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Question 1 (Floating point arithmetic, 10 marks). True or false? +1/-1

1. Let (¢)3 denote base 3 representation. It holds that

(120)5 + (111)3 = (1001)s.

2. Let (#)2 denote binary representation. It holds that

3. In Julia, Float64(.25) == Float32(.25) evaluates to true.

4. The spacing (in absolute value) between successive double-precision (Float64) floating

point numbers is constant.

5. The machine epsilon is the smallest strictly positive number that can be represented in

a floating point format.

6. Let Fgs C R denote the set of double-precision floating point numbers. If z € Fgy,

then z admits a finite decimal representation.
7. Let x be a real number. If z € Fgq, then 2z € Fgy.

8. The following equality holds

T
(0.10T); = .

9. In Julia, 256.0 + 2.0*eps(Float64) == 256.0 evaluates to true.

10. The set Fg4 of double-precision floating point numbers contains twice as many real

numbers as the set F3o of single-precision floating point numbers.



11.

Let z and y be two numbers in Fgy. The result of the machine addition = + y is

sometimes exact and sometimes not, depending on the values of x and y.

Solution. The correct answers are the following:

1.

10.

11.

True. The equality can be checked by converting the numbers to base 10 and then
adding them, or by performing a long addition in base 3 directly.

. True. Multiplication by (1000)2 shifts the binary expansion 3 positions to the left.
. True, because 0.25 = (0.01)2 in binary, which belongs to F3o N Fgq.

. False. This is why they are called floating point numbers.

. False. The machine epsilon is related to the relative accuracy.

. True, because all the powers of 2 admit a decimal representation with finitely many

digits. Here we employ the word “admit” because the decimal expansion is not unique;
for example, (0.1)2 = (0.5);0 = (0.49),0.

. False. If the statement were true, then there would be an infinite amount of floating

point numbers.

. False. The left-hand side is < 1, and the right-hand side is > 1.

. True. The next floating point number after 256 is 256(1 + ¢).

False. It would take just one additional bit to store twice as many numbers.

True. It depends on whether x 4 y belongs to Fgq or not.



Question 2 (Iterative method for linear systems, 10 marks). Assume that A € R™" is a

nonsingular matrix and that b € R™. We wish to solve the linear system
Az =b (1)
using an iterative method where each iteration is of the form
Mxzy,1 = Ny, + b. (2)

Here A = M — N is a splitting of A such that M is nonsingular, and x; € R™ denotes the k-th

iterate of the numerical scheme.

1. (3 marks) Let ey := x) — @, where x, is the exact solution to (1). Prove that

€r41 = M_lNek.

2. (3 marks) Let L = [[M~!N||». Prove that

vkeN,  erlle < LFleo]ls. 3)

3. (1 mark) Is the condition |[M™!N||s < 1 necessary for convergence when o # x.?

4. (3 marks) Assume that A is strictly row diagonally dominant, in the sense that

n
Vie{l,...,n}, |aii| > Z |aij]-

=1

Show that, in this case, the inequality [M™!N|[o < 1 holds for the Jacobi method,
i.e. when M contains just the diagonal of A. You may take for granted the following

expression for the oco-norm of a matrix X € R™*™:

n

[IX]|oo = 1@?5%2%\-
‘7:

5. (Bonus +1) Write down a few iterations of the Jacobi method when

) )

Is the method convergent?



Solution. 1. We have
{Mazkﬂ =Nz, +b

Mz, = Nz, + b.

The second equation holds because x, is a solution to (1). Subtracting the second
equation from the first, and multiplying both sides by M~—!, we obtain the required

result.

2. By induction we have
ep = (MilN)keo.

By definition of the ||¢||s operator norm, we deduce that

lexlloco < H(MilN)kHOOHeOHOO-

Since the norm |[|¢|| is submultiplicative, we conclude that

lexlloe < IM™'NJI&lleollss = L*|l€oloo-

3. No. The condition is sufficient, because p(M~IN) < |[M~!N|», but not necessary. See
the bonus question for an example where convergence occurs but [M™IN|[, > 1.

4. We have that

_ 0 ifi=j

an if ¢ # j.

By strict diagonal dominance, we deduce

n

Vie{l,...,n}, D |M'N)yl= >
7=1 '

n

Therefore, we conclude that
IM™N||oo = max > [(M~'N);| < 1.

1<i<n 4
Jj=1

M™IN = 02,
0 0

which is a nilpotent matrix and so e; = (M~!N)%ey = 0; the method converges in two

5. In this case

iterations.



Question 3 (Nonlinear equations, 10 marks). Assume that x, € R" is a solution to the

equation
F(x) ==,

where F': R™ — R" is a smooth nonlinear function. We consider the following fixed-point

iterative method for approximating x,:
xpr1 = F(x). (4)
1. (8 marks) Assume in this part that F satisfies the local Lipschitz condition
Vo € Bs(x.),  ||F(x) - F(x.)| < Lz — .||, ()

with 0 < L < 1 and § > 0. Here Bs(x.) denotes the open ball of radius § centered
at x,. Show that the following statements hold:

e (2 marks) There is no fixed point of F' in Bs(x.) other than ..
e (2 marks) If xy € Bs(x.), then all the iterates (xx)ren belong to Bs(xy).

e (3 marks) If &y € Bs(x.), then the sequence (xy)ren converges to x, and
VEEN,  ap — x| < LFllwo — ..

2. (3 marks) Explain with an example how the iterative scheme (4) can be employed for

solving a nonlinear equation of the form
f(x) =0.
3. (Bonus +1) Let Jp: R™ — R™ "™ denote the Jacobian matrix of F. Show that if
Vo € Bs(z.),  [Ur(z)l < L,

then the local Lipschitz condition (5) is satisfied.



Solution.

1. e Assume by contradiction that there was another fixed point y,. Then, using the

Lipschitz continuity, it would hold that
ly. — x|l = [[F(y.) — F(z.)|| < Llly. — x|,

which is a contradiction because L < 1.

The first iterate xg is in Bs(x,) by assumption. Reasoning by induction we assume
that all the iterates up to xj belong to Bs(x.). Then, since F(x,) = x,. by

definition of x,, we have
|1 — @]l = | F(wy) — F(a.)] < Lllay — 2. < Ld <6,

implying that @y is also in Bs(x.). Note that we used the induction hypothesis
twice: in the first inequality, because we need to know that xy € Bs(x,) in order
to apply the local Lipschitz continuity (5), and then in the second inequality for
the bound ||z} — .|| < 4.

In the previous item, we showed that
k41 — 2| < Ly — ..
Iterating this inequality, we deduce that

l@hit — @]l < Lllag — 2. < ... < I ag — |

2. A possible approach is to use the Newton—Raphson method. Letting

F(x) =x — Jf(x) " f(=),

we observe that if @, is a solution to f(x) = 0, then @, is also a fixed point of F(x),

provided that J () is nonsingular. We can then use the iterative scheme (1) in order

to estimate x..

3. This is from the lecture notes. By the fundamental theorem of calculus and the chain

rule, we have

d

F(z)— F(x.) = /01 a(F(m* + t(x — a:*)))dt = /01 Jp(zy + t(z — x)) (& — @) dt.



Therefore, it holds that
1
IF(@) = F@) < [ |r(e+t@—w)|dt|o -
1
< [ Latle e = Lz .|,
0

which is the statement.



Question 4 (Error estimate for eigenvalue problem, 10 marks). Let |||l denote the Eu-

clidean norm, and assume that A € R"*™ is symmetric and nonsingular.

1. (5 marks) Describe with words and pseudocode a simple numerical method for calcu-
lating the eigenvalue of A of smallest modulus, as well as the corresponding eigenvector.

Assume for simplicity that this eigenvalue and the corresponding eigenvector are unique.
2. (1 mark) Let M € R"*" denote a nonsingular symmetric matrix. Prove that
—1—1
veeR",  [[Mz| = M7 ||z (6)
Let Amin(M) denote the eigenvalue of M of smallest modulus. Deduce from (6) that

ve e R", M| = [Anin(M)[[[2] (7)

3. (4 marks) Assume that X €R and ¥ € R" are such that
IAB =8| = >0, 5]l =1. (8)
Using (7), prove that there exists an eigenvalue A of A such that

A=A <e.

4. (Bonus +1) Show that, in the more general case where A = VDV~ is diagonalizable
but not necessarily Hermitian, equation (8) implies the existence of an eigenvalue A
of A with

X=X < VIV e

Hint: Introduce r = A — A& and rewrite

Solution.

1. Since our aim is to approximate the eigenvalue of smallest modulus, a possible approach
is to use the inverse power iteration with shift © = 0. After an approximation of the
eigenvector has been calculated, an approximation of the eigenvalue may be calculated

from the Rayleigh quotient. A pseudocode for this approach is given in algorithm 1.

2. The inequality (6) follows from

lzll = M~ Ma|| < [IM~[[[|Ma].



Algorithm 1 Inverse iteration

T < X9

forie {1,2,...} do
Solve Ay = x
z — y/lyl

end for

A x*Az/x*x
return x, \

Equation (7) then follows from the fact that

_ _ 1
||M lH = |)‘max(M 1)\ = m (9)

3. Using (7), we deduce that
[Amin(A = AD[ = [Amin(A = AD[[[9]] < [[(A = ADo|| =e.

The eigenvalues of A — Al are given by {A — A : A € o(A)}, where o(A) is the set of

eigenvalues of A. The statement then follows immediately.

4. Following the hint and using the submultiplicative property of the norm, we have
L= ofl = [VO =)=V < VIO =)V = VIO =MD IV e

Rearranging this equation and using (9), we deduce that

1

Amin(D = M) = —————
i ) [(D—AD—

< IVIIV="le,

and the statement follows easily.



Question 5 (Interpolation error, 10 marks). Let u denote the function

u: [0,27] = R;

x +— cos(x).

Let p,: [0,27] — R denote the interpolating polynomial of u through at the nodes

1. (3 marks) Using a method of your choice, calculate p,, for n = 2.

2. (6 marks) Let n € N and e, (z) := u(x) — pp(x). Prove that
Vo € [07271-]7 \en(m)| <
where we introduced

1=0

Hint: You may find it useful to introduce the function
9(t) = en(t)wn () — en(@)wn(t).
3. (1 mark) Does the maximum absolute error

E, = sup |ey(z)]
z€(0,27]

tend to zero in the limit as n — oco?

(Bonus +1) Using the Gregory—Newton formula, find a closed expression for the sum

S(n) = z”: k2.
k=0

Solution.

1. The parabola p,, is required to pass through the points (0,1), (w, —1) and (27,0). It is

clear, therefore, that the axis of symmetry of p, is at * = 7, which suggests the ansatz
pu(z) = A+ B(z — )%
The equations p,(7) = —1 and p,(0) = 1 imply that A = —1 and then B = 272,

10



Therefore, it holds that

pue) = -1+2 (= —1)2.

2. This is a proof from the lecture notes. The statement is obvious if = € {xq,...,z,},
so we assume that x does not coincide with an interpolation node. The function g is
smooth and takes the value 0 when evaluated at xg,...,x,,x. Therefore, by Rolle’s
theorem, the function ¢’ has at least n + 1 distinct roots in (0,27). Repeating this
reasoning, we deduce that ¢("*1 has at least one root ¢, in (0,27). We calculate that

gD (8) = e (B (2) — en(@)wl V(1) = uHD () (2) — en(a)(n+ 1)L, (10)

n

Because p%nﬂ) = 0. Evaluating (10) at ¢, and rearranging, we obtain that
(n+1)
U t
en(z) = (n_}_i)j)wn(x).

Finally, noticing that |u"*!| is bounded from above uniformly by 1, we deduce (3).
3. Yes. In the limit as n — 0o, it holds that sup,cpox|wn(z)| — 0 and 1/(n +1)! — 0.

(Bonus +1) Since AS(n) = (n + 1)2, which is a second degree polynomial in n, we deduce

that S(n) is a polynomial of degree 3. Let us now determine its coefficients.

n 01 3
A%S(n) |0 |1 14
AlS(n) | 1|4

A2S(n) |3 |5

A3S(n) | 2

We conclude that

S(n) =1n+ %n(n —1)+ %n(n 1) n—2) = n(2n + 16)(n+ o)

11



Question 6 (Numerical integration, 10 marks). The third exercise below is independent of
the first two.

1. (5 marks) Construct an integration rule of the form

/_ 11 u(z) dz ~ wiu (—i) + wou(0) + wau @)

with a degree of precision equal to at least 2.
2. (1 mark) What is the degree of precision of the rule constructed?

3. (4 marks) The Gauss—Laguerre quadrature rule with n nodes is an approximation of

/ u(xz)e *dr ~ Z wiu(z;),
0 i=1

such that the rule is exact when u is a polynomial of degree less than or equal to 2n — 1.

the form

Find the Gauss-Laguerre rule with one node (n = 1).

4. (Bonus +1) Find the Gauss-Laguerre quadrature rule with two nodes (n = 2). You

may find it useful to first calculate the Laguerre polynomial of degree 2.

Solution.

1. The Lagrange polynomials associated with —1/2, 0 and 1/2 are respectively

) =2o(o-1).

We deduce that

1
4
w1 = pPi\xr) = -,
/_1 (0) =
1
2
wo = p2\r) = ——,
/1 (0)=—>
1
4
w3 = p3x) = -
/_1 (0) =

2. By construction, the degree of precision is at least 2. However, the integration rule is

4

exact also when u(z) = 2. Since it is not exact for u(z) = 2*, we conclude that the

12



degree of precision is 3.

. We are looking for w; and x; such that
o
Y(a,b) € R?, / (a+bx)e *dr = wi(a+ bxy).
0

The left-hand side is equal to

a/ exdx—i—b/ xexdx:0:a+b/ ze Tdz.
0 0 0

Using integration by parts, we can find the value of the remaining integral on the

right-hand side:
[ee] o
/ xe ¥ = / —(ze ™) +e " dx
0 0

(To be rigorous, we would need to write the first term on the second line as a limit.)
Therefore, we obtain
a+b=wi(a+br),

which implies that wy = z1 = 1.

. The integration nodes are given by the roots of the Laguerre polynomials, which are

the orthogonal polynomials for the inner product

(f,9) = /000 f(x)g(z) e du.

The first polynomial is ¢p(z) = 1. It is simple to check that the only linear monomial
orthogonal to ¢y is given by ¢1(z) = = — 1. Next, by integration by parts we calculate
that

oo oo
/ z?e % dr = / —(z%e™") + 2ze " dx = 2.
0 0
and, similarly,

oo o
/ e dr = / —(23e™®) + 3% " dz = 6.
0 0

Consider the ansatz f3(x) = x? + af1(x) + b. In order for /5 to be orthogonal to £y

13



and /, it is necessary that
O:/ lo(x) bo(z)e T dx =240,
OOO o
0:/ Eg(:ﬁ)ﬁl(a@)e_mdxzél—l—a/ (1 (x)l(z) de =4+ a.
0 0
Therefore, we conclude that a = —4 and b = —2, which gives
lo(x) = 22 — 4z + 2.

The roots are given by 2 & v/2, so we have z; = 2 — /2 and =5 = 2 + /2. It remains
to find the weights. To this end, we need only two additional equations, it is sufficient

to require that, for any (a,b) € R?,

a+b= / (a+bx)e *dz = wi(a+ bxry) + wa(a + bxa)
0

= a(w1 + wg) + 2()(11}1 + 'LUQ) + \/§b(w2 — wl),

which enables to find w; and ws.
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