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Question 1 (Floating point arithmetic, 10 marks). True or false? +1/-1

1. Let (•)3 denote base 3 representation. It holds that

(120)3 + (111)3 = (1001)3.

2. Let (•)2 denote binary representation. It holds that

(1000)2 × (0.101)2 = (101.01)2.

3. In Julia, Float64(.25) == Float32(.25) evaluates to true.

4. The spacing (in absolute value) between successive double-precision (Float64) floating

point numbers is constant.

5. The machine epsilon is the smallest strictly positive number that can be represented in

a floating point format.

6. Let F64 ⊂ R denote the set of double-precision floating point numbers. If x ∈ F64,

then x admits a finite decimal representation.

7. Let x be a real number. If x ∈ F64, then 2x ∈ F64.

8. The following equality holds

(0.101)2 =
7

3
.

9. In Julia, 256.0 + 2.0*eps(Float64) == 256.0 evaluates to true.

10. The set F64 of double-precision floating point numbers contains twice as many real

numbers as the set F32 of single-precision floating point numbers.

11. Let x and y be two numbers in F64. The result of the machine addition x +̂ y is

sometimes exact and sometimes not, depending on the values of x and y.
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Question 2 (Iterative method for linear systems, 10 marks). Assume that A ∈ Rn×n is a

nonsingular matrix and that b ∈ Rn. We wish to solve the linear system

Ax = b (1)

using an iterative method where each iteration is of the form

Mxk+1 = Nxk + b.

Here A = M−N is a splitting of A such that M is nonsingular, and xk ∈ Rn denotes the k-th

iterate of the numerical scheme.

1. (3 marks) Let ek := xk − x∗, where x∗ is the exact solution to (1). Prove that

ek+1 = M−1Nek.

2. (3 marks) Let L = ∥M−1N∥∞. Prove that

∀k ∈ N, ∥ek∥∞ ≤ Lk∥e0∥∞.

3. (1 mark) Is the condition ∥M−1N∥∞ < 1 necessary for convergence when x0 ̸= x∗?

4. (3 marks) Assume that A is strictly row diagonally dominant, in the sense that

∀i ∈ {1, . . . , n}, |aii| >
n∑

j=1,j ̸=i

|aij |.

Show that, in this case, the inequality ∥M−1N∥∞ < 1 holds for the Jacobi method,

i.e. when M contains just the diagonal of A. You may take for granted the following

expression for the ∞-norm of a matrix X ∈ Rn×n:

∥X∥∞ = max
1≤i≤n

n∑
j=1

|xij |.

5. (Bonus +1) Write down a few iterations of the Jacobi method when

A =

(
1 2

0 1

)
, b

(
1

1

)
, x0 =

(
0

0

)
.

Is the method convergent?
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Question 3 (Nonlinear equations, 10 marks). Assume that x∗ ∈ Rn is a solution to the

equation

F (x) = x,

where F : Rn → Rn is a smooth nonlinear function. We consider the following fixed-point

iterative method for approximating x∗:

xk+1 = F (xk). (2)

1. (8 marks) Assume in this part that F satisfies the local Lipschitz condition

∀x ∈ Bδ(x∗), ∥F (x)− F (x∗)∥ ≤ L∥x− x∗∥, (3)

with 0 ≤ L < 1 and δ > 0. Here Bδ(x∗) denotes the open ball of radius δ centered

at x∗. Show that the following statements hold:

• (2 marks) There is no fixed point of F in Bδ(x∗) other than x∗.

• (2 marks) If x0 ∈ Bδ(x∗), then all the iterates (xk)k∈N belong to Bδ(x∗).

• (3 marks) If x0 ∈ Bδ(x∗), then the sequence (xk)k∈N converges to x∗ and

∀k ∈ N, ∥xk − x∗∥ ≤ Lk∥x0 − x∗∥.

2. (3 marks) Explain with an example how the iterative scheme (2) can be employed for

solving a nonlinear equation of the form

f(x) = 0.

3. (Bonus +1) Let JF : Rn → Rn×n denote the Jacobian matrix of F . Show that if

∀x ∈ Bδ(x∗), ∥JF (x)∥ ≤ L,

then the local Lipschitz condition (3) is satisfied.

3



Question 4 (Error estimate for eigenvalue problem, 10 marks). Let ∥•∥ denote the Eu-

clidean norm, and assume that A ∈ Rn×n is symmetric and nonsingular.

1. (5 marks) Describe with words and pseudocode a simple numerical method for calcu-

lating the eigenvalue of A of smallest modulus, as well as the corresponding eigenvector.

2. (1 mark) Let M ∈ Rn×n denote a nonsingular symmetric matrix. Prove that

∀x ∈ Rn, ∥Mx∥ ≥ ∥M−1∥−1∥x∥. (4)

Let λmin(M) denote the eigenvalue of M of smallest modulus. Deduce from (4) that

∀x ∈ Rn, ∥Mx∥ ≥ |λmin(M)|∥x∥. (5)

3. (4 marks) Assume that λ̂ ∈ R and v̂ ∈ Rn are such that

∥Av̂ − λ̂v̂∥ = ε > 0, ∥v̂∥ = 1. (6)

Using (5), prove that there exists an eigenvalue λ of A such that

|λ− λ̂| ≤ ε.

4. (Bonus +1) Show that, in the more general case where A = VDV−1 is diagonalizable

but not necessarily Hermitian, equation (6) implies the existence of an eigenvalue λ

of A with

|λ̂− λ| ≤ ∥V∥∥V−1∥ε.

Hint: Introduce r = Av̂ − λ̂v̂ and rewrite

∥v̂∥ = ∥(A− λ̂I)−1r∥ = ∥V(D− λ̂I)−1V−1r∥.
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Question 5 (Interpolation error, 10 marks). Let u denote the function

u : [0, 2π] → R;

x 7→ cos(x).

Let pn : [0, 2π] → R denote the interpolating polynomial of u through at the nodes

xi =
2πi

n
, i = 0, . . . , n.

1. (3 marks) Using a method of your choice, calculate pn for n = 2.

2. (6 marks) Let n ∈ N>0 and en(x) := u(x)− pn(x). Prove that

∀x ∈ [0, 2π], |en(x)| ≤
|ω(x)|
(n+ 1)!

,

where we introduced

ωn(x) :=

n∏
i=0

(x− xi).

Hint: You may find it useful to introduce the function

g(t) = en(t)ωn(x)− en(x)ωn(t).

3. (1 mark) Does the maximum absolute error

En := sup
x∈[0,2π]

|en(x)|

tend to zero in the limit as n → ∞?

(Bonus +1) Using the Gregory–Newton formula, find a closed expression for the sum

S(n) =

n∑
k=1

k2.
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Question 6 (Numerical integration, 10 marks). The third exercise below is independent of

the first two.

1. (5 marks) Construct an integration rule of the form∫ 1

−1
u(x) dx ≈ w1u

(
−1

2

)
+ w2u(0) + w3u

(
1

2

)
with a degree of precision equal to at least 2.

2. (1 mark) What is the degree of precision of the rule constructed?

3. (4 marks) The Gauss–Laguerre quadrature rule with n nodes is an approximation of

the form ∫ ∞

0
u(x) e−x dx ≈

n∑
i=1

wiu(xi),

such that the rule is exact when u is a polynomial of degree less than or equal to 2n−1.

Find the Gauss–Laguerre rule with one node (n = 1).

4. (Bonus +1) Find the Gauss–Laguerre quadrature rule with two nodes (n = 2). You

may find it useful to first calculate the Laguerre polynomial of degree 2.
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