7 5.185892840930961× 10−7

2−5 3.226500089326123× 10−8 3.229464703065806× 10−8

2−6 2.0161285974040766× 10−9 2.016591486390477× 10−9

2−7 1.2600120946615334× 10−10 1.260084925291949× 10−10

# Composite Simpson's rule
function composite_simpson(u, a, b, n)

# Integration nodes
x = LinRange(a, b, n + 1)
# Evaluation of u at the nodes
ux = u.(x)
# Step size
h = x[2] - x[1]
# Approximation of the integral
return (h/3) * sum([ux[1]; ux[end]; 4ux[2:2:end-1]; 2ux[3:2:end-2]])

end

# Function to integrate
u(x) = cos(x)
# Integration bounds
a, b = 0, π/2
# Exact integral
I = 1.0
# Number of subintervals
ns = [8; 16; 32; 64; 128]
# Approximate integrals
Î = composite_simpson.(u, a, b, ns)
# Calculate exact and approximate errors
for i in 2:length(ns)

println("Exact error: $(I - Î[i]), ",
"Approx error: $((Î[i] - Î[i-1])/15)")

end
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Chapter 6. Numerical integration

6.3 Richardson extrapolation and Romberg’s method

In the previous section, we showed how the integration error could be approximated based on
two approximations of the integral with different step sizes. The aim of this section is to show
that, by cleverly combining two approximations Îh and Î2h of an integral, an approximation
even better than Îh can be constructed.

This approach is based on Richardson’s extrapolation, which is a general method for ac-
celerating the convergence of sequences, with applications beyond numerical integration. The
idea is the following: assume that J(h) is an approximation with step size h of some unknown
quantity J∗ = limh→0 J(h), and that we have access to evaluations of J at h, h/2, h/4, h/8 . . . .
Assuming that J extends to a smooth function over [0,H], we have by Taylor expansion that

J(η) = J(0) + J ′(0)η + J ′′(0)
η2

2
+ J (3)(0)

η3

3!
+ · · ·+ J (k)(0)

ηk

k!
+O(ηk+1).

Elimination of the linear error term. Let us assume that J ′(0) 6= 0, so that the leading order
term after the constant J(0) scales as η. Then we have

J(h) = J(0) + J ′(0)h+O(h2)

J(h/2) = J(0) + J ′(0)
h

2
+O(h2).

We now ask the following question: can we combine linearly J(h) and J(h/2) in order to
approximate J(0) with an error scaling as O(h2)? Using the ansatz J1(h/2) = αJ(h)+βJ(h/2),

we calculate
J1(h/2) = (α+ β)J(0) + J ′(0)h

(
α+

1− α

2

)
+O(h2). (6.15)

Since we want this expression to approximate J(0) for small h, we need to impose that α+β = 1.
Then, in order for the term multiplying h to cancel out, we require that

α+
1− α

2
= 0 ⇔ α = −1.

This yields the formula
J1(h/2) = 2J(h/2)− J(h). (6.16)

Notice that, in the case where J is a linear function, J1(h/2) is exactly equal to J(0). This
reveals a geometric interpretation of (6.16): the approximation J1(h/2) is simply the y intercept
of the straight line passing through the points

(
h/2, J(h/2)

)
and

(
h, J(h)

)
.

Elimination of the quadratic error term. If we had tracked the coefficient of h2 in the previous
paragraph, we would have obtained instead of (6.15) the following equation:

J1(h/2) = J(0)− J (3)(0)
h2

4
+O(h3).
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Provided that we have access also to J(h/4), we can also calculate

J1(h/4) =
2J(h/4)− J(h/2)

2
= J(0)− J (3)(0)

h2

16
+O(h3).

At this point, it is natural to wonder whether we can combine J1(h/2) and J1(h/4) in order to
produce an even better approximation of J(0). Applying the same reasoning as in the previous
section leads us to introduce

J2(h/4) =
4J1(h/2)− J2(h/4)

4− 1
= J(0) +O(h3).

This is an exact approximation of J(0) if J is a quadratic polynomial, implying that J2(h/4) is
simply the y intercept of the quadratic polynomial interpolation through the points

(
h/4, J(h/4)

)
,(

h/2, J(h/2)
)

and
(
h, J(h)

)
.

Elimination of higher order terms. The procedure above can be repeated in order to elimi-
nate terms of higher and higher orders. The following schematic illustrates, for example, the
calculation of an approximation J3(h/8) = J(0) +O(h4).

J(h)

J(h/2) J1(h/2)

J(h/4) J1(h/4) J2(h/4)

J(h/8) J1(h/8) J2(h/8) J3(h/8)

O(h) O(h2) O(h3) O(h4).

The linear combination in order to calculate Ji(h/2
i) is always of the form

Ji(h/2
i) =

2iJi−1(h/2
i)− Ji−1(h/2

i−1)

2i − 1
, J0 = J.

In practice we calculate the values taken by J, J1, J2, . . . at specific values of h, but these are
in fact functions of h. In Figure 6.1, we plot these functions when J(h) = 1 + sin(h). It
appears clearly from the figure that, for sufficiently small h, J3(h) provides the most precise
approximation of J(0) = 1. Constructing the functions in Julia can be achieved in just a few
lines of code.

J(h) = 1 + sin(h)
J_1(h) = 2J(h) - J(2h)
J_2(h) = (4J_1(h) - J_1(2h))/3
J_3(h) = (8J_2(h) - J_2(2h))/7

Generalization. Sometimes, it is known a priori that the Taylor development of the function J

around zero contains only even powers of h. In this case, the Richardson extrapolation procedure
can be slightly modified to produce approximations with errors scaling as O(h4), then O(h6),
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Figure 6.1: Illustration of the functions J1, J2 and J3 constructed by Richardson interpolation.
.

then O(h8), etc. This procedure is illustrated below:

J(h)

J(h/2) J1(h/2)

J(h/4) J1(h/4) J2(h/4)

J(h/8) J1(h/8) J2(h/8) J3(h/8)

O(h2) O(h4) O(h6) O(h8).

This time, the linear combinations required for populating this table are given by:

Ji(h/2
i) =

22iJi−1(h/2
i)− Ji−1(h/2

i−1)

22i − 1
. (6.17)

Application to integration: Romberg’s method Romberg’s integration method consists of
applying Richardson’s extrapolation to the function

J(h) = Îh = u(x0) + 2u(x1) + 2u(x2) + · · ·+ 2u(xn−1) + 2u(xn), h ∈
{
b− a

n
;n ∈ N

}
.

where a = x0 < x1 < · · · < xn = b are equidistant nodes. The right-hand side of this equation is
simply the composite trapezoidal rule with step size h. It is possible to show, see [9], that J(h)

may be expanded as follows:

∀k ∈ N, J(h) = I + α1h
2 + α2h

4 + · · ·+ αkh
2k +O(h2k+2).

Richardson’s extrapolation (6.17) can therefore be employed in order to compute approximations
of the integral increasing accuracy. The convergence of Romberg’s method for calculating the
integral (6.14) is illustrated in Figure 6.2.
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Figure 6.2: Convergence of Romberg’s method. The straight lines correspond to the monomial
functions f(h) = Cih

i, with i = 2, 4, 6, 8 and for appropriate constants Ci. We observe a good
agreement between the observed and theoretical convergence rates.

6.4 Methods with non-equidistant nodes

The Newton–Cotes method relies on equidistant integration nodes, and the only degrees of
freedom are the integration weights. If the nodes are not fixed, then additional degrees of
freedom are available, and these can be leveraged in order to construct a better integration
formula. The total number of degrees of freedom for a general integration rule of the form (6.2)
is 2n+2, which enable to construct an integration rule with degree of precision equal to 2n+1.

A necessary condition for an integration rule of the form (6.2) to have a degree of precision
equal to 2n + 1 is that it integrates exactly all the monomials of degree 0 to 2n + 1. This
condition is also sufficient because, assuming that it is satisfied, we have by linearity of the
functionals I and Î that

Î(α0 + α1x+ · · ·+ α2n+1x
2n+1) = α0Î(1) + α1Î(x) + · · ·+ α2n+1Î(x

2n+1)

= α0I(1) + α1I(x) + · · ·+ α2n+1I(x
2n+1)

= I(α0 + α1x+ · · ·+ α2n+1x
2n+1),

Here I(u) and Î(u) denote respectively the exact integral of u and its approximate integral
using (6.2). Finding the nodes and weights of the integration rule, we can therefore solve the
nonlinear system of 2n+ 2 equations with 2n+ 2 unknowns:

n∑
i=0

wix
d
i =

∫ 1

−1
xd dx, d = 0, . . . , 2n+ 1. (6.18)

The quadrature rule obtained by solving this system of equations is called the Gauss–Legendre
quadrature.
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Example 6.1. Let us derive the Gauss–Legendre quadrature with n+ 1 = 2 nodes. The system
of equations that we need to solve in this case is the following:

w0 + w1 = 2, w0x0 + w1x1 = 0, w0x
2
0 + w1x

2
1 =

2

3
, w0x

3
0 + w1x

3
1 = 0.

The solution to these equations is given by

−x0 = x1 =

√
3

3
, w0 = w1 = 1.

Connection with orthogonal polynomials.� The Gauss–Legendre quadrature rules can be
obtained more constructively from orthogonal polynomials, an approach we presented in Sec-
tion 5.2.4. In particular, the integration nodes are related the roots of a Legendre polynomial,
which opens the door to another computational approach for computing them. It is possible to
prove, and this should be clear after reading Section 5.2.4, that the integration weights are all
positive, and so Gauss–Legendre quadrature rules are less susceptible to roundoff errors than
the Newton–Cotes methods.

In this section, we prove, starting from the system of nonlinear equations (6.18), that the
roots of the integration formula are necessarily the roots of a Legendre polynomial. This will
imply, as a corollary, that the set of integration nodes satisfying (6.18) is unique, because the
orthogonal polynomials are unique. To this end, let us denote by

p(x) = (x− x0) . . . (x− xn) =: α0 + α1x+ · · ·+ αn+1x
n+1

the polynomial whose roots coincide with the unknown integration nodes. Multiplying the first
equation of (6.18) (d = 0) by α0, the second (d = 1) by α1, and so forth until the equation
corresponding to d = n+ 1, we obtain after summing these equations

n∑
i=0

wi

n+1∑
d=0

αdx
d
i =

∫ 1

−1

n+1∑
d=0

αdx
d dx ⇔

n∑
i=0

wip(xi) =

∫ 1

−1
p(x)dx.

Since the left-hand side of this equation is equal to 0 by definition of p, we deduce that p is
orthogonal to the constant polynomial for the inner product

〈f, g〉 =
∫ 1

−1
f(x) g(x)dx. (6.19)

Now if we multiply the second equation of (6.18) (d = 1) by α0, the third (d = 2) by α1, and so
forth until until the equation corresponding to d = n + 2, we obtain after summation of these
equations that

n∑
i=0

wixi

n+1∑
d=0

αdx
d
i =

∫ 1

−1

n+1∑
d=0

αdx
d+1 dx ⇔

n∑
i=0

wixip(xi) =

∫ 1

−1
p(x)xdx.
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Since the left-hand side of this equation is again 0 because the nodes xi are the roots of p, we
deduce that p is orthogonal to the linear polynomial x 7→ x for the inner product (6.19). This
reasoning can be repeated in order to deduce that p is in fact orthogonal to all the monomials
of degree 0 to n, implying that p is a multiple of the Legendre polynomial of degree n+ 1.

Generalization to higher dimensions. Gauss–Legendre integration is ubiquitous in numerical
methods for partial differential equations, in particular the finite element method. Its general-
ization to higher dimensions is immediate: for a function u : [−1, 1]× [−1, 1] → R, we have∫ 1

0

∫ 1

0
u(x, y)dydx ≈

n∑
i=0

n∑
j=0

wiwju(xi, yi).

The degree of precision of this integration rule is the same as that of the corresponding one-
dimensional rule.

6.5 Exercises

� Exercise 6.1. Derive the Simpson’s integration rule (6.6).

� Exercise 6.2. Derive the composite Simpson integration rule (6.9).

� Exercise 6.3. Consider the integration rule∫ 1

0
u(x)dx ≈ w1u(0) + w2u(1) + w3u

′(0).

Find w1, w2 and w3 so that this integration rule has the highest possible degree of precision.

� Exercise 6.4. Consider the integration rule∫ 1

−1
u(x)dx ≈ w1u(x1) + w2u

′(x1).

Find w1, w2 and x1 so that this integration rule has the highest possible degree of precision.

� Exercise 6.5. What is the degree of precision of the following quadrature rule?∫ 1

−1
u(x)dx ≈ 2

3

(
2u

(
−1

2

)
− u(0) + 2u

(
1

2

))
.

� Exercise 6.6. The Gauss–Hermite quadrature rule with n+1 nodes is an approximation of
the form ∫ ∞

−∞
u(x) e−

x2

2 dx ≈
n∑

i=0

wiu(xi),

such that the rule is exact for all polynomials of degree less than or equal to 2n + 1. Find the
Gauss–Hermite rule with two nodes.

� Exercise 6.7. Use Romberg’s method to construct an integration rule with an error term
scaling as O(h4). Is there a link between the method you obtained and another integration rule
seen in class?
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� Exercise 6.8 (Improving the error bound for the composite trapezoidal rule). The notation
used in this exercise is the same as in Section 6.2. In particular, Îh denotes the approximate
integral obtained by using the composite trapezoidal rule (6.7), and ûh is the corresponding
piecewise linear interpolant.

A version of the mean value theorem states that, if g : [a, b] → R is a non-negative integrable
function and f : [a, b] → R is continuous, then there exists ξ ∈ (a, b) such that∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx. (6.20)

• Using (6.20), show that, for all i ∈ {0, . . . , n− 1}, there exists ξi ∈ (xi, xi+1) such that∫ xi+1

xi

u(x)− ûh(x)dx = −u′′(ξi)
h3

12
.

• Prove, by using the intermediate value theorem, that if f : [a, b] → R is a continuous
function, then for any set ξ0, . . . , ξn−1 of points within the interval (a, b), there exists
c ∈ (a, b) such that

1

n

n−1∑
i=0

f(ξi) = f(c).

• Combining the previous items, conclude that there exists ξ ∈ (a, b) such that

I − Îh = −u′′(ξ)(a− b)
h2

12
,

which is a more precise expression of the error than that obtained in (6.8).

Remark 6.1. One may convince oneself of (6.20) by rewriting this equation as∫ b
a f(x)g(x)dx∫ b

a g(x)dx
= f(c).

The left-hand side is the average of f(x) with respect to the probability measure with density
given by

x 7→ g(x)∫ b
a g(x)dx

.

6.6 Discussion and bibliography

In this chapter, we covered mainly deterministic integration formulas. The presentation of part
of the material follows that in [6], and some exercises come from [9, Chapter 9]. Much of the
research around the calculation of high-dimensional integrals today is concerned with proba-
bilistic integration methods using Monte Carlo approaches. These methods are based on the
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connection between integrals and expectations. For example, the integral

I =

∫ 1

0
x2 dx

may be expressed as the expectation E[X2], where E is the expectation operator and X ∼ U(0, 1)
is a uniformly distributed random variable over the interval [0, 1]. Therefore, in practice, I

may be approximated by generating a large number of samples X1, X2, . . . from the distribu-
tion U(0, 1) and averaging f(Xi) over all these samples.

n = 1000
f(x) = x^2
X = rand(n)
Î = (1/n) * sum(f.(X))

The main advantage of this approach is that it generalizes very easily to high-dimensional and
infinite-dimensional settings.
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