Appendix C

Chebyshev polynomials

The Chebyshev polynomials $\left(T_{n}\right)_{n \in \mathbf{N}}$ are given on $[-1,1]$ by the formula

$$
\begin{equation*}
\forall x \in[-1,1], \quad T_{n}(x)=\cos (n \arccos (x)) . \tag{C.1}
\end{equation*}
$$

Although this formula makes sense only if $x \in[-1,1]$, the polynomials are defined for all $x \in \mathbf{R}$. Equivalently, the Chebyshev polynomials can be defined from the equation

$$
\begin{equation*}
\forall x \in[1, \infty), \quad T_{n}(x)=\cosh (n \operatorname{arccosh}(x)), \tag{C.2}
\end{equation*}
$$

where $\cosh (\theta)=\frac{1}{2}\left(\mathrm{e}^{\theta}+\mathrm{e}^{-\theta}\right)$ and arccosh : $[1, \infty) \rightarrow[0, \infty)$ is the inverse function of cosh. The first few Chebyshev polynomials are illustrated in Figure C.1. It is immediate to show the following properties from (C.1):

- The roots of T_{n} are given by

$$
z_{k}=\cos \left(\frac{\pi}{2 n}+\frac{k \pi}{n}\right), \quad k=0, \ldots, n-1 .
$$

These are illustrated in Figure C.2.

- The polynomial T_{n} takes the value 1 or -1 when evaluated at

$$
\begin{equation*}
x_{k}=\cos \left(\frac{k \pi}{n}\right), \quad k=0, \ldots, n . \tag{C.3}
\end{equation*}
$$

More precisely, it holds that $T_{n}\left(x_{k}\right)=(-1)^{k}$.

Exercise C.1. Show that (C.1) defines a polynomial of degree n, and find its expression in

 the usual polynomial notation.Solution. The key idea is to rewrite the cosine function in terms of the complex exponential:

$$
\cos (n \theta)=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} n \theta}+\mathrm{e}^{-\mathrm{i} n \theta}\right)=\frac{1}{2}\left((\cos (\theta)+\mathrm{i} \sin (\theta))^{n}+(\cos (\theta)-\mathrm{i} \sin (\theta))^{n}\right) .
$$

Figure C.1: Illustration of the first few Chebyshev polynomials over the interval $[-1,1]$.

By expanding the powers on the right-hand side, we obtain

$$
\begin{aligned}
& (\cos (\theta)+\mathrm{i} \sin (\theta))^{n}=\sum_{j=0}^{n}\binom{n}{j} \cos (\theta)^{n-j} \mathrm{i}^{j} \sin (\theta)^{j} \\
& (\cos (\theta)-\mathrm{i} \sin (\theta))^{n}=\sum_{j=0}^{n}\binom{n}{j} \cos (\theta)^{n-j}(-\mathrm{i})^{j} \sin (\theta)^{j}
\end{aligned}
$$

The terms corresponding to odd values of j cancel out in the expression of $\cos (n \theta)$, and so we obtain the following expression for $\cos (n \theta)$ in terms of $\cos (\theta)$ and $\sin (\theta)$:

$$
\begin{aligned}
\cos (n \theta) & =\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n}{2 j} \cos (\theta)^{n-2 j_{\mathrm{i}} 2 j} \sin (\theta)^{2 j} \\
& =\sum_{j=0}^{\lfloor n / 2\rfloor}(-1)^{j}\binom{n}{2 j} \cos (\theta)^{n-2 j}\left(1-\cos (\theta)^{2}\right)^{j}
\end{aligned}
$$

Therefore, we conclude that

$$
\begin{equation*}
T_{n}(x)=\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n}{2 j} x^{n-2 j}\left(x^{2}-1\right)^{j} \tag{C.4}
\end{equation*}
$$

Exercise C.2. Show that the same polynomials are obtained from (C.2).

Solution. Notice that

$$
\begin{aligned}
\cosh (n \xi) & =\frac{1}{2}\left(\mathrm{e}^{n \xi}+\mathrm{e}^{-n \xi}\right) \\
& =\frac{1}{2}\left((\cosh (\xi)+\sinh (\xi))^{n}+(\cosh (\xi)-\sinh (\xi))^{n}\right)
\end{aligned}
$$

Using the binomial formula, we obtain

$$
\begin{aligned}
\cosh (n \xi) & =\frac{1}{2} \sum_{j=0}^{n}\binom{n}{j}\left(\cosh (\xi)^{n-j} \sinh (\xi)^{j}+\cosh (\xi)^{n-j}(-1)^{j} \sinh (\xi)^{j}\right) \\
& =\frac{1}{2} \sum_{j=0}^{n}\binom{n}{j} \cosh (\xi)^{n-j}\left(\sinh (\xi)^{j}+(-1)^{j} \sinh (\xi)^{j}\right)
\end{aligned}
$$

The contributions of the odd values of j cancel out, and so we obtain

$$
\cosh (n \xi)=\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n}{2 j} \cosh (\xi)^{n-2 j} \sinh (\xi)^{2 j}
$$

Since $\cosh (\xi)^{2}-\sinh (\xi)^{2}=1$, we deduce that

$$
\cosh (n \xi)=\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n}{j} \cosh (\xi)^{n-2 j}\left(\cosh (\xi)^{2}-1\right)^{j},
$$

which after the substitution of $\xi=\operatorname{arccosh}(x)$ leads to (C.4).
(\%xercise C. 3 (Yet another expression for the Chebyshev polynomials). Show that $T_{n}(x)$ may be defined from the formula

$$
\begin{equation*}
T_{n}(x)=\frac{1}{2}\left(x+\sqrt{x^{2}-1}\right)^{n}+\frac{1}{2}\left(x-\sqrt{x^{2}-1}\right)^{n} \quad \text { for }|x| \geq 1 \tag{C.5}
\end{equation*}
$$

Solution. We showed in the solution of Exercise C. 2 that

$$
\cosh (n \xi)=\frac{1}{2}\left((\cosh (\xi)+\sinh (\xi))^{n}+(\cosh (\xi)-\sinh (\xi))^{n}\right)
$$

Letting $\xi=\operatorname{arccosh}(x)$ in this equation and using that $\cosh (\xi)^{2}-\sinh (\xi)^{2}=1$, we obtain

$$
T_{n}(x)=\frac{1}{2}\left(\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right)
$$

which is the required formula.
中 Exercise C. 4 (Recursion relation). Show that the Chebyshev polynomials satisfy the relation

$$
\begin{equation*}
\forall n \in\{1,2, \ldots\}, \quad T_{n+1}=2 x T_{n}-T_{n-1} \tag{C.6}
\end{equation*}
$$

Solution. It is sufficient to show the identity for $x \in[-1,1]$, where the formula (C.1) applies. Using well-known trigonometric identities, we have

$$
\begin{aligned}
& \cos ((n+1) \theta)=\cos (n \theta) \cos (\theta)-\sin (n \theta) \sin (\theta) \\
& \cos ((n-1) \theta)=\cos (n \theta) \cos (\theta)+\sin (n \theta) \sin (\theta)
\end{aligned}
$$

Adding both equations and rearranging, we obtain

$$
\cos ((n+1) \theta)=2 \cos (n \theta) \cos (\theta)-\cos ((n-1) \theta)
$$

Therefore, using this equation with $\theta=\arccos (x)$, we obtain the statement.

Remark C.1. The recursion relation in Exercise C. 4 can be employed to show by recursion that $T_{n}(x)$ is indeed a polynomial of degree n.

Exercise C.5. Since $T_{n}: \mathbf{R} \rightarrow \mathbf{R}$ is a polynomial, it may be written in the standard form

$$
T_{n}(x)=\alpha_{n}^{(n)} x^{n}+\ldots+\alpha_{1}^{(n)} x+\alpha_{0}^{(n)}
$$

Prove that $\alpha_{n}^{(n)}=2^{(n-1)}$ provided that $n \geqslant 1$.

Solution. From the definition (C.1), the Chebyshev polynomials of degrees 0 and 1 are given by $T_{0}(x)=1$ and $T_{1}(x)=x$. The statement then follows by recursion, using Exercise C.4.
© Exercise C.6. Let $\xi \in \mathbf{R} \backslash(-1,1)$. Show that, among all the polynomials in $\mathbf{P}(n)$ that are bounded from above by 1 in absolute value uniformly over the interval $(-1,1)$, the Chebyshev polynomial T_{n} achieves the largest absolute value when evaluated at ξ.

Solution. Reasoning by contradiction, we assume that there exists $p \in \mathbf{P}(n)$ that satisfies

$$
\sup _{x \in(-1,1)}|p(x)| \leqslant 1 \quad \text { and } \quad|p(\xi)|>\left|T_{n}(\xi)\right|
$$

Let $q(x)=p(x) T_{n}(\xi) / p(\xi)$. Then by construction $q(\xi)=T_{n}(\xi)$ and

$$
\sup _{x \in(-1,1)}|q(x)|<1
$$

Consequently, denoting by x_{k} the points defined in (C.3), we have that

$$
\forall k \in\{0, \ldots, n\}, \quad(-1)^{k}\left(T_{n}-q\right)\left(x_{k}\right)>0
$$

In other words, the polynomial $T_{n}-q$ takes positive values at $\left\{x_{0}, x_{2}, x_{4}, \ldots\right\}$ and negative values at $\left\{x_{1}, x_{3}, x_{5}, \ldots\right\}$. Consequently, by the intermediate value theorem, $T_{n}-q$ possesses n distinct roots in the open interval $(-1,1)$. Since, in addition, $\left(T_{n}-q\right)(\xi)=0$, we deduce that $T_{n}-q$ has $n+1$ distinct roots, which is a contradiction given that $T_{n}-q$ is a nonzero polynomial of degree at most n.

别 Exercise C.7. Assume that $0<\lambda_{1}<\lambda_{2}$. Prove that for any polynomial $p \in \mathbf{P}(n)$ that satisfies $p(0)=1$, it holds that

$$
\sup _{\lambda \in\left(\lambda_{1}, \lambda_{2}\right)}|p(\lambda)| \geqslant \frac{1}{T_{n}(\xi)}, \quad \xi:=\frac{\lambda_{2}+\lambda_{1}}{\lambda_{2}-\lambda_{1}}
$$

with equality for

$$
\begin{equation*}
p_{*}(\lambda)=\frac{T_{n}\left(\frac{\lambda_{1}+\lambda_{2}-2 \lambda}{\lambda_{2}-\lambda_{1}}\right)}{T_{n}\left(\frac{\lambda_{1}+\lambda_{2}}{\lambda_{2}-\lambda_{1}}\right)} . \tag{C.7}
\end{equation*}
$$

Figure C.2: Roots of the Chebyshev polynomial T_{8}.

Solution. Assume that $p \in \mathbf{P}(n)$ is such that $p(0)=1$, and let $q \in \mathbf{P}(n)$ be given by

$$
q(\mu)=p\left(\frac{\lambda_{1}+\lambda_{2}-\left(\lambda_{2}-\lambda_{1}\right) \mu}{2}\right) \quad \Leftrightarrow \quad p(\lambda)=q\left(\frac{\lambda_{1}+\lambda_{2}-2 \lambda}{\lambda_{2}-\lambda_{1}}\right) .
$$

Since $\xi>1$, it holds from (C.5) that $T_{n}(\xi)>0$ and it follows from Exercise C. 6 that

$$
p(0)=q(\xi) \leqslant T_{n}(\xi) \sup _{\mu \in(-1,1)}|q(\mu)|=T_{n}(\xi) \sup _{\lambda \in\left(\lambda_{1}, \lambda_{2}\right)}|p(\lambda)|,
$$

with equality when $q \propto T_{n}$, i.e. when

$$
p(\lambda) \propto T_{n}\left(\frac{\lambda_{1}+\lambda_{2}-2 \lambda}{\lambda_{2}-\lambda_{1}}\right) .
$$

The expression (C.7) then follows from the fact that $p_{*}(0)=1$.

