
Appendix B

Brief introduction to Julia

In this chapter, we very briefly present some of the basic features and functions of Julia. Most
of the information contained in this chapter can be found in the online manual, to which we
provide pointers in each section.

Installing Julia

The suggested programming environment for this course is the open-source text editor Visual
Studio Code. You may also use Vim or Emacs, if you are familiar with any of these.

� Task 1. Install Visual Studio Code. Install also the Julia and Jupyter Notebook extensions.

Obtaining documentation

To find documentation on a function from the Julia console, type “?” to access “help mode”,
and then the name of the function. Tab completion is helpful for listing available function
names.

� Task 2. Read the help pages for if, while and for. More information on these keywords is
available in the online documentation.

Remark B.1 (Shorthand if notation). If there is no elseif clause, it is sometimes convenient
to use the following shorthand notations instead of an if block.

condition = true

Assign x = 0 if `condition` is true, else assign x = 2
x = condition ? 0 : 2

Print "true" if `condition` is true
condition && println("true")

212

https://docs.julialang.org/en/v1/manual/control-flow/

Appendix B. Brief introduction to Julia

Print "false" if `condition` is false
condition || println("false")

Installing and using a package [link to relevant manual section]

To install a package from the Julia REPL (Read Evaluate Print Loop, also more simply called
the Julia console), first type “]” to enter the package REPL, and then type add followed by the
name of the package to install. After it has been added, a package can be used with the import

keyword. A function fun defined in a package pack can be accessed as pack.fun. For example,
to plot the cosine function from the Julia console or in a script, write

import Plots
Plots.plot(cos)

Alternatively, a package may be imported with the using keyword, and then functions can
be accessed without specifying the package name. While convenient, this approach is less
descriptive; it does not explicitly show what package a function comes from. For this reason, it
is often recommended to use import, especially in a large codebase.

� Task 3. Install the Plots package, read the documentation of the Plots.plot function, and
plot the function f(x) = exp(x). The tutorial on plotting available at this link may be useful for
this exercise.

Remark B.2. We have seen that ? and] enable to access “help mode” and “package mode”,
respectively. Another mode which is occasionally useful is “shell mode”, which is accessed
with the character ; and allows to type bash commands, such as cd to change directory. See
this part of the manual for additional documentation on Julia modes.

Printing output

The functions println and print enable to display output. The former adds a new line at
the end and the latter does not. The symbol $, followed by a variable name or an expression
within brackets, can be employed to perform string interpolation. For instance, the following
code prints a = 2, a^2 = 4.

a = 2
println("a = $a, a^2 = $(a*a)")

To print a matrix in an easily readable format, the display function is very useful.

Defining functions [link to relevant manual section]

Functions can be defined using a function block. For example, the following code block defines
a function that prints “Hello, NAME!”, where NAME is the string passed as argument.

function hello(name)
Here * is the string concatenation operator

213

https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.juliaplots.org/latest/tutorial/
https://docs.julialang.org/en/v1/stdlib/REPL/
https://docs.julialang.org/en/v1/manual/functions/

Appendix B. Brief introduction to Julia

println("Hello, " * name)
end

Call the function
hello("Bob")

If the function definition is short, it is convenient to use the following more compact syntax:

hello(name) = println("Hello, " * name)

Sometimes, it is useful to define a function without giving it a name, called an anonymous
function. This can be achieved in Julia using the arrow notation ->. For example, the following
expressions calculate the squares and cubes of the first 5 natural numbers. Here, the function
map enables to transform the collection passed as second argument by applying the function
passed as first argument to each element.

squares = map(x -> x^2, [1, 2, 3, 4, 5])
cubes = map(x -> x^3, [1, 2, 3, 4, 5])

The return keyword can be used for returning a value to the function caller. Several values,
separated by commas, can be returned at once. For instance, the following function takes a
number x and returns a tuple (x, x2, x3).

function powers(x)
return x, x^2, x^3

end

This is an equivalent definition in short notation
short_powers(x) = x, x^2, x^3

This assigns a = 2, b = 4, c = 8
a, b, c = powers(2)

Like many other languages, including Python and Scheme, Julia follows a convention for
argument-passing called “pass-by-sharing”: values passed as arguments to a function are not
copied, and the arguments act as new bindings within the function body. It is possible, therefore,
to modify a value passed as argument, provided this value is of mutable type. Functions
that modify some of their arguments usually end with an exclamation mark !. For example,
the following code prints first [4, 3, 2, 1], because the function sort does not modify its
argument, and then it prints [1, 2, 3, 4], because the function sort! does.

x = [4, 3, 2, 1]
y = sort(x) # y is sorted
println(x); sort!(x); println(x)

Similarly, when displaying several curves in a figure, we first start with the function plot, and
then we use plot! to modify the existing figure.

214

Appendix B. Brief introduction to Julia

import Plots
Plots.plot(cos)
Plots.plot!(sin)

As a final example to illustrate argument-passing, consider the following code. Here two
arguments are passed to the function test: an array, which is a mutable value, and an integer,
which is immutable. The instruction arg1[1] = 0 modifies the array to which both a and arg1
are bindings. The instruction arg2 = 2, on the other hand, just causes the variable arg2 to
point to a new immutable value (3), but it does not change the destination of the binding b,
which remains the immutable value 2. Therefore, the code prints [0, 2, 3] and 3.

function test(arg1, arg2)
arg1[1] = 0
arg2 = 2

end

a = [1, 2, 3]
b = 3
test(a, b)
println(a, b)

� Task 4 (Euler–Mascheroni constant for the harmonic series). Euler showed that

lim
N→∞

(
− ln(N) +

N∑
n=1

1

n

)
= γ := 0.577...

Write a function that returns an approximation of the Euler–Mascheroni constant γ by evaluating
the expression between brackets at a finite value of N .

function euler_constant(N)
Your code comes here

end

� Task 5 (Ancient algorithms). The goal of this exercise is to explore three of the oldest
algorithms ever invented.

• Circa 1600 BC, the Babylonians invented an iterative method for calculating the square
root of a number. Read the relevant information on the associated Wikipedia page and
write a function that calculates the square root of the argument using this algorithm.

function babylonian_square_root(n)
Your code comes here

end

The function should return the square root of n

• Circa 300 BC, the Greek mathematician Euclid of Alexandria published the Elements, his
famous mathematical treatise. In one of the books, he proposes an algorithm for calculating

215

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method

Appendix B. Brief introduction to Julia

the greatest common divisor of two numbers. This algorithm, which is still in common
use today, is based on the observation that if a > b > 0 are natural numbers, then

gcd(a, b) = gcd(b, r), (B.1)

where r is the remainder of the division of a by b. Indeed, in view of the equation

a = qb+ r,

the common divisors of {a, b} coincide with those of {b, r}. Using (B.1), write a function
to calculate the greatest common divisor of two numbers.

function euclid_gcd(a, b)
Your code comes here

end

• Circa 200 BC, the Greek mathematician Eratosthenes of Cyrene invented a method for
efficiently calculating the prime numbers, which is now known as the sieve of Eratosthenes.
Read the associated Wikipedia page and write a function implementing this algorithm.

function eratosthenes_sieve(n)
Your code comes here

end

The function should return an array containing all the prime
numbers less than or equal to n.

� Task 6 (Tower of Hanoi). We consider a variation on the classic Tower of Hanoi problem, in
which the number r of pegs is allowed to be larger than 3. We denote the pegs by p1, . . . , pr, and
assume that the problem includes n disks with radii 1 to n. The tower is initially constructed
in p1, with the disks arranged in order of decreasing radius, the largest at the bottom. The goal
of the problem is to reconstruct the tower at pr by moving the disks one at the time, with the
constraint that a disk may be placed on top of another only if its radius is smaller.

It has been conjectured that the optimal solution, which requires the minimum number of
moves, can always be decomposed into the following three steps, for some k ∈ {1, n− 1}:

• First move the top k disks of the tower to peg p2;

• Then move the bottom n− k disks of the tower to pr without using p2;

• Finally, move the top of the tower from p2 to pr.

This suggests a recursive procedure for solving the problem, known as the Frame-Stewart algo-
rithm. Write a Julia function T(n, r) returning the minimal number of moves necessary.

Local and global scopes [link to relevant manual section]

Some constructs in Julia introduce scope blocks, notably for and while loops, as well as function
blocks. The variables defined within these structures are not available outside them. For
example

216

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://docs.julialang.org/en/v1/manual/variables-and-scoping/

Appendix B. Brief introduction to Julia

if true

a = 1
end

println(a)

prints 1, because if does not introduce a scope block, but

for i in [1, 2, 3]
a = 1

end

println(a)

produces ERROR: LoadError: UndefVarError: a not defined. The variable a defined within
the for loop is said to be in the local scope of the loop, whereas a variable defined outside of it is
in the global scope. In order to modify a global variable from a local scope, the global keyword
must be used. For instance, the following code

a = 1
for i in [1, 2, 3]

global a += 1
end

println(a)

modifies the global variable a and prints 4.

Multi-dimensional arrays [link to relevant manual section]

A working knowledge of multi-dimensional arrays is important for this course, because vectors
and matrices are ubiquitous in numerical algorithms. In Julia, a two-dimensional array can be
created by writing its lines one by one, separating them with a semicolon ;. Within a line,
elements are separated by a space. For example, the instruction

M = [1 2 3; 4 5 6]

creates the matrix

M =

(
1 2 3

4 5 6

)
More generally, the semicolon enables vertical concatenation while space concatenates horizon-
tally. For example, [M M] defines the matrix(

1 2 3 1 2 3

4 5 6 4 5 6

)

The expression M[r, c] gives the (r, c) matrix element of M , located at row r and column c.
The special entry end can be used to access the last row or column. For instance, M[end-1, end]
gives the matrix entry in the second to last row and the last column. From the matrix M above,
the submatrix [2 3; 5 6] can be obtained with M[:, 2:3]. Here the row index : means “select
all lines” and the column index 2:3 means “select columns 2 to 3”. Likewise, the submatrix
[1 3; 4 6] may be extracted with M[:, [1; 3]].

217

https://docs.julialang.org/en/v1/manual/arrays/

Appendix B. Brief introduction to Julia

Remark B.3 (One-dimensional arrays). The comma , can also be employed for creating one-
dimensional arrays, but its behavior differs slightly from that of the vertical concatenation
operator ;. For example, x = [1, [2; 3]] creates a Vector object with two elements, the
first one being 1 and the second one being [1; 3], which is itself a Vector. In contrast, the
instruction x = [1; [1; 2]] creates the same Vector as [1; 2; 3] would.

We also mention that the expression x = [1 2 3] produces not a one-dimensional Vector
but a two-dimensional Matrix, with one row and three columns. This can be checked using
the size function, which for x = [1 2 3] returns the tuple (1, 3).

There are many built-in functions for quickly creating commonly used arrays. For example,

• transpose(M) gives the transpose of M , and adjoint(M) or M' gives the transpose con-
jugate. For a matrix with real-valued entries, both functions deliver the same result.

• zeros(Int, 4, 5) creates a 4× 5 matrix of zeros of type Int;

• ones(2, 2) creates a 2× 2 matrix of ones of type Float64;

• range(0, 1, length=101), or LinRange(0, 1, 101), creates an array of size 101 with
elements evenly spaced between 0 and 1 included. More precisely, range returns an array-
like object, which can be converted to a vector using the collect function.

• collect(reshape(1:9, 3, 3)) creates a 3× 3 matrix with elements1 4 7

2 5 8

3 6 9


Let us also mention the following shorthand notation, called array comprehension, for creating
vectors and matrices:

• [i^2 for i in 1:5] creates the vector [1, 4, 9, 16, 25].

• [i + 10*j for i in 1:4, j in 1:4] creates the matrix
11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

 .

• [i for i in 1:10 if ispow2(i)] creates the vector [1, 2, 4, 8]. The same result
can be achieved with the filter function: filter(ispow2, 1:10).

In contrast with Matlab, array assignment in Julia does not perform a copy. For example
the following code prints [1, 2, 3, 4], because the instruction b = a defines a new binding
to the array a.

218

Appendix B. Brief introduction to Julia

a = [2; 2; 3]
b = a
b[1] = 1
append!(b, 4)
println(a)

A similar behavior applies when passing an array as argument to a function, as we saw previ-
ously. The copy function can be used to perform a copy.

� Task 7. Create a 10 by 10 diagonal matrix with the i-th entry on the diagonal equal to i.

Broadcasting

To conclude this chapter, we briefly discuss broadcasting, which enables to apply functions to
array elements and to perform operations on arrays of different sizes. Julia really shines in this
area, with syntax that is both explicit and concise. Rather than providing a detailed definition
of broadcasting, which is available in this part of the official documentation, we illustrate the
concept using examples. Consider first the following code block:

function welcome(name)
return "Hello, " * name * "!"

end

result = broadcast(welcome, ["Alice", "Bob"])

Here broadcast returns an array with elements "Hello, Alice!" and "Hello, Bob!", as
would the map function. Broadcasting, however, is much more flexible because it can handle
arrays with different sizes. For instance, broadcast(gcd, 24, [10, 20, 30]) returns an array
of size 3 containing the greatest common divisors of the pairs (24, 10), (24, 20) and (24, 30).
Similarly, the instruction broadcast(+, 1, [1, 2, 3]) returns [2, 3, 4]. To understand
the latter example, note that + (as well as *, - and /) can be called like any other Julia
functions; the notation a + b is just syntactic sugar for +(a, b).

Since broadcasting is so often useful in numerical mathematics, Julia provides a shorthand
notation for it: the instruction broadcast(welcome, ["Alice", "Bob"]) can be written com-
pactly as welcome.(["Alice", "Bob"]). Likewise, the line broadcast(+, 1, [1, 2, 3]) can
be shortened to (+).(1, [1, 2, 3]), or to the more readable expression 1 .+ [1, 2, 3].

� Task 8. Explain in words what the following instructions do.

reshape(1:9, 3, 3) .* [1 2 3]
reshape(1:9, 3, 3) .* [1; 2; 3]
reshape(1:9, 3, 3) * [1; 2; 3]

219

https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting

	Brief introduction to Julia

