# # Exercise 1.5 # + # Convert a number of the form 0.a₁a₂... to binary and truncate the result # after a number 'nbits' of bits. The function returns the bits b₁, b₂, b₃... # of the binary representation, from the most to the least significant. function to_binary(x, nbits) result = zeros(Bool, nbits) for i in 1:nbits result[i] = (2*x >= 1) x = 2*x - result[i] end return result end x, nbits = .1, 60 bits = to_binary(x, nbits) println(bits) # - # + # Let us check that our function works approx = BigFloat(0) for (i, b) in enumerate(bits) approx += BigFloat(2.0)^(-i) * b end println("Approximation: $approx") println("\nFloat64 approximation of 0.1:") println("$(BigFloat(0.1))") # - # # Exercise 1.14 # A better formula for computing the sample variance is the following: # $$ # s^2 = \frac{1}{N-1} \sum_{n=1}^N \bigl( x_n - \bar x \bigr)^2, \qquad \bar x = \frac{1}{N} \sum_{n=1}^N x_n # $$ # + import Random # This ensures that the same random numbers are generated every time the code is run Random.seed!(0) N, L = 10^6, 10^9 x = L .+ rand(N) average = (sum(x)/N) s1 = 1/(N-1) * (sum(x.^2) - N*average^2) s2 = 1/(N-1) * (sum((x .- average).^2)) println("Method 1: $s1\nMethod 2: $s2") # We use 'BigFloat' to calculate a very precise result x = BigFloat.(x) exact_average = (sum(x)/N) exact_value = 1/(N-1) * (sum(x.^2) - N*exact_average^2) println("Exact value: $exact_value") # - # # Exercise 1.15 # For best accuracy, we can reverse the order of the summation # + fun_naive(N) = sum(1/Float64(n)^2 for n in 1:N) fun_better(N) = sum(1/Float64(N+1-n)^2 for n in 1:N) println(abs(fun_naive(10^9) - π^2/6)) println(abs(fun_naive(10^10) - π^2/6)) println(abs(fun_better(10^9) - π^2/6)) println(abs(fun_better(10^10) - π^2/6)) # -