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Question 1 (Floating point arithmetic, 10 marks). True or false? +1/-1

1. Let (•)3 denote base 3 representation. It holds that

(120)3 + (111)3 = (1001)3.

2. Let (•)2 denote binary representation. It holds that

(1000)2 × (0.101)2 = (101.01)2.

3. In Julia, Float64(.25) == Float32(.25) evaluates to true.

4. The spacing (in absolute value) between successive double-precision (Float64) floating

point numbers is constant.

5. The machine epsilon is the smallest strictly positive number that can be represented in

a floating point format.

6. Let F64 ⊂ R denote the set of double-precision floating point numbers. If x ∈ F64,

then x admits a finite decimal representation.

7. Let x be a real number. If x ∈ F64, then 2x ∈ F64.

8. The following equality holds

(0.101)2 =
7

3
.

9. In Julia, 256.0 + 2.0*eps(Float64) == 256.0 evaluates to true.

10. The set F64 of double-precision floating point numbers contains twice as many real

numbers as the set F32 of single-precision floating point numbers.
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11. Let x and y be two numbers in F64. The result of the machine addition x +̂ y is

sometimes exact and sometimes not, depending on the values of x and y.

Solution. The correct answers are the following:

1. True. The equality can be checked by converting the numbers to base 10 and then

adding them, or by performing a long addition in base 3 directly.

2. True. Multiplication by (1000)2 shifts the binary expansion 3 positions to the left.

3. True, because 0.25 = (0.01)2 in binary, which belongs to F32 ∩ F64.

4. False. This is why they are called floating point numbers.

5. False. The machine epsilon is related to the relative accuracy.

6. True, because all the powers of 2 admit a decimal representation with finitely many

digits. Here we employ the word “admit” because the decimal expansion is not unique;

for example, (0.1)2 = (0.5)10 = (0.49)10.

7. False. If the statement were true, then there would be an infinite amount of floating

point numbers.

8. False. The left-hand side is < 1, and the right-hand side is > 1.

9. True. The next floating point number after 256 is 256(1 + ε).

10. False. It would take just one additional bit to store twice as many numbers.

11. True. It depends on whether x+ y belongs to F64 or not.
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Question 2 (Iterative method for linear systems, 10 marks). Assume that A ∈ Rn×n is a

nonsingular matrix and that b ∈ Rn. We wish to solve the linear system

Ax = b (1)

using an iterative method where each iteration is of the form

Mxk+1 = Nxk + b. (2)

Here A = M−N is a splitting of A such that M is nonsingular, and xk ∈ Rn denotes the k-th

iterate of the numerical scheme.

1. (3 marks) Let ek := xk − x∗, where x∗ is the exact solution to (1). Prove that

ek+1 = M−1Nek.

2. (3 marks) Let L = ∥M−1N∥∞. Prove that

∀k ∈ N, ∥ek∥∞ ≤ Lk∥e0∥∞. (3)

3. (1 mark) Is the condition ∥M−1N∥∞ < 1 necessary for convergence when x0 ̸= x∗?

4. (3 marks) Assume that A is strictly row diagonally dominant, in the sense that

∀i ∈ {1, . . . , n}, |aii| >
n∑

j=1,j ̸=i

|aij |.

Show that, in this case, the inequality ∥M−1N∥∞ < 1 holds for the Jacobi method,

i.e. when M contains just the diagonal of A. You may take for granted the following

expression for the ∞-norm of a matrix X ∈ Rn×n:

∥X∥∞ = max
1≤i≤n

n∑
j=1

|xij |.

5. (Bonus +1) Write down a few iterations of the Jacobi method when

A =

(
1 2

0 1

)
, b

(
1

1

)
, x0 =

(
0

0

)
.

Is the method convergent?
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Solution. 1. We have {
Mxk+1 = Nxk + b

Mx∗ = Nx∗ + b.

The second equation holds because x∗ is a solution to (1). Subtracting the second

equation from the first, and multiplying both sides by M−1, we obtain the required

result.

2. By induction we have

ek = (M−1N)ke0.

By definition of the ∥•∥∞ operator norm, we deduce that

∥ek∥∞ ≤ ∥(M−1N)k∥∞∥e0∥∞.

Since the norm ∥•∥∞ is submultiplicative, we conclude that

∥ek∥∞ ≤ ∥M−1N∥k∞∥e0∥∞ = Lk∥e0∥∞.

3. No. The condition is sufficient, because ρ(M−1N) ≤ ∥M−1N∥∞, but not necessary. See

the bonus question for an example where convergence occurs but ∥M−1N∥∞ > 1.

4. We have that

(M−1N)ij =

0 if i = j

aij
aii

if i ̸= j.
.

By strict diagonal dominance, we deduce

∀i ∈ {1, . . . , n},
n∑

j=1

∣∣(M−1N)ij
∣∣ = n∑

j=1,j ̸=i

∣∣∣∣aijaii

∣∣∣∣ = 1

|aii|

n∑
j=1,j ̸=i

|aij | < 1.

Therefore, we conclude that

∥M−1N∥∞ = max
1≤i≤n

n∑
j=1

∣∣(M−1N)ij
∣∣ < 1.

5. In this case

M−1N =

(
0 2

0 0

)
,

which is a nilpotent matrix and so e2 = (M−1N)2e0 = 0; the method converges in two

iterations.
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Question 3 (Nonlinear equations, 10 marks). Assume that x∗ ∈ Rn is a solution to the

equation

F (x) = x,

where F : Rn → Rn is a smooth nonlinear function. We consider the following fixed-point

iterative method for approximating x∗:

xk+1 = F (xk). (4)

1. (8 marks) Assume in this part that F satisfies the local Lipschitz condition

∀x ∈ Bδ(x∗), ∥F (x)− F (x∗)∥ ≤ L∥x− x∗∥, (5)

with 0 ≤ L < 1 and δ > 0. Here Bδ(x∗) denotes the open ball of radius δ centered

at x∗. Show that the following statements hold:

• (2 marks) There is no fixed point of F in Bδ(x∗) other than x∗.

• (2 marks) If x0 ∈ Bδ(x∗), then all the iterates (xk)k∈N belong to Bδ(x∗).

• (3 marks) If x0 ∈ Bδ(x∗), then the sequence (xk)k∈N converges to x∗ and

∀k ∈ N, ∥xk − x∗∥ ≤ Lk∥x0 − x∗∥.

2. (3 marks) Explain with an example how the iterative scheme (4) can be employed for

solving a nonlinear equation of the form

f(x) = 0.

3. (Bonus +1) Let JF : Rn → Rn×n denote the Jacobian matrix of F . Show that if

∀x ∈ Bδ(x∗), ∥JF (x)∥ ≤ L,

then the local Lipschitz condition (5) is satisfied.
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Solution.

1. • Assume by contradiction that there was another fixed point y∗. Then, using the

Lipschitz continuity, it would hold that

∥y∗ − x∗∥ = ∥F (y∗)− F (x∗)∥ ≤ L∥y∗ − x∗∥,

which is a contradiction because L < 1.

• The first iterate x0 is in Bδ(x∗) by assumption. Reasoning by induction we assume

that all the iterates up to xk belong to Bδ(x∗). Then, since F (x∗) = x∗ by

definition of x∗, we have

∥xk+1 − x∗∥ = ∥F (xk)− F (x∗)∥ ≤ L∥xk − x∗∥ < Lδ < δ,

implying that xk+1 is also in Bδ(x∗). Note that we used the induction hypothesis

twice: in the first inequality, because we need to know that xk ∈ Bδ(x∗) in order

to apply the local Lipschitz continuity (5), and then in the second inequality for

the bound ∥xk − x∗∥ < δ.

• In the previous item, we showed that

∥xk+1 − x∗∥ ≤ L∥xk − x∗∥.

Iterating this inequality, we deduce that

∥xk+1 − x∗∥ ≤ L∥xk − x∗∥ ≤ . . . ≤ Lk+1∥x0 − x∗∥.

2. A possible approach is to use the Newton–Raphson method. Letting

F (x) = x− Jf (x)
−1f(x),

we observe that if x∗ is a solution to f(x) = 0, then x∗ is also a fixed point of F (x),

provided that Jf (x∗) is nonsingular. We can then use the iterative scheme (1) in order

to estimate x∗.

3. This is from the lecture notes. By the fundamental theorem of calculus and the chain

rule, we have

F (x)− F (x∗) =

∫ 1

0

d

dt

(
F
(
x∗ + t(x− x∗)

))
dt =

∫ 1

0
JF
(
x∗ + t(x− x∗)

)
(x− x∗) dt.
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Therefore, it holds that

∥F (x)− F (x∗)∥ ≤
∫ 1

0

∥∥JF (x+ t(x− x∗)
)∥∥dt ∥x− x∗∥

≤
∫ 1

0
Ldt ∥x− x∗∥ = L∥x− x∗∥,

which is the statement.
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Question 4 (Error estimate for eigenvalue problem, 10 marks). Let ∥•∥ denote the Eu-

clidean norm, and assume that A ∈ Rn×n is symmetric and nonsingular.

1. (5 marks) Describe with words and pseudocode a simple numerical method for calcu-

lating the eigenvalue of A of smallest modulus, as well as the corresponding eigenvector.

Assume for simplicity that this eigenvalue and the corresponding eigenvector are unique.

2. (1 mark) Let M ∈ Rn×n denote a nonsingular symmetric matrix. Prove that

∀x ∈ Rn, ∥Mx∥ ≥ ∥M−1∥−1∥x∥. (6)

Let λmin(M) denote the eigenvalue of M of smallest modulus. Deduce from (6) that

∀x ∈ Rn, ∥Mx∥ ≥ |λmin(M)|∥x∥. (7)

3. (4 marks) Assume that λ̂ ∈ R and v̂ ∈ Rn are such that

∥Av̂ − λ̂v̂∥ = ε > 0, ∥v̂∥ = 1. (8)

Using (7), prove that there exists an eigenvalue λ of A such that

|λ− λ̂| ≤ ε.

4. (Bonus +1) Show that, in the more general case where A = VDV−1 is diagonalizable

but not necessarily Hermitian, equation (8) implies the existence of an eigenvalue λ

of A with

|λ̂− λ| ≤ ∥V∥∥V−1∥ε.

Hint: Introduce r = Av̂ − λ̂v̂ and rewrite

∥v̂∥ = ∥(A− λ̂I)−1r∥ = ∥V(D− λ̂I)−1V−1r∥.

Solution.

1. Since our aim is to approximate the eigenvalue of smallest modulus, a possible approach

is to use the inverse power iteration with shift µ = 0. After an approximation of the

eigenvector has been calculated, an approximation of the eigenvalue may be calculated

from the Rayleigh quotient. A pseudocode for this approach is given in algorithm 1.

2. The inequality (6) follows from

∥x∥ = ∥M−1Mx∥ ≤ ∥M−1∥∥Mx∥.
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Algorithm 1 Inverse iteration
x← x0

for i ∈ {1, 2, . . . } do
Solve Ay = x
x← y/∥y∥

end for
λ← x∗Ax/x∗x
return x, λ

Equation (7) then follows from the fact that

∥M−1∥ = |λmax(M
−1)| = 1

|λmin(M)|
. (9)

3. Using (7), we deduce that

|λmin(A− λ̂I)| = |λmin(A− λ̂I)|∥v̂∥ ≤ ∥(A− λ̂I)v̂∥ = ε.

The eigenvalues of A − λ̂I are given by {λ − λ̂ : λ ∈ σ(A)}, where σ(A) is the set of

eigenvalues of A. The statement then follows immediately.

4. Following the hint and using the submultiplicative property of the norm, we have

1 = ∥v̂∥ = ∥V(D− λ̂I)−1V−1r∥ ≤ ∥V∥∥(D− λ̂I)−1∥∥V−1∥∥r∥ = ∥V∥∥(D− λ̂I)−1∥∥V−1∥ε.

Rearranging this equation and using (9), we deduce that

|λmin(D− λ̂I)| = 1

∥(D− λ̂I)−1∥
≤ ∥V∥∥V−1∥ε,

and the statement follows easily.
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Question 5 (Interpolation error, 10 marks). Let u denote the function

u : [0, 2π]→ R;

x 7→ cos(x).

Let pn : [0, 2π]→ R denote the interpolating polynomial of u through at the nodes

xi =
2πi

n
, i = 0, . . . , n.

1. (3 marks) Using a method of your choice, calculate pn for n = 2.

2. (6 marks) Let n ∈ N>0 and en(x) := u(x)− pn(x). Prove that

∀x ∈ [0, 2π], |en(x)| ≤
|ωn(x)|
(n+ 1)!

,

where we introduced

ωn(x) :=

n∏
i=0

(x− xi).

Hint: You may find it useful to introduce the function

g(t) = en(t)ωn(x)− en(x)ωn(t).

3. (1 mark) Does the maximum absolute error

En := sup
x∈[0,2π]

|en(x)|

tend to zero in the limit as n→∞?

(Bonus +1) Using the Gregory–Newton formula, find a closed expression for the sum

S(n) =

n∑
k=0

k2.

Solution.

1. The parabola pn is required to pass through the points (0, 1), (π,−1) and (2π, 0). It is

clear, therefore, that the axis of symmetry of pn is at x = π, which suggests the ansatz

pn(x) = A+B(x− π)2.

The equations pn(π) = −1 and pn(0) = 1 imply that A = −1 and then B = 2π−2.
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Therefore, it holds that

pn(x) = −1 + 2
(x
π
− 1
)2

.

2. This is a proof from the lecture notes. The statement is obvious if x ∈ {x0, . . . , xn},
so we assume that x does not coincide with an interpolation node. The function g is

smooth and takes the value 0 when evaluated at x0, . . . , xn, x. Therefore, by Rolle’s

theorem, the function g′ has at least n + 1 distinct roots in (0, 2π). Repeating this

reasoning, we deduce that g(n+1) has at least one root t∗ in (0, 2π). We calculate that

g(n+1)(t) = e(n+1)
n (t)ωn(x)− en(x)ω

(n+1)
n (t) = u(n+1)(t)ωn(x)− en(x)(n+ 1)!, (10)

Because p
(n+1)
n = 0. Evaluating (10) at t∗ and rearranging, we obtain that

en(x) =
u(n+1)(t∗)

(n+ 1)!
ωn(x).

Finally, noticing that |un+1| is bounded from above uniformly by 1, we deduce (3).

3. Yes. In the limit as n→∞, it holds that supx∈[0,2π]|ωn(x)| → 0 and 1/(n+ 1)!→ 0.

(Bonus +1) Since ∆S(n) = (n+ 1)2, which is a second degree polynomial in n, we deduce

that S(n) is a polynomial of degree 3. Let us now determine its coefficients.

n 0 1 2 3

∆0S(n) 0 1 5 14

∆1S(n) 1 4 9

∆2S(n) 3 5

∆3S(n) 2

We conclude that

S(n) = 1n+
3

2!
n(n− 1) +

2

3!
n(n− 1)(n− 2) =

n(2n+ 1)(n+ 1)

6
.
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Question 6 (Numerical integration, 10 marks). The third exercise below is independent of

the first two.

1. (5 marks) Construct an integration rule of the form∫ 1

−1
u(x) dx ≈ w1u

(
−1

2

)
+ w2u(0) + w3u

(
1

2

)
with a degree of precision equal to at least 2.

2. (1 mark) What is the degree of precision of the rule constructed?

3. (4 marks) The Gauss–Laguerre quadrature rule with n nodes is an approximation of

the form ∫ ∞

0
u(x) e−x dx ≈

n∑
i=1

wiu(xi),

such that the rule is exact when u is a polynomial of degree less than or equal to 2n−1.

Find the Gauss–Laguerre rule with one node (n = 1).

4. (Bonus +1) Find the Gauss–Laguerre quadrature rule with two nodes (n = 2). You

may find it useful to first calculate the Laguerre polynomial of degree 2.

Solution.

1. The Lagrange polynomials associated with −1/2, 0 and 1/2 are respectively

p1(x) = 2x

(
x− 1

2

)
,

p2(x) = −4
(
x+

1

2

)(
x− 1

2

)
,

p3(x) = 2

(
x+

1

2

)
x.

We deduce that

w1 =

∫ 1

−1
p1(x) =

4

3
,

w2 =

∫ 1

−1
p2(x) = −

2

3
,

w3 =

∫ 1

−1
p3(x) =

4

3
.

2. By construction, the degree of precision is at least 2. However, the integration rule is

exact also when u(x) = x3. Since it is not exact for u(x) = x4, we conclude that the
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degree of precision is 3.

3. We are looking for w1 and x1 such that

∀(a, b) ∈ R2,

∫ ∞

0
(a+ bx) e−x dx = w1(a+ bx1).

The left-hand side is equal to

a

∫ ∞

0
e−x dx+ b

∫ ∞

0
xe−x dx = 0 = a+ b

∫ ∞

0
xe−x dx.

Using integration by parts, we can find the value of the remaining integral on the

right-hand side: ∫ ∞

0
xe−x =

∫ ∞

0
−(xe−x)′ + e−x dx

= −(xe−x)
∣∣∣
x=∞

+ (xe−x)
∣∣∣
x=0

+

∫ ∞

0
e−x dx

= 1.

(To be rigorous, we would need to write the first term on the second line as a limit.)

Therefore, we obtain

a+ b = w1(a+ bx1),

which implies that w1 = x1 = 1.

4. The integration nodes are given by the roots of the Laguerre polynomials, which are

the orthogonal polynomials for the inner product

⟨f, g⟩ :=
∫ ∞

0
f(x)g(x) e−x dx.

The first polynomial is ℓ0(x) = 1. It is simple to check that the only linear monomial

orthogonal to ℓ0 is given by ℓ1(x) = x − 1. Next, by integration by parts we calculate

that ∫ ∞

0
x2 e−x dx =

∫ ∞

0
−(x2e−x)′ + 2xe−x dx = 2.

and, similarly, ∫ ∞

0
x3 e−x dx =

∫ ∞

0
−(x3e−x)′ + 3x2e−x dx = 6.

Consider the ansatz ℓ2(x) = x2 + aℓ1(x) + b. In order for ℓ2 to be orthogonal to ℓ0
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and ℓ1, it is necessary that

0 =

∫ ∞

0
ℓ2(x) ℓ0(x) e

−x dx = 2 + b,

0 =

∫ ∞

0
ℓ2(x) ℓ1(x) e

−x dx = 4 + a

∫ ∞

0
ℓ1(x)ℓ1(x) dx = 4 + a.

Therefore, we conclude that a = −4 and b = −2, which gives

ℓ2(x) = x2 − 4x+ 2.

The roots are given by 2 ±
√
2, so we have x1 = 2 −

√
2 and x2 = 2 +

√
2. It remains

to find the weights. To this end, we need only two additional equations, it is sufficient

to require that, for any (a, b) ∈ R2,

a+ b =

∫ ∞

0
(a+ bx) e−x dx = w1(a+ bx1) + w2(a+ bx2)

= a(w1 + w2) + 2b(w1 + w2) +
√
2b(w2 − w1),

which enables to find w1 and w2.
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