using LinearAlgebra
import SparseArrays
import Plots
import PlotlyJS
# Domain size
Lx, Ly = 2, 1
# Number of discretization points along x and y, including the boundary points
nx, ny = 101, 101
function discretize(nx, ny)
hx, hy = Lx/(nx - 1), Ly/(ny - 1)
Dxx = (1/hx^2) * Tridiagonal(-ones(nx-3), 2ones(nx-2), -ones(nx-3))
Dyy = (1/hy^2) * Tridiagonal(-ones(ny-3), 2ones(ny-2), -ones(ny-3))
A = kron(Dxx, I(ny-2)) + kron(I(nx-2), Dyy)
xgrid = Lx/(nx-1) * (1:nx-2)
ygrid = Ly/(ny-1) * (1:ny-2)
x_2d = reshape([x for y in ygrid, x in xgrid], (nx-2)*(ny-2))
y_2d = reshape([y for y in ygrid, x in xgrid], (nx-2)*(ny-2))
b = sin.(4π*x_2d) + sin.(2π*y_2d)
return SparseArrays.SparseMatrixCSC(A), b
end
function plot_solution(f)
f = reshape(f, ny-2, nx-2)
# Boundary condition
z = [zeros(nx)'; zeros(ny-2) f zeros(ny-2); zeros(nx)']
xgrid = Lx/(nx-1) * (0:nx-1)
ygrid = Ly/(ny-1) * (0:ny-1)
# Plots.contourf(xgrid, ygrid, z, c=:viridis, levels=50)
PlotlyJS.plot(PlotlyJS.contour(x=xgrid, y=ygrid, z=z))
end
function conjugate_gradient(A, b) # A is matrix, b is vector
# initialize conjugate vector(estimated solution), residue, direction
x = zeros(length(A))
r = A*x - b
p = -r # initial conjugate vector = negative residue at initial point
norm_r = norm(r)
#step
k = 0
# iterate until it meets the criterion given
while norm_r >= 1.0e-8 * sqrt(n)
# step size
a = (r' * r) / (p' * A * p)
x_new = x + a * p
r_new = r + a * A * p # new residual
# new linear combination
b = (r_new' * r_new) / (r' * r)
# generate new conjugate vector
p_new = -r_new + b * p
# updating residue
norm_r = norm(r_new)
end
return x
end
# Calculate matrix and right-hand side of linear system
A, b = discretize(nx, ny)
########################
# Your code comes here #
f = A\b
########################
# Plot the solution
plot_solution(f)