
Chapter 6

Numerical computation of eigenvalues

Introduction

Calculating the eigenvalues and eigenvectors of a matrix is a task often encountered in scientific
and engineering applications. Eigenvalue problems naturally arise in quantum physics, solid
mechanics, structural engineering and molecular dynamics, to name just a few applications.
The aim of this chapter is to present an overview of the standard methods for calculating
eigenvalues and eigenvectors numerically. We focus predominantly on the case of a Hermitian
matrix A ∈ Cn×n, which is technically simpler and arises in many applications. The reader is
invited to go through the background material in Appendix A.6 before reading this chapter.
The rest of this chapter is organized as follows

• In Section 6.1, we make general remarks concerning the calculation of eigenvalues.

• In Section 6.2, we present standard methods based on a simple vector iteration.

• In Section 6.3, we present a method for calculating several eigenvectors simultaneously,
based on iterating a subspace.

• In Section 6.4, we present method for constructing an approximation of the eigenvectors
in a given subspace of Cn.

6.1 Numerical methods for eigenvalue problems: general remarks

As mentioned in Appendix A.6, a complex number λ ∈ C is an eigenvalue of A ∈ Cn×n if and
only if λ is a root of the characteristic polynomial pA : C→ C of A, which is given by

pA(λ) = det(A− λI).

One may, therefore, calculate the eigenvalues of A by calculating the roots of the polynomial pA
using, for example, one of the methods presented in Chapter 5. While feasible for small matrices,
this approach is not viable for large matrices, because the number of floating point operations
required for calculating calculating the coefficients of the characteristic polynomial scales as the
factorial of n.

145

Chapter 6. Numerical computation of eigenvalues

In view of the prohibitive computational cost required for calculating the characteristic
polynomial, other methods are required for solving large eigenvalue problems numerically. All
the methods that we study in this chapter are of iterative nature. While some of them are
aimed at calculating all the eigenpairs of the matrix A, other methods enable to calculate only
a small number of eigenpairs at a lower computational cost, which is often desirable. Indeed,
calculating all the eigenvalues of a large matrix is computationally expensive; on a personal
computer, the following Julia code takes well over a second to terminate:

import LinearAlgebra
A = rand(2000, 2000)
LinearAlgebra.eigen(A)

In many applications, the matrix A is sparse, and in this case it is important to use algorithms
for eigenvalue problems that do not destroy the sparsity structure. Note that the eigenvectors
of a sparse matrix are generally not sparse.

To conclude this section, we introduce some notation used throughout this chapter. For a
diagonalizable matrix A, we denote the eigenvalues by λ1, . . . , λn, with |λ1| > |λ2| > . . . > |λn|.
The associated normalized eigenvectors are denoted by v1, . . . ,vn. Therefore, it holds that

V−1AV = D = diag(λ1, . . . , λn), where V =
(
v1 . . . vn

)
.

6.2 Simple vector iterations

In this section, we present simple iterative methods aimed at calculating just one eigenvector
of the matrix A, which we assume to be diagonalizable for simplicity.

6.2.1 The power iteration

The power iteration is the simplest method for calculating the eigenpair associated with the
eigenvalue of A with largest modulus. Since the eigenvectors of A span Cn, any vector x0 may
be decomposed as

x0 = α1v1 + · · ·+ αnvn. (6.1)

The idea of the power iteration is to repeatedly left-multiply this vector by the matrix A, in
order to amplify the coefficient of v0 relative to the other ones. Indeed, notice that

Akx0 = λk
1α1v1 + · · ·+ λk

nαnvn.

If λ1 is strictly greater in modulus than the other eigenvalues, and if α1 6= 0, then for large k the
vector Akx0 is approximately aligned, in a sense made precise below, with the eigenvector v1.
In order to avoid overflow errors at the numerical level, the iterates are normalized at each
iteration. The power iteration is presented in Algorithm 8.

To precisely quantify the convergence of the power method, we introduce the notion of acute

146

Chapter 6. Numerical computation of eigenvalues

Algorithm 8 Power iteration
x← x0

for i ∈ {1, 2, . . . } do
x← Ax
x← x/‖x‖

end for

angle between vectors of Cn.

∠(x,y) = arccos
(

|x∗y|√
x∗x
√
y∗y

)
= arcsin

(
‖(I− Py)x‖
‖x‖

)
, Py :=

yy∗

y∗y
.

This definition generalizes the familiar notion of angle for vectors in R2 or R3, and we note that
the angle function satisfies ∠(eiθ1x, eiθ2y) = ∠(x,y) as well as ∠(x,y) ∈ [0, π/2]. We can then
prove the following convergence result.

Proposition 6.1 (Convergence of the power iteration). Suppose that A is diagonalizable and
that |λ1| > |λ2|. Then, for every initial guess with α1 6= 0, the sequence (xk)k>0 generated by
the power iteration satisfies

lim
k→∞

∠(xk,v1) = 0.

Proof. By construction, it holds that

xk =
λk
1α1v1 + · · ·+ λk

nαnvn

‖λk
1α1v1 + · · ·+ λk

nαnvn‖
= eiθk

v1 +
λk
2α2

λk
1α1

v2 + · · ·+ λk
nα2

λk
1α1

vn∥∥∥v1 +
λk
2α2

λk
1α1

v2 + · · ·+ λk
nαn

λk
1α1

vn

∥∥∥ , (6.2)

where
eiθk :=

λk
1α1

|λk
1α1|

.

It follows from (6.2) that e−iθkxk → v1/‖v1‖ = v1 in the limit as k → ∞, where we employed
the fact that ‖v1‖ = 1. Using the definition of the angle between two vectors in Cn, and the
continuity with respect to either argument of the Cn Euclidean inner product and of the arccos
function, we obtain that

∠(xk,v1) = arccos

(
|v∗

1xk|√
v∗
1v1

√
x∗
kxk

)
= arccos (|v∗

1xk|)

= arccos
(∣∣∣v∗

1

(
e−iθkxk

)∣∣∣) −−−→
k→∞

arccos(1) = 0,

which concludes the proof.

An inspection of the proof also reveals that the dominant term in the error, asymptotically

147

Chapter 6. Numerical computation of eigenvalues

in the limit as k →∞, is the one with coefficient λk
2α2

λk
1α1

. Therefore, we deduce that

∠(xk,v1) = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
.

The convergence is slow if |λ2/λ1| is close to one, and fast if |λ2| � |λ1|. Once an approximation
of the eigenvector v1 has been calculated, the corresponding eigenvalue λ1 can be estimated
from the Rayleigh quotient:

ρA : Cn
∗ → C : x 7→ x∗Ax

x∗x
. (6.3)

For any eigenvector v of A, the corresponding eigenvalue is equal to ρA(v). In order to study
the error on the eigenvalue λ1 for the power iteration, we assume for simplicity that A is
Hermitian and that the eigenvectors v1, . . . ,vn are orthonormal. Substituting (6.2) in the
Rayleigh quotient (6.3), we obtain

ρA(xk) =
λ1 +

∣∣∣λk
2α2

λk
1α1

∣∣∣2λ2 + · · ·+
∣∣∣λk

nαn

λk
1α1

∣∣∣2λn

1 +
∣∣∣λk

2α2

λk
1α1

∣∣∣2 + · · ·+ ∣∣∣λk
nαn

λk
1α1

∣∣∣2 .

Therefore, by reducing to a common denominator we deduce

|ρA(xk)− λ1| =

∣∣∣∣∣∣∣
λ1 +

∣∣∣λk
2α2

λk
1α1

∣∣∣2λ2 + · · ·+
∣∣∣λk

nαn

λk
1α1

∣∣∣2λn

1 +
∣∣∣λk

2α2

λk
1α1

∣∣∣2 + · · ·+ ∣∣∣λk
nαn

λk
1α1

∣∣∣2 − λ1

∣∣∣∣∣∣∣
6

∣∣∣∣λk
2α2

λk
1α1

∣∣∣∣2|λ2 − λ1|+ · · ·+
∣∣∣∣λk

nαn

λk
1α1

∣∣∣∣2|λn − λ1| = O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
.

The convergence of the eigenvalue in the particular case of a Hermitian matrix is faster
than for a general matrix in Cn×n. For general matrices, it is possible to show using a similar
argument that the error is of order O

(
|λ2/λ1|k

)
in the limit as k →∞.

Essential convergence. It is useful at this point to introduce the concept of essential conver-
gence. A sequence (xk) in Cn is said to converge essentially to a vector x∞ if there exists a
sequence of complex numbers

(
eiφk

)
of modulus 1 such that the sequence

(
eiφkxk

)
converges

to x∞. For a sequence (xk) of normalized vectors, the essential convergence of (xk) to x∞ is
equivalent to the convergence of ∠(xk,x∞) to 0. Proving this equivalence is the goal of Exer-
cise 6.11. Reformulated in this new terminology, Proposition 6.1 states that the sequence (xk)

obtained from the power iteration converges essentially to v1.

6.2.2 Inverse iteration

The power iteration is simple but enables to calculate only the dominant eigenvalue of the
matrix A, i.e. the eigenvalue of largest modulus. In addition, the convergence of the method is
slow when |λ2| ≈ |λ1|.

The inverse iteration enables a more efficient calculation of not only the dominant eigenvalue

148

Chapter 6. Numerical computation of eigenvalues

but also the other eigenvalues of A. It is based on applying the power iteration to (A − µI)−1,
where µ ∈ C is a shift. The eigenvalues of (A−µI)−1 are given by (λ1−µ)−1, . . . , (λn−µ)−1, with
associated eigenvectors v1, . . . ,vn. If 0 < |λJ − µ| < |λj − µ| for all j 6= J , then the dominant
eigenvalue of the matrix (A − µI)−1 is (λJ − µ)−1, and so the power iteration applied to this
matrix yields an approximation of the eigenvector vJ . In other words, the inverse iteration
with shift µ enables to calculate an approximation of the eigenvector of A corresponding to the
eigenvalue nearest µ. The inverse iteration is presented in Algorithm 9. In practice, the inverse
matrix (A− µI)−1 need not be calculated, and it is often preferable to solve a linear system at
each iteration.

Algorithm 9 Inverse iteration
x← x0

for i ∈ {1, 2, . . . } do
Solve (A− µI)y = x
x← y/‖y‖

end for
λ← x∗Ax/x∗x
return x, λ

An application of Proposition 6.1 immediately gives the following convergence result for the
inverse iteration.

Proposition 6.2 (Convergence of the inverse iteration). Assume that A ∈ Cn is diagonaliz-
able and that there exist J and K such that

0 < |λJ − µ| < |λK − µ| 6 |λj − µ| ∀j 6= J.

Assume also that αJ 6= 0, where αJ is the coefficient of vJ in the expansion of x0 given
in (6.1). Then the iterates of the inverse iteration satisfy

lim
k→∞

∠(xk,vJ) = 0.

More precisely,

∠(xk,vJ) = O

(∣∣∣∣ λJ − µ

λK − µ

∣∣∣∣k
)
.

Proposition 6.2 states that xk converges essentially to vJ . Notice that the closer µ is to λJ , the
faster the inverse iteration converges. Note also that with µ = 0, the inverse iteration enables
to calculate the eigenvalue of A of smallest modulus.

6.2.3 Rayleigh quotient iteration

Since the inverse iteration is fast when µ is close to an eigenvalue λJ , it is natural to wonder
whether the method can be improved by progressively updating µ as the simulation progresses.
Specifically, an approximation of the eigenvalue associated with the current vector may be
employed in place of µ. This leads to the Rayleigh quotient iteration, presented in Algorithm 10.

149

Chapter 6. Numerical computation of eigenvalues

Algorithm 10 Inverse iteration
x← x0

for i ∈ {1, 2, . . . } do
µ← x∗Ax/x∗x
Solve (A− µI)y = x
x← y/‖y‖

end for
λ← x∗Ax/x∗x
return x, λ

It is possible to show that, when A is Hermitian, the Rayleigh quotient iteration converges to
an eigenvector for almost every initial guess x0. Furthermore, if convergence to an eigenvector
occurs, then µ converges cubically to the corresponding eigenvalue. See [12] and the references
therein for more details.

6.3 Methods based on a subspace iteration

The subspace iteration resembles the power iteration but it is more general: not just one but
several vectors are updated at each iteration.

6.3.1 Simultaneous iteration

Let X0 =
(
x1 . . . xp

)
denote an initial set of linearly independent vectors. Before we present

the simultaneous iteration, we recall a statement concerning the QR decomposition of a matrix,
which is related to the Gram–Schmidt orthonormalization process. We recall that the Gram–
Schmidt method enables to construct, starting form an ordered set of vectors {x1, . . . ,xp} in Cn,
a new set of vectors {q1, . . . , qp} which are orthonormal and span the same subspace of Cn as
the original vectors.

Proposition 6.3 (Reduced QR decomposition). Assume that X ∈ Cn×p has linearly inde-
pendent columns. Then there exist a matrix Q ∈ Cn×p with orthonormal columns and an
upper triangular matrix R ∈ Cp×p such that the following factorization holds:

X = QR. (6.4)

This decomposition is known as a reduced QR decomposition if p < n, or simply QR de-
composition if p = n, in which case X is a square matrix and Q is a unitary matrix. The
decomposition is unique if we require that the diagonal elements of R are real and positive.

Proof. The statement is clear when p = 1. Reasoning by induction, we assume that the result
is true up to p − 1, and prove that it then also holds true for p. We wish to show that
there is a unique matrix Q ∈ Cn×p with orthonormal columns and a unique upper triangular
matrix R ∈ Cp×p with real and positive diagonal elements such that (6.4) is satisfied. To this

150

Chapter 6. Numerical computation of eigenvalues

end, we decompose the matrices Q and R as follows:

Q =
(

Qp−1 q
)
, R =

(
Rp−1 r

0Tp−1 r

)
. (6.5)

Here Qp−1 ∈ Cn×(p−1) is a matrix with orthonormal columns, R ∈ C(p−1)×(p−1) is an upper
triangular matrix with positive real diagonal elements, q ∈ Cn is a normalized vector orthogonal
to all the columns of Qp−1, r ∈ Cn−1 is a vector and r ∈ R>0 is a scalar. Let us also denote
by Xp−1 ∈ Cn×(p−1) the matrix containing the p−1 first columns of X, and by xp ∈ Cn the p-th
column of X. Substituting (6.5) into (6.4), we then obtain(

Xp−1 xp

)
=
(

Qp−1Rp−1 Qp−1r + qr
)
, (6.6)

By the induction hypothesis, there exist a unique choice of matrices Qp−1 and Rp−1 with the
required structure such that Xp−1 = Qp−1Rp−1. Comparing the last column of both sides
in (6.6), we obtain

xp = Qp−1r + qr. (6.7)

Left-multiplying both sides by Q∗
p−1 and employing the orthogonality between q and the columns

of Qp−1, we deduce that necessarily r = Q∗
p−1xp. It then follows from (6.7) that

q =
1

r

(
xp − Qp−1Q∗

p−1xp

)
, r =

∥∥xp − Qp−1Q∗
p−1xp

∥∥.
It is simple to check that q is indeed orthogonal to the columns of Q, which concludes the proof.
Note that Qp−1Q∗

p−1xp is the orthogonal projection of xp onto the subspace spanned by the
columns of Qp−1.

Note that the columns of the matrix Q of the decomposition coincide with the vectors that
would be obtained by applying the Gram–Schmidt method to the columns of the matrix X. In
fact, the Gram–Schmidt process is one of several methods by which the QR decomposition can
be calculated in practice.

Algorithm 11 Simultaneous iteration
X← X0

for k ∈ {1, 2, . . . } do
QkRk = AXk−1 (QR decomposition).
Xk ← Qk.

end for

The simultaneous iteration method is presented in Algorithm 11. Like the normalization in
the power iteration Algorithm 8, the QR decomposition performed at each step in Algorithm 11
enables to avoid overflow errors. Notice that when p = 1, the simultaneous iteration reduces
to the power iteration. We emphasize that the factorization step at each iteration does not
influence the subspace spanned by the columns of X. Therefore, this subspace after k iterations
coincides with that spanned by the columns of the matrix AkX0. In fact, in exact arithmetic, it
would be equivalent to perform the QR decomposition only once as a final step, after the for

151

Chapter 6. Numerical computation of eigenvalues

loop. Indeed, denoting by QkRk the QR decomposition of AXk−1, we have

Xk = AXk−1R−1
k = A2Xk−2R−1

k−1R
−1
k = · · · = AkX0R−1

1 . . .R−1
k

⇔ Xk(Rk . . .R1) = AkX0.

Since Xk has orthonormal columns and Rk . . .R1 is an upper triangular matrix (see Exercise 4.3)
with real positive elements on the diagonal (check this!), it follows that Xk can be obtained by QR
factorization of AkX0. In order to show the convergence of the simultaneous iteration, we begin
by proving the following preparatory lemma.

Lemma 6.4 (Continuity of the reduced QR decomposition). If QkRk → QR, where Q ∈ Cn×p

has orthonormal columns and R ∈ Cp×p is upper triangular with positive real entries on the
diagonal, then Qk → Q.

Proof. We reason by contradiction and assume there is ε > 0 and a subsequence (Qkn)n>0 such
that ‖Qkn − Q‖ > ε for all n. Since the set of matrices with normalized columns is a compact
subset of Cn×p, there exists a further subsequence (Qknm

)m>0 that converges to a limit Q∞

which also has orthonormal columns and is at least ε away in norm from Q. But then

Rknm
= Q∗

knm
(Qknm

Rknm
) −−−−→

m→∞
Q∗

∞(QR) =: R∞.

Since Rk is upper triangular with positive diagonal elements for all k, clearly R∞ is also upper
triangular with positive diagonal elements. But then Q∞R∞ = QR, and by uniqueness of the
decomposition we deduce that Q = Q∞, which is a contradiction.

Before presenting the convergence theorem, we introduce the following terminology: we say
that Xk ∈ Cn×p converges essentially to a matrix X∞ if each column of Xk converges essentially
to the corresponding column of X∞. We prove the convergence in the Hermitian case for
simplicity. In the general case of A ∈ Cn×n, it cannot be expected that Xk converges essentially
to V, because the columns of Xk are orthogonal but eigenvectors may not be orthogonal. In
this case, the columns of Xk converge not to the eigenvectors but to the so-called Schur vectors
of A; see [12] for more information.

Theorem 6.5 (Convergence of the simultaneous iteration �). Assume that A ∈ Cn×n is
Hermitian, that X0 ∈ Cn×p has linearly independent columns, and finally that the subspace
spanned by the column of X0 satisfies

col(X0) ∩ Span{vp+1, . . . ,vn} = ∅. (6.8)

If it holds that
|λ1| > |λ2| > · · · > |λp| > |λp+1| > |λp+2| > . . . > |λn|, (6.9)

then Xk converges essentially to V1 :=
(
v1 . . . vp

)
.

Proof. Let B = V−1X0 ∈ Cn×p, so that X0 = VB, and note that AkX0 = VDkB. We denote

152

Chapter 6. Numerical computation of eigenvalues

by B1 ∈ Cp×p and B2 ∈ C(n−p)×p the upper p×p and lower (n−p)×p blocks of B, respectively.
The matrix B1 is nonsingular, otherwise the assumption (6.8) would not hold. Indeed, if there
was a nonzero vector z ∈ Cp such that B1z = 0, then

X0z = V
(

B1

B2

)
z =

(
V1 V2

)(0

B2z

)
= V2B2z.

implying that X0z ∈ col(X0) is a linear combination of the vectors in V2 =
(
vp+1 . . .vn

)
,

which contradicts the assumption. We also denote by D1 and D2 the p × p upper-left and
the (n−p)× (n−p) lower-right blocks of D, respectively. From the expression of AkX0, we have

AkX0 =
(

V1 V2

)(Dk
1

Dk
2

)(
B1

B2

)
= V1Dk

1B1 + V2Dk
2B2,

=
(

V1 + V2Dk
2B2B−1

1 D−k
1

)
Dk
1B1. (6.10)

The second term in the bracket on the right-hand side converges to zero in the limit as k →∞
by (6.9). Let Q̃kR̃k denote the reduced QR decomposition of the bracketed term. By Lemma 6.4,
we deduce from Q̃kR̃k → V1 that Q̃k → V1. Rearranging (6.10), we have

AkX0 = Q̃k(R̃kDk
1B1).

Since the matrix between brackets is a p × p square invertible matrix, this equation implies
that col(AkX0) = col(Q̃k). Denoting by QkRk the QR decomposition of AkX0, we therefore
have col(Qk) = col(Q̃k), and so the projectors on these subspaces are equal. We recall that, for
a set of orthonormal vectors y1, . . . ,yp gathered in a matrix Y =

(
y1 . . . yp

)
, the projector

on col(Y) = Span{y1, . . . ,yp} ⊂ Cn is the square n× n matrix

YY∗ = y1y
∗
1 + · · ·+ ypy

∗
p.

Consequently, the equality of the projectors implies QkQ∗
k = Q̃kQ̃k

∗
, and so QkQ∗

k → V1V∗
1. Sim-

ilarly, noting that Qk[:,1:i]R[1:i,1:i] is the QR decompostion of the matrix AkX0[:,1:i]
for all i ∈ {1, . . . , p}, we obtain the convergence

∀i ∈ {1, . . . , p}, Qk[:,1:i]Qk[:,1:i]∗ −−−→
k→∞

v1v
∗
1 + · · ·+ viv

∗
i . (6.11)

This is not surprising given that the first k columns of X0 undergo a simultaneous iteration
independent of the other columns.

Next, we establish the essential convergence of Qk to V1. To this end, we denote the columns
of Qk by q

(k)
1 , . . . , q

(k)
p and first show by induction that q

(k)
i q

(k)
i

∗
→ viv

∗
i in the limit k → ∞.

For i = 1 this follows from (6.11). Assume now that q
(k)
• q

(k)
•

∗
→ v•v

∗
• for • up to i− 1. Then

q
(k)
i q

(k)
i

∗
= Qk[:,1:i]Qk[:,1:i]∗ − q

(k)
1 q

(k)
1

∗
− · · · − q

(k)
i−1q

(k)
i−1

∗

−−−→
k→∞

V1[:,1:i]V1[:,1:i]∗ − v1v
∗
1 − · · · − vi−1v

∗
i−1 = viv

∗
i .

153

Chapter 6. Numerical computation of eigenvalues

It remains to show that the convergence q
(k)
i q

(k)
i

∗
→ viv

∗
i implies the desired essential conver-

gence. Noting that |a| =
√
aa for every a ∈ C, we have

|v∗
i q

(k)
i | =

√
v∗
i q

(k)
i q

(k)
i

∗
vi −−−→

k→∞

√
v∗
iviv∗

ivi = 1,

Finally, observing that

∥∥∥e−iθkq
(k)
i − vi

∥∥∥2 = 2− 2|v∗
i q

(k)
i | −−−→

k→∞
0, eiθk =

v∗
i q

(k)
i

|v∗
i q

(k)
i |

,

we conclude that q
(k)
i converges essentially to vi.

In addition to this convergence result, it is possible to show that the error satisfies

∠
(

col(Xk), col(V1)
)
= O

(∣∣∣∣λp+1

λp

∣∣∣∣k
)
.

Here, the angle between two subspaces A and B of Cn is defined as

∠(A,B) = max
a∈A\{0}

(
min

b∈B\{0}
∠(a, b)

)
.

6.3.2 The QR algorithm

The QR algorithm, which is based on the QR decomposition, is one of the most famous algo-
rithms for calculating all the eigenpairs of a matrix. We first present the algorithm and then
relate it to the simultaneous iteration in Section 6.3.1. The method is presented in Algorithm 12.

Algorithm 12 QR algorithm
X0 = A
for i ∈ {1, 2, . . . } do

QkRk = Xk−1 (QR decomposition)
Xk = RkQk

end for

Successive iterates of the QR algorithm are related by the equation

Xk = Q−1
k Xk−1Qk = Q∗

kXk−1Qk = · · · = (Q1 . . .Qk)
∗X0(Q1 . . .Qk) (6.12)

Therefore, all the iterates are related by a unitary similarity transformation, and so they all
have the same eigenvalues as X0 = A. Rearranging (6.12), we have

(Q1 . . .Qk)Xk = A(Q1 . . .Qk),

and so, introducing Q̃k = Q1 . . .Qk and noting that Xk = Qk+1Rk+1 by the algorithm, we deduce

Q̃k+1Rk+1 = AQ̃k.

154

Chapter 6. Numerical computation of eigenvalues

This reveals that the matrix sequence (Q̃k)k>1 undergoes a simultaneous iteration and so, as-
suming that A is Hermitian with n distinct nonzero eigenvalues, we deduce that Q̃k → V
essentially in the limit as k → ∞, by Theorem 6.5. As a consequence, by (6.12), it holds
that Xk → V∗X0V = D; in other words, the matrix Xk converges to a diagonal matrix with the
eigenvalues of A on the diagonal.

6.4 Projection methods

In this section, we begin by presenting a general method for constructing an approximation of
the eigenvectors of A in a given subspace U of Cn. We then discuss a particular choice for the
subspace U as a Krylov subspace, which is very useful in practice.

Assume that {u1, . . . ,up} is an orthonormal basis of U . Then for any vector v ∈ Cn, the
vector of U that is closest to v in the Euclidean distance is given by the orthogonal projection

PUv := UU∗v = (u1u
∗
1 + · · ·+ upu

∗
p)v.

In practice, the eigenvectors of A are unknown, and so it is impossible to calculate approx-
imations using this formula. The Rayleigh–Ritz method, which we present hereafter, is an
alternative and practical method for constructing approximations of the eigenvectors and eigen-
values. In general, the subspace U does not contain any eigenvector of A, and so the problem

Av = λv, v ∈ U (6.13)

does not admit a solution. Let us denote by U the matrix with columns u1, . . . ,up. Since any
vector v ∈ U is equal to Uz for some vector z ∈ Cp, equation (6.13) is equivalent to the problem

AUz = λUz,

which is a system of n equations with p < n unknowns. The Rayleigh–Ritz method is based on
the idea that, in order to obtain a problem with as many unknowns as there are equations, we
can multiply this equation by U∗, which leads to the problem

Bz := (U∗AU)z = λz. (6.14)

This is standard eigenvalue problem for the matrix U∗AU ∈ Cp×p, which is much easier to solve
than the original problem if p� n. Equivalently, equation (6.14) may be formulated as follows:
find v ∈ U such that

u∗(Av − λv), ∀u ∈ U . (6.15)

The solutions to (6.14) and (6.15) are related by the equation v = Uz. Of course, the eigenvalues
of B in problem (6.14), which are called the Ritz values of A relative to U , are in general different
from those of A. Once an eigenvector y of B has been calculated, an approximate eigenvector
of A, called a Ritz vector of A relative to U , is obtained from the equation v̂ = Uy. The
Rayleigh–Ritz algorithm is presented in full in Algorithm 13.

155

Chapter 6. Numerical computation of eigenvalues

Algorithm 13 Rayleigh–Ritz
Choose U ⊂ Cn

Construct a matrix U whose columns are orthonormal and span U
Find the eigenvalues λ̂i and eigenvectors yi ∈ Cp of B := U∗AU
Calculate the corresponding Ritz vectors v̂i = Uyi ∈ Cn.

It is clear that if vi ∈ U , then λi is an eigenvalue of B in (6.14). In fact, we can show the
following more general statement.

Proposition 6.6. If U is an invariant subspace of A, meaning that AU ⊂ U , then each Ritz
vector of A relative to U is an eigenvector of A.

Proof. Let U ∈ Cn×p and W ∈ Cn×(n−p) be matrices whose columns form orthonormal bases
of U and U⊥, respectively. Here U⊥ denotes the orthogonal complement of U with respect to
the Euclidean inner product. Then, since W∗AU = 0 by assumption, it holds that

Q∗AQ =

(
U∗AU U∗AW
W∗AU W∗AW

)
=

(
U∗AU U∗AW

0 W∗AW

)
, Q =

(
U W

)
.

If (y, λ̂) is an eigenvector of U∗AU, then

Q∗AQ
(
y

0

)
=

(
(U∗AU)y

0

)
= λ̂

(
y

0

)
=: λ̂x,

and so (x, λ̂) is an eigenpair of Q∗AQ. But then (Qx, λ̂) = (Uy, λ̂) is an eigenpair of A, which
proves the statement.

Remark 6.1. Proposition 6.6 can be proved more directly from (6.15) by noting that, if U is
an invariant subspace of A, then this equation implies that Av − λv belongs to both U and
its orthogonal complement U⊥, and so this vector is 0.

If U is close to being an invariant subspace of A, then it is expected that the Ritz vectors
and Ritz values of A relative to U will provide good approximations of some of the eigenpairs
of A. Quantifying this approximation is difficult, so we only present without proof the following
error bound. See [11] for more information.

Proposition 6.7. Let A be a full rank Hermitian matrix and U a p-dimensional subspace
of Cn. Then there exists eigenvalues λi1 , . . . , λip of A which satisfy

∀j ∈ {1, . . . , p}, |λij − λ̂j | 6 ‖(I− PU)APU‖2.

In the case where A is Hermitian, it is possible to show that the Ritz values are bounded from
above by the eigenvalues of A. The proof of this result relies on the Courant–Fisher theorem
for characterizing the eigenvalues of a Hermitian matrix, which is recalled in Theorem A.6 in
the appendix.

156

Chapter 6. Numerical computation of eigenvalues

Proposition 6.8. If A ∈ Cn×n is Hermitian, then

∀i ∈ {1, . . . , p}, λ̂i 6 λi

Proof. By the Courant–Fisher theorem, it holds that

λ̂i = max
S⊂Cp,dim(S)=i

(
min

x∈S\{0}

x∗Bx
x∗x

)
Letting y = Ux and then R = US, we deduce that

λ̂i = max
S⊂Cp,dim(S)=i

(
min

y∈US\{0}

y∗Ay
y∗y

)
= max

R⊂U ,dim(R)=i

(
min

y∈R\{0}

y∗Ay
y∗y

)
6 max

R⊂Cn,dim(R)=i

(
min

y∈R\{0}

y∗Ay
y∗y

)
= λi,

where we used the Courant–Fisher theorem for the matrix A in the last equality.

This projection approach is sometimes combined with a simultaneous subspace iteration: an
approximation Xk of the p first eigenvector is first calculated using Algorithm 11, and then the
matrix Xk is used in place of U in Algorithm 13.

6.4.1 Projection method in a Krylov subspace

The power iteration constructs at iteration k an approximation of v1 in the one-dimensional
subspace spanned by the vector Akx0, and only the previous iteration xk is employed to con-
struct xk+1. One may wonder whether, by employing all the previous iterates rather than only
the previous one, a better approximation of v1 can be constructed. More precisely, instead of
looking for an approximation in the subspace Span{Akx0}, would it be useful to extend the
search area to the Krylov subspace

Kk+1(A,x0) := Span
{
x0,Ax0, . . . ,Akx0

}
?

The answer to this question is positive, and the resulting method is often much faster than
the power iteration. This is achieved by employing the Rayleigh–Ritz projection method Al-
gorithm 13 with the choice U = Kk+1(A,x0). Applying this method requires to calculate an
orthonormal basis of the Krylov subspace and to calculate the reduced matrix U∗AU. The
Arnoldi method enables to achieve these two goals simultaneously.

6.4.2 The Arnoldi iteration

This Arnoldi iteration is based on the Gram–Schmidt process and presented in Algorithm 14.
The iteration breaks down if hj+1,j = 0, which indicates that Auj belongs to the Krylov
subspace Span{u1, . . . ,uj} = Kj(A,u1), implying that Kj+1(A,u1) = Kj(A,u1). In this case,
the subspace Kj(A,u1) is an invariant subspace of A because, by Exercise 6.2, we have

AKj(A,u1) ⊂ Kj+1(A,u1) = Kj(A,u1).

157

Chapter 6. Numerical computation of eigenvalues

Algorithm 14 Arnoldi iteration for constructing an orthonormal basis of Kp(A,u1)

Choose u1 with unit norm.
for j ∈ {1, . . . p} do

uj+1 ← Auj

for i ∈ {1, . . . , j} do
hi,j ← u∗

iuj+1

uj+1 ← uj+1 − hi,jui

end for
hj+1,j ← ‖uj+1‖
uj+1 ← uj+1/hj+1,j

end for

Therefore, applying the Rayleigh–Ritz with U = Span{u1, . . . ,uj} yields exact eigenpairs in
view of Proposition 6.6. If the iteration does not break down then, by construction, the vectors
{u1, . . . ,up} at the end of the algorithm are orthonormal. It is also simple to show by induction
that they form a basis of Kp(A,u1). The scalar coefficients hi,j can be collected in a matrix
square p× p matrix

H =



h1,1 h1,2 h1,3 · · · h1,p

h2,1 h2,2 h2,3 · · · h2,p

0 h3,2 h3,3 · · · h3,p
...
0 · · · 0 hp,p−1 hp,p


.

This matrix contains only zeros under the first subdiagonal; such a matrix is called a Hessenberg
matrix. Inspecting the algorithm, we notice that the j-th column contains the coefficients of
the projection of the vector Auj onto the basis {u1, . . . ,up}. In other words,

U∗AU = H, (6.16)

We have thus shown that the Arnoldi algorithm enables to construct both an orthonormal basis
of a Krylov subspace and the associated reduced matrix. In fact, we have the following equation

AU = UH + hp+1,p(vp+1e
∗
p), ep =


0
...
1

 ∈ Cp. (6.17)

The Arnoldi algorithm, coupled with the Rayleigh–Ritz method, has very good convergence
properties in the limit as p → ∞, in particular for eigenvalues with a large modulus. The
following result shows that the residual r = Av̂ − λ̂v associated with a Ritz vector can be
estimated inexpensively. Specifically, the norm of the residual is equal to the last component of
the associated eigenvector of H multiplied by hp+1,p.

Proposition 6.9 (Formula for the residual �). Let yi be an eigenvector of H associated with

158

Chapter 6. Numerical computation of eigenvalues

the eigenvalues λ̂i, and let v̂i = Uyi denote the corresponding eigenvector. Then

Av̂i − λ̂vi = hp+1,p(yi)pvp+1.

Consequently, it holds that
‖Av̂i − λ̂vi‖ = |hp+1,p(yi)p|.

Proof. Multiplying both sides of (6.17) by yi, we obtain

AUyi = UHyi + hp+1,p(vp+1e
∗
p)yi.

Using the definition of v̂i and rearranging the equation, we have

Av̂i − λ̂iyi = hp+1,p(vp+1e
∗
p)yi,

which immediately gives the result.

In practice, the larger the dimension p of the subspace U employed in the Rayleigh–Ritz
method, the more memory is required for storing an orthonormal basis of U . In addition, for
large values of p, computing the reduced matrix (6.16) and its eigenpairs becomes computation-
ally expensive; the computational cost of computing the matrix H scales as O(p2). To remedy
these potential issues, the algorithm can be restarted periodically. For example, Algorithm 15
can be employed as an alternative to the power iteration in order to find the eigenvector asso-
ciated with the eigenvalue with largest modulus.

Algorithm 15 Restarted Arnoldi iteration
Choose u1 ∈ Cn and p� n
for i ∈ {1, 2, . . . } do

Perform p iterations of the Arnoldi iteration and construct U ;
Calculate the Ritz vector v̂1 associated with the largest Ritz value relative to U ;
If this vector is sufficiently accurate, then stop. Otherwise, restart with u1 = v̂1.

end for

6.4.3 The Lanczos iteration

The Lanczos iteration may be viewed as a simplified version of the Arnoldi iteration in the
case where the matrix A is Hermitian. Let us denote by {u1, . . . ,up} the orthonormal vectors
generated by the Arnoldi iteration. When A is Hermitian, it holds that

hi,j = u∗
i (Auj) = (Aui)

∗uj = hj,i.

Therefore, the matrix H is Hermitian. This is not surprising, since we showed that H = U∗AU
and the matrix A is Hermitian. Since H is also of Hessenberg form, we deduce that H is
tridiagonal. An inspection of Algorithm 14 shows that the subdiagonal entries of H are real.
Since A is Hermitian, the diagonal entries hi,i = u∗

i (Auj) are also real, and so we conclude that

159

Chapter 6. Numerical computation of eigenvalues

all the entries of the matrix H are in fact real. This matrix if of the form

H =



α1 β2

β2 α2 β3

β3
.
. βp

βp αp


Adapting the Arnoldi iteration to this setting leads to Algorithm 16.

Algorithm 16 Lanczos iteration for constructing an orthonormal basis of Kp(A,u1)

Choose u1 with unit norm.
β1 ← 0, u0 ← 0 ∈ Cn

for j ∈ {1, . . . p} do
uj+1 ← Auj − βjuj−1

αj ← u∗
juj+1

uj+1 ← uj+1 − αjuj

βj+1 ← ‖uj+1‖
uj+1 ← uj+1/βj+1

end for

6.5 Exercises

� Exercise 6.1. PageRank is an algorithm for assigning a rank to the vertices of a directed
graph. It is used by many search engines, notably Google, for sorting search results. In this
context, the directed graph encodes the links between pages of the World Wide Web: the vertices
of the directed graph are webpages, and there is an edge going from page i to page j if page i

contains a hyperlink to page j.
Let us consider a directed graph G(V,E) with vertices V = {1, . . . , n} and edges E. The

graph can be represented by its adjacency matrix A ∈ {0, 1}n×n, whose entries are given by

aij =

1 if there is an edge from i to j,

0 otherwise.

Let ri denote the “value” assigned to vertex i. The idea of PageRank, in its simplest form, is
to assign values to the vertices by solving the following system of equations;

∀i ∈ V, ri =
∑

j∈N (i)

rj
oj
. (6.18)

where oj is the outdegree of vertex j, i.e. the number of edges leaving from j. Here the sum is
over the set of nodes N (i), which denotes all the “incoming” neighbors of i, i.e. those that have
an edge pointing towards node i.

• Read the Wikipedia page on PageRank to familiarize yourself with the algorithm.

160

Chapter 6. Numerical computation of eigenvalues

• Let r =
(
r1 . . . rn

)T
. Show using (6.18) that r satisfies

r = AT


1
o1

. . .
1
on

 r =: ATO−1r.

In other words, r is an eigenvector with eigenvalue 1 of the matrix M = ATO−1.

• Show that M is a left-stochastic matrix, i.e. that each column sums to 1.

• Prove that the eigenvalues of any matrix B ∈ Rn×n coincide with those of BT . You may
use the fact that det(B) = det(BT).

• Using the previous items, show that 1 is an eigenvalue and that ρ(M) = 1. For the second
part, find a subordinate matrix norm such that ‖M‖ = 1.

• Implement PageRank in order to rank pages from a 2013 snapshot of English Wikipedia.
You can use either the simplified version of the algorithm given in (6.18) or the improved
version with a damping factor described on Wikipedia. In the former case, the following
are both sensible stopping criteria:

‖Mr̂ − r̂‖1
‖r̂‖1

< 10−15 or ‖Mr̂ − λ̂r̂‖1
‖r‖1

< 10−15, λ̂ =
r̂TMr̂

r̂T r̂
,

where v̂ is an approximation of the eigenvector corresponding to the dominant eigenvalue.
A dataset is available on the course website to complete this part. This dataset contains
a subset of the data publicly available here, and was generated from the full dataset by
retaining only the 5% best rated articles. After decompressing the archive, you can load
the dataset into Julia by using the following commands:

import CSV
import DataFrames

Data (nodes and edges)
nodes = CSV.read("names.csv", DataFrames.DataFrame)
edges = CSV.read("edges.csv", DataFrames.DataFrame)

Convert data to matrices
nodes = Matrix(nodes)
edges = Matrix(edges)

After you have assigned a rank to all the pages, print the 10 pages with the highest ranks.
My code returns the following entries:

161

Chapter 6. Numerical computation of eigenvalues

1. United States
2. United Kingdom
3. World War II
4. Latin

5. France
6. Germany
7. English language
8. China

9. Canada

10. India

• Extra credit: Write a function search(keyword) that can be employed for searching the
database. Here is an example of what it could return:

julia> search("New York")
481-element Vector{String}:
"New York City"
"New York"
"The New York Times"
"New York Stock Exchange"
"New York University"
…

� Exercise 6.2. Show the following properties of the Krylov subspace Kp(A,x).

• Kp(A,x) ⊂ Kp+1(A,x).

• AKp(A,x) ⊂ Kp+1(A,x).

• The Krylov subspace Kp(A,x) is invariant under rescaling: for all α ∈ C,

Kp(A,x) = Kp(αA,x) = Kp(A, αx).

• The Krylov subspace Kp(A,x) is invariant under shift of the matrix A: for all α ∈ C,

Kp(A,x) = Kp(A− αI,x).

• Similarity transformation: If T ∈ Cn×n is nonsingular, then

Kp(T−1AT,T−1x) = T−1Kp(A,x).

� Exercise 6.3. The minimal polynomial of a matrix A ∈ Cn×n is the monic polynomial p of
lowest degree such that p(A) = 0. Prove that, if A is Hermitian with m 6 n distinct eigenvalues,
then the minimal polynomial is given by

p(t) =
m∏
i=1

(t− λi).

� Exercise 6.4. The minimal polynomial for a general matrix A ∈ Cn×n is given by

p(t) =
m∏
i=1

(t− λi)
si .

162

Chapter 6. Numerical computation of eigenvalues

where si is the size of the largest Jordan block associated with the eigenvalue λi in the normal
Jordan form of A. Verify that p(A) = 0.

� Exercise 6.5. Let d denote the degree of the minimal polynomial of A. Show that

∀p > d, Kp+1(A,x) = Kp(A,x).

Deduce that, for p > n, the subspace Kp(A,x) is an invariant subspace of A.

� Exercise 6.6. Let A ∈ Cn×n. Show that Kn(A,x) is the smallest invariant subspace of A
that contains x.

� Exercise 6.7. Consider the matrix

M =


0 1 2 0

1 0 1 0

2 1 0 2

0 0 2 0


• Find the dominant eigenvalue of M by using the power iteration.

• Find the eigenvalue of M closest to 1 by using the inverse iteration.

• Find the other two eigenvalues of M by using a method of your choice.

� Exercise 6.8 (A posteriori error bound). Assume that A ∈ Cn×n is Hermitian, and that v̂

is a normalized approximation of an eigenvector which satisfies

‖ẑ‖ := ‖Av̂ − λ̂v̂‖ = δ, λ̂ =
v̂∗Av̂
v̂∗v̂

.

Prove that there is an eigenvalue λ of A such that

|λ̂− λ| 6 δ.

Hint: Consider first the case where A is diagonal.

� Exercise 6.9 (Bauer–Fike theorem). Assume that A ∈ Cn×n is diagonalizable: AV = VD.
Show that, if v̂ is a normalized approximation of an eigenvector which satisfies

‖r‖ := ‖Av̂ − λ̂v̂‖ = δ

for some λ̂ ∈ C, then there is an eigenvalue λ of A such that

|λ̂− λ| 6 κ2(V)δ.

Hint: Rewrite
‖v̂‖ = ‖(A− λ̂I)−1r‖ = ‖V(D− λ̂I)−1V−1r)‖.

163

Chapter 6. Numerical computation of eigenvalues

� Exercise 6.10. In Exercise 6.8 and Exercise 6.9, we saw examples a posteriori error
estimates which guarantee the existence of an eigenvalue of A within a certain distance of the
approximation λ̂. In this exercise, our aim is to provide an answer to the following different
question: given an approximate eigenpair (v̂, λ̂), what is the smallest perturbation E that we
need to apply to A in order to guarantee that (v̂, λ̂) is an exact eigenpair, i.e. that

(A + E)v̂ = λ̂v̂?

Assume that v̂ is normalized and let E =
{

E ∈ Cn×n : (A + E)v̂ = λ̂v̂
}

. Prove that

min
E∈E
‖E‖2 = ‖r‖2 := ‖Av̂ − λ̂v̂‖. (6.19)

To this end, you may proceed as follows:

• Show first that any E ∈ E satisfies Ev̂ = −r.

• Deduce from the first item that
inf
E∈E
‖E‖2 > ‖r‖2.

• Find a rank one matrix E∗ such that ‖E∗‖2 = ‖r‖2, and then conclude. Recall that any
rank 1 matrix can be written in the form E∗ = uw∗, with norm ‖u‖2‖w‖2.

Equation (6.19) is a simplified version of the Kahan–Parlett–Jiang theorem and is an example
of a backward error estimate. Whereas forward error estimates quantify the distance between an
approximation and the exact solution, backward error estimates give the size of the perturbation
that must be applied to a problem so that an approximation is exact.

� Exercise 6.11. Assume that (xk)k>0 is a sequence of normalized vectors in Cn. Show that
the following statements are equivalent:

• (xk)k>0 converges essentially to x∞ in the limit as k →∞.

• The angle ∠(xk,x∞) converges to zero in the limit as k →∞.

• The projector Pxk
converges to Px∞ in the limit as k →∞.

� Exercise 6.12. Assume that A ∈ Cn×n is skew-Hermitian. Derive a Lanczos-like algorithm
for constructing an orthonormal basis of Kp(A,x) and calculating the reduced matrix

U∗AU,

where U ∈ Cn×p contains the vectors of the basis as columns. Implement your algorithm
with p = 20 in order to approximate the dominant eigenvalue of the matrix A constructed by the
following piece of code:

n = 5000
A = rand(n, n) + im * randn(n, n)
A = A - A' # A is now skew-Hermitian

164

Chapter 6. Numerical computation of eigenvalues

� Exercise 6.13. Assume that {u1, . . . ,up} and {w1, . . . ,wn} are orthonormal bases of the
same subspace U ⊂ Cn. Show that the projectors UU∗ and WW∗ are equal.

� Exercise 6.14. Assume that A ∈ Cn×n is a Hermitian matrix with distinct eigenvalues, and
suppose that we know the dominant eigenpair (v1, λ1), with v1 normalized. Let

B = A− λ1v1v
∗
1.

If we apply the power iteration to this matrix, what convergence can we expect?

� Exercise 6.15. Assume that v̂1 and v̂2 are two Ritz vectors of a Hermitian matrix A relative
to a subspace U ⊂ Cn. Show that, if the associated Ritz values are distinct, then v̂1

∗v̂2 = 0.

6.6 Discussion and bibliography

The content of this chapter is inspired mainly from [15] and also from [12]. The latter volume
contains a detailed coverage of the standard methods for eigenvalue problems. Some of the
exercises are taken from [18], and others are inspired from [12].

165

	Numerical computation of eigenvalues
	Numerical methods for eigenvalue problems: general remarks
	Simple vector iterations
	Methods based on a subspace iteration
	Projection methods
	Exercises
	Discussion and bibliography

