
Chapter 5

Solution of nonlinear systems

Introduction

This chapter concerns the numerical solution of nonlinear equations of the general form

f(x) = 0, f : Rn → Rn. (5.1)

A solution to this equation is called a zero of the function f . Except in particular cases (for
example linear systems), there does not exist a numerical method for solving (5.1) in a finite
number of operations, so iterative methods are required.

In contrast with the previous chapter, it may not be the case that (5.1) admits one and
only one solution. For example, the equation 1 + x2 = 0 does not have a (real) solution, and
the equation cos(x) = 0 has infinitely many. Therefore, convergence results usually contain
assumptions on the function f that guarantee the existence and uniqueness of a solution in Rn

or a subset of Rn.
For an iterative method generating approximations (xk)k>0 of a root x∗, we define the error

as ek = xk − x∗. If the sequence (xk)k>0 converges to x∗ in the limit as k →∞ and if

lim
k→∞

‖ek+1‖
‖ek‖q

= r, (5.2)

then we say that (xk)k>0 converges with order of convergence q and rate of convergence r. In
addition, we say that the convergence is linear q = 1, and quadratic if q = 2. The convergence
is said to be superlinear if

lim
k→∞

‖ek+1‖
‖ek‖

= 0. (5.3)

In particular, the convergence is superlinear if the order of convergence is q > 1.

Remark 5.1. The notion of order of convergence may be defined also when the limit in (5.2)
does not exist. A more general definition for the order of convergence of a sequence (xk)k>0
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converging to x∗ is the following:

q(x0) = inf
{
p ∈ [1,∞) : lim sup

k→∞

‖ek+1‖
‖ek‖p

=∞
}
,

or q(x0) =∞ if the numerator and denominator of the fraction are zero for sufficiently large k.
It is possible to define similarly the order of convergence of an iterative method for an initial
guess in a neighborhood V of x∗:

q = inf
{
p ∈ [1,∞) : sup

x0∈V

(
lim sup
k→∞

‖ek+1‖
‖ek‖p

)
=∞

}
,

where the fraction should be interpreted as 0 if the numerator and denominator are zero. A
more detailed discussion of this subject is beyond the scope of this course.

The rest of chapter is organized as follows:

• In Section 5.1, by way of introduction to the subject of numerical methods for nonlinear
equations, we present and analyze the bisection method.

• In Section 5.2, we present a general method based on a fixed point iteration for solv-
ing (5.1). The convergence of this method is analyzed in Section 5.3.

• In Section 5.4, two concrete examples of fixed point methods are studied: the chord
method and the Newton–Raphson method.

5.1 The bisection method

As an introduction to numerical methods for solving nonlinear equations, we present the bisec-
tion method. This method applies only in the case of a real-valued function f : R → R, and
relies on the knowledge of two points a < b such that f(a) and f(b) have different signs. By
the intermediate value theorem, there necessarily exists x∗ ∈ (a, b) such that f(x∗) = 0. The
idea of the bisection method it to successively divide the interval in two equal parts, and to
retain, based on the sign of f at the midpoint x1/2, the one that necessarily contains a root.
If f(x1/2)f(a) > 0, then f(x1/2)f(b) 6 0 and so there necessarily exists a root of f in the
interval [x1/2, b) by the intermediate value theorem. In contrast, if f(x1/2)f(a) < 0, then there
necessarily is a root in the interval (a, x1/2). The algorithm is presented in Algorithm 7.

The following result establishes the convergence of the method.

Proposition 5.1. Assume that f : R → R is a continuous function and f(a)f(b) < 0.
Let [aj , bj ] denote the interval obtained after j iterations of the bisection method, and let
xj = (aj + bj)/2 denote the midpoint of the interval, Then there exists a root x∗ of f such
that

|xj − x∗| 6 (b0 − a0)2−(j+1). (5.4)

Proof. By construction, f(aj)f(bj) 6 0 and f(b) 6= 0. Therefore, by the intermediate value
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Algorithm 7 Bisection method
Assume that f(a)f(b) < 0 with a < b.
Pick ε > 0.
x← a/2 + b/2
while |b− a| > ε do

if f(x)f(a) > 0 then
a← x

else
b← x

end if
x← a/2 + b/2

end while

theorem, there exists a root of f in the interval [aj , bj), implying that

|xj − x∗| 6
bj − aj

2
.

Since bj − aj = 2−j(b0 − a0), the statement follows.

Although the limit in (5.2) may not be well-defined (for example, x1 may be a root of f), the
error xj − x∗ is bounded in absolute value by the sequence (ẽj)j>0, where ẽj = (b0 − a0)2−(j+1)

by Proposition 5.1. Since the latter sequence exhibits linear convergence to 0, the convergence
of the bisection method is said to be linear, by a slight abuse of terminology.

5.2 Fixed point methods

Let x∗ denote a zero of the function f . The idea of iterative methods for (5.1) is to construct,
starting from an initial guess x0, a sequence (xk)k=0,1,... approaching x∗. A number of iterative
methods for solving (5.1) are based on an iteration of the form

xk+1 = F (xk), (5.5)

for an appropriate continuous function F . Assume that xk converges to some point x∗ ∈ Rn in
the limit as k →∞. Then, taking the limit k →∞ in (5.5), we find that x∗ satisfies

F (x∗) = x∗.

Such a point x∗ is called a fixed point of the function F . Several definitions of the function F can
be employed in order to ensure that a fixed point of F coincides with a zero of f . One may, for
example, define F (x) = x−α−1f(x), for some nonzero scalar coefficient α. Then F (x∗) = x∗ if
and only if f(x∗) = 0. Later in this chapter, in Section 5.4, we study two instances of numerical
methods which can be recast in the form (5.5). Before this, we study the convergence of the
iteration (5.5) for a general function F .
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5.3 Convergence of fixed point methods

Equation (5.5) may be viewed as a discrete-time dynamical system. In order to study the
behavior of the system as k → ∞, it is important to understand the concept of stability of a
fixed point. The concept of stability appears also in the field of ordinary differential equations,
which are continuous-time dynamical systems. Before we define this concept, we introduce the
following notation for the open ball of radius δ around x ∈ Rn:

Bδ(x) :=
{
y ∈ Rn : ‖y − x‖ < δ

}
.

Definition 5.1 (Stability of fixed points). Let (xk)k>0 denote iterates obtained from (5.5)
when starting from an initial vector x0. Then we say that a fixed point x∗ is

• an attractor if there exists a neighborhood V of x∗ such that

∀x0 ∈ V, xk −−−→
k→∞

x∗. (5.6)

The largest neighborhood for which this is true, i.e. the set of values of x0 such that (5.6)
holds true, is called the basin of attraction of x∗.

• stable (in the sense of Lyapunov) if for all ε > 0, there exists δ > 0 such that

∀x0 ∈ Bδ(x∗), ∀k ∈ N, ‖xk − x∗‖ < ε.

• asymptotically stable if it is stable and an attractor.

• exponentially stable if there exists C > 0, α ∈ (0, 1), and δ > 0 such that

∀x0 ∈ Bδ(x∗), ∀k ∈ N, ‖xk − x∗‖ 6 Cαk‖x0 − x∗‖.

• globally exponentially stable if there exists C > 0 and α ∈ (0, 1) such that

∀x0 ∈ Rn, ∀k ∈ N, ‖xk − x∗‖ 6 Cαk‖x0 − x∗‖.

• unstable if it is not stable.

Clearly, global exponential stability implies exponential stability, which itself implies asymp-
totic stability and stability. If x∗ is globally exponentially stable, then x∗ is the unique fixed
point of F ; showing this is the aim of Exercise 5.3. If x∗ is an attractor, then the dynamical
system (5.5) is said to be locally convergent to x∗. The larger the basin of attraction of x∗, the
less careful we need to be when picking the initial guess x0. Global exponential stability of a
fixed point can sometimes be shown provided that F satisfies a strong hypothesis.

Definition 5.2 (Lipschitz continuity). A function F : Rn → Rn is said to be Lipschitz
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continuous with constant L if

∀(x,y) ∈ Rn ×Rn, ‖F (y)− F (x)‖ 6 L‖y − x‖.

A function F : Rn → Rn that is Lipschitz continuous with a constant L < 1 is called a contrac-
tion. For such a function, it is possible to prove that (5.5) has a unique globally exponentially
stable fixed point.

Theorem 5.2. Assume that F is a contraction. Then there exists a unique fixed point
of (5.5), and it holds that

∀x0 ∈ Rn, ∀k ∈ N, ‖xk − x∗‖ 6 Lk‖x0 − x∗‖. (5.7)

Proof. Existence and uniqueness of the fixed point follows from the Banach fixed point theorem,
see Theorem A.3, so here we show only global exponential convergence. Since F is a contraction,
it holds that

‖xk − x∗‖ = ‖F (xk−1)− F (x∗)‖ 6 L‖xk−1 − x∗‖ 6 . . . 6 Lk‖x0 − x∗‖, (5.8)

which proves (5.7).

It is possible to prove a weaker, local result under a less restrictive assumptions on the
function F .

Theorem 5.3. Assume that x∗ is a fixed point of (5.5) and that F : Rn → Rn satisfies the
local Lipschitz condition

∀x ∈ Bδ(x∗), ‖F (x)− F (x∗)‖ 6 L‖x− x∗‖, (5.9)

with 0 6 L < 1 and δ > 0. Then x∗ is the unique fixed point of F in Bδ(x∗) and, for
all x0 ∈ Bδ(x∗), it holds that

• All the iterates (xk)k∈N belong to Bδ(x∗).

• The sequence (xk)k∈N converges exponentially to x∗.

Proof. See Exercise 5.4.

It is possible to guarantee that condition (5.9) holds provided that we have sufficiently good
control of the derivatives of the function F . The function F is said to be differentiable at x (in
the sense of Fréchet) if there exists a linear operator DF x : Rn → Rn such that

lim
h→0

‖F (x+ h)− F (x)−DF x(h)‖
‖h‖

= 0. (5.10)

If F is differentiable, then all its first partial derivatives ∂jFi exist and, in addition, it holds
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that DF x(h) = JF (x)h where JF (x) is the Jacobian matrix of F at x:

JF (x) =


∂1F1(x) . . . ∂nF1(x)

... . . . ...
∂1Fn(x) . . . ∂nFn(x)

 .

Proposition 5.4. Let x∗ be a fixed point of (5.5), and assume that there exists δ and a
subordinate matrix norm such that F is differentiable everywhere in Bδ(x∗) and

∀x ∈ Bδ(x∗), ‖JF (x)‖ 6 L < 1.

Then condition (5.9) is satisfied in the associated vector norm, and so the fixed point x∗ is
locally exponentially stable.

Proof. Let x ∈ Bδ(x∗). By the fundamental theorem of calculus and the chain rule, we have

F (x)− F (x∗) =

∫ 1

0

d
dt

(
F
(
x∗ + t(x− x∗)

))
dt =

∫ 1

0
JF
(
x∗ + t(x− x∗)

)
(x− x∗)dt.

Therefore, it holds that

‖F (x)− F (x∗)‖ 6
∫ 1

0

∥∥JF
(
x+ t(x− x∗)

)∥∥dt ‖x− x∗‖ 6
∫ 1

0
Ldt ‖x− x∗‖ = L‖x− x∗‖,

which is the statement.

Remark 5.2. As a student observed during the lecture, in dimension n = 1, Proposition 5.4
can be proved by using the mean value theorem: since F is differentiable in (x∗ − δ, x∗ + δ),
there exists for all x in this interval a ξ = ξ(x) also in this interval such that

F (x)− F (x∗) = F ′(ξ)(x− x∗).

It then follows immediately that

∣∣F (x)− F (x∗)∣∣ = ∣∣F ′(ξ)(x− x∗)
∣∣ 6 L|x− x∗|.

This proof does not carry over to the multi-dimensional setting, however.

In fact, it is possible to prove that a fixed point x∗ is exponentially locally stable under an
even weaker condition, involving only the derivative of F at x∗.

Proposition 5.5. Let x∗ be a fixed point of (5.5) and that F is differentiable at x∗ with

‖JF (x∗)‖ = L < 1,
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in a subordinate vector norm. Then the fixed point x∗ is locally exponentially stable.

Proof. In this proof, the vector norm used is that associated with the matrix norm in the
statement of the proposition. By the definition of differentiability (5.10), there exists for all ε > 0

a δ > 0 such that

∀x ∈ Bδ(x∗)\{x∗},
‖F (x)− F (x∗)− JF (x∗)(x− x∗)‖

‖x− x∗‖
6 ε.

By the triangle inequality, this implies that for all x ∈ Bδ(x∗),

‖F (x)− F (x∗)‖ 6 ‖F (x)− F (x∗)− JF (x∗)(x− x∗)‖+ ‖JF (x∗)(x− x∗)‖

6 ε‖x− x∗‖+ ‖JF (x∗)‖‖(x− x∗)‖ = (L+ ε)‖x− x∗‖.

We have thus shown that for all ε > 0, there exists δ > 0 such that condition (5.9) is satisfied
with constant L + ε. By taking ε sufficiently small, we can ensure that L + ε < 1, and so the
fixed point x∗ is locally exponentially stable by Theorem 5.3.

The estimate in Theorem 5.2 suggests that when the fixed point iteration (5.5) converges, the
convergence is linear. While this is usually the case, the convergence is superlinear if JF (x∗) = 0.

Proposition 5.6. Assume that x∗ is a fixed point of (5.5) and that JF (x∗) = 0. Then the
convergence to x∗ is superlinear, in the sense that if xk → x∗ as k →∞, then

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Proof. By Proposition 5.5, there exists δ > 0 such that (xk)k>0 is a sequence converging to x∗

for all x0 ∈ Bδ(x∗). It holds that

‖xk+1 − x∗‖
‖xk − x∗‖

=
‖F (xk)− F (x∗)‖
‖xk − x∗‖

=
‖F (xk)− F (x∗)− JF (x∗)(xk − x∗)‖

‖xk − x∗‖
.

Since xk − x∗ → 0 as k →∞, the right-hand side converges to 0 by (5.10).

Similarly, if there exist δ > 0, C > 0 and q ∈ (1,∞) such that

∀x ∈ Bδ(x∗), ‖F (x)− F (x∗)‖ 6 C‖x− x∗‖q, (5.11)

then assuming that (xk)k>0 converges to x∗, it holds for sufficiently large k that

‖xk+1 − x∗‖
‖xk − x∗‖q

=
‖F (xk)− F (x∗)‖
‖xk − x∗‖q

6 C.

In this case, the order of convergence is at least q.
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5.4 Examples of fixed point methods

As we mentioned in Section 5.2, there are several choices for the function F that guarantee the
equivalence F (x) = x⇔ f(x) = 0.

5.4.1 The chord method

In the case where f is a function from R to R, the simplest approach, sometimes called the
chord method, is to define

F (x) = x− α−1f(x).

The fixed point iteration (5.4) in this case admits a simple geometric interpretation: at each
step, the function f is approximated by the affine function x 7→ f(xk)+α(x−xk), and the new
iterate is defined as the zero of this affine function, i.e.

xk+1 = xk − α−1f(xk) = F (xk). (5.12)

This is illustrated in Figure 5.1. By Proposition 5.5, a sufficient condition to ensure local
convergence is that

|F ′(x∗)| = |1− α−1f ′(x∗)| < 1. (5.13)

In order for this condition to hold true, the slope α must be of the same sign as f ′(x∗) and the
inequality |α| > |f ′(x∗)|/2 must be satisfied. If f ′(x∗) = 0, then the sufficient condition (5.13) is
never satisfied; in this case, the convergence must be studied on a case-by-case basis. By Propo-
sition 5.6, the convergence of the chord method is superlinear if α = f ′(x∗). In practice, the
solution x∗ is unknown, and so this choice is not realistic. Nevertheless, the above reasoning
suggests that, by letting the slope α vary from iteration to iteration in such a manner that αk

approaches f ′(x∗) as k → ∞, fast convergence can be obtained. This is precisely what the
Newton–Raphson method aims to achieve; see Section 5.4.2

x

y
f(x)

Affine approximation

xkxk+1

Figure 5.1: Graphical illustration of an iteration of the chord method.
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When f is a function from Rn to Rn, the above approach generalizes to

xk+1 = F (xk), F (x) = x− A−1f(x),

where A is an invertible matrix. The geometric interpretation of the method in this case is the
following: at each step, the function f is approximated by the affine function x 7→ xk+A(x−xk),
and the next iterate is given by the unique zero of the latter function. Superlinear convergence
is achieved when A = Jf (x∗). Notice that each iteration requires to calculate y := A−1f(xk),
which is generally achieved by solving the linear system Ay = f(xk).

5.4.2 The Newton–Raphson method

Let us first consider the case of a function from R to R. A necessary condition for the Newton–
Raphson method to apply is that f is differentiable. At each step, the function f is approximated
by the affine function x 7→ f(xk)+f

′(xk)(x−xk) and the unique zero of this function is returned.
In other words, one iteration of the Newton–Raphson method reads

xk+1 = xk − f ′(xk)−1f(xk). (5.14)

For this iteration to be well-defined, it is necessary that f ′(xk) 6= 0. The Newton–Raphson
method may be viewed as a variation on (5.12) where the slope α is adapted as the simulation
progresses. If the method converges and f ′ is continuous, then f ′(xk) → f ′(x∗) in the limit
as k → ∞, which is an indication that superlinear convergence could occur in view of our
discussion in the previous section. Equation (5.14) may be recast as a fixed point iteration of
the form (5.4) with

F (x) = x− f(x)

f ′(x)
.

If x∗ is a simple root of f , that is if f(x∗) = 0 and f ′(x∗) 6= 0, then x∗ is a fixed point of the
function F . If the function f is twice continuously differentiable, then the convergence of the
Newton–Raphson method is superlinear by Proposition 5.6, because then

F ′(x∗) =
f(x∗)f

′′(x∗)

f ′(x∗)2
= 0.

The geometric interpretation of the Newton–Raphson method in dimension 1 is the following:
at each step, the function f is approximated by the affine function x 7→ xk + f ′(xk)(x − xk),
which is the tangent line to f at xk, and the next iterate is given by the unique zero of the latter
function. This is illustrated in Figure 5.2.

The Newton–Raphson method may be generalized to nonlinear equations in Rn of the
form (5.1). In this case F (x) = x− Jf (x)−1f(x), and so an iteration of the method reads

xk+1 = xk − Jf (xk)
−1f(xk). (5.15)

In the rest of this section, we show that the iteration (5.15) is well-defined in a small neigh-
borhood of a root of f under appropriate assumptions, and we demonstrate the second order
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x

y
f(x)

Tangent

xkxk+1

Figure 5.2: Graphical illustration of a Newton–Raphson iteration. The code used to create this figure
is based on the answer https://tex.stackexchange.com/a/551205/125558 on LATEX stack exchange.

convergence of the method, first in dimension 1 under simplifying assumption involving the sec-
ond derivative of f , and then in the multi-dimensional setting under more general assumptions.

Convergence in the one-dimensional setting

We assume in this section that (xk)k>0 is generated from the Newton–Raphson method (5.14)
and prove the following result.

Theorem 5.7 (Quadratic convergence of Newton–Raphson). Assume that f ∈ C2(R) and
that the following assumptions are satisfied:

• The first derivative of f is uniformly bounded away from zero:

inf
x∈R
|f ′(x)| = m > 0.

• The second derivative of f is uniformly bounded from above in absolute value:

sup
x∈R
|f ′′(x)| =M <∞.

Then f(x) has a unique root x∗ and it holds for all initial x0 ∈ R that

∀k ∈ N, |xk+1 − x∗| 6
M

2m
|xk − x∗|2. (5.16)

Proof. By assumption, the function f is continuous and either strictly increasing everywhere or
strictly decreasing everywhere. Therefore there exists a unique root x∗ ∈ R of f . In order to
prove (5.16), we note that

xk+1 − x∗ = xk −
f(xk)

f ′(xk)
− x∗ =

1

f ′(xk)

(
f ′(xk)(xk − x∗)− f(xk)

)
. (5.17)
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By Taylor’s theorem, there is ξ ∈ R such that

f(x∗) = f(xk) + f ′(xk)(x∗ − xk) +
1

2
f ′′(ξ)(x∗ − xk)2.

Since x∗ is a root of f , the left-hand side of this equation is zero. Combining this equation
with (5.17), we deduce that

xk+1 − x∗ =
f ′′(ξ)(xk − x∗)2

2f ′(xk)
.

Taking absolute values and using the assumptions gives

|xk+1 − x∗| 6
M

2m
(xk − x∗)2,

which concludes the proof.

Remark 5.3. As a corollary of Theorem 5.7, we obtain that the Newton–Raphson method is
convergent if

|xk − x∗| 6
2m

M
.

Convergence in the multi-dimensional setting �

As a first step towards a proof of quadratic convergence for the Newton–Raphson method in
the multi-dimensional setting, we begin by proving the following preparatory lemma, which we
will then employ in the particular case where the matrix-valued function A is equal to Jf .

Lemma 5.8. Let A : Rn → Rn×n denote a matrix-valued function on Rn that is both con-
tinuous and nonsingular at x∗, and let f be a function that is differentiable at x∗ where
f(x∗) = 0. Then the function

G(x) = x− A(x)−1f(x)

is well-defined in a neighborhood Bδ(x∗) of x∗. In addition, G is differentiable at x∗ with

JG(x∗) = I− A(x∗)
−1Jf (x∗). (5.18)

Proof. It holds that

A(x) =
(

A(x∗)−
(
A(x∗)− A(x)

))
= A(x∗)

(
I− A(x∗)

−1
(
A(x∗)− A(x)

))
. (5.19)

Let β = ‖A(x∗)
−1‖ and ε = (2β)−1. By continuity of the matrix-valued function A, there

exists δ > 0 such that
∀x ∈ Bδ(x∗), ‖A(x)− A(x∗)‖ 6 ε.

For x ∈ Bδ(x∗) we have ‖A(x∗)
−1
(
A(x∗)−A(x)

)
‖ 6 ‖A(x∗)

−1‖‖A(x∗)−A(x)‖ 6 βε = 1
2 , and

so Lemma 4.2 implies that the second factor on the right-hand side of (5.19) is invertible with
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a norm bounded from above by 2. Therefore, we deduce that A(x) is invertible with

∀x ∈ Bδ(x∗), ‖A(x)−1‖ 6 2‖A(x∗)
−1‖ = 2β, (5.20)

which shows that G is well-defined in Bδ(x∗). In order to prove (5.18), we need to show that

lim
‖h‖→0

‖G(x∗ + h)−G(x∗)−
(
I− A(x∗)

−1Jf (x∗)
)
h‖

‖h‖
= 0

By definition of G, and using the fact that f(x∗) = 0, we obtain that the argument of the norm
in the numerator is equal to

A(x∗)
−1f(x∗)− A(x∗ + h)−1f(x∗ + h) + A(x∗)

−1Jf (x∗)h

=
(
A−1(x∗)− A(x∗ + h)−1

)
Jf (x∗)h︸ ︷︷ ︸

=:v1

−A(x∗ + h)−1
(
f(x∗ + h)− f(x∗)− Jf (x∗)h

)︸ ︷︷ ︸
=:v2

.

Noting that A−1(x∗)−A(x∗ +h)−1 = A(x∗)
−1
(
A(x∗ +h)−A(x∗)

)
A(x∗ +h)−1, we bound the

norm of the first term on the right-hand side as follows:

∀h ∈ Bδ(0), ‖v1‖ 6 2β2‖A(x∗ + h)− A(x∗)‖‖Jf (x∗)‖‖h‖.

Clearly ‖v1‖/‖h‖ → 0 is the limit as h → 0 by continuity of the matrix function A. It also
holds that ‖v2‖/‖h‖ → 0 by differentiability of f at x∗, which concludes the proof.

Using this lemma, we can show the following result on the convergence of the multi-
dimensional Newton–Raphson method.

Theorem 5.9 (Convergence of Newton–Raphson). Let f : Rn → Rn denote a function that
is differentiable in a neighborhood Bδ(x∗) of a point x∗ where f(x∗) = 0. Assume that the
Jacobian matrix Jf (x) is nonsingular and continuous at x∗. Then x∗ is an attractor of the
Newton–Raphson iteration (5.15) and the convergence is superlinear.

In addition, if there is α > 0 such that the Lipschitz condition

∀x ∈ Bδ(x∗), ‖Jf (x)− Jf (x∗)‖ 6 α‖x− x∗‖

is satisfied, there exists d ∈ (0, δ) and C > 0 such that

∀xk ∈ Bd(x∗), ‖xk+1 − x∗‖ 6 C‖xk − x∗‖2.

In other words, the convergence is at least quadratic in Bd(x∗).

Proof. Using Lemma 5.8, we obtain that the Newton–Raphson update

F (x) = x− Jf (x)−1f(x),

is well-defined in a neighborhood Bδ(x∗) of x∗ for sufficiently small δ. In addition, the second
statement in Lemma 5.8 gives that JF (x∗)

−1 = I− JF (x∗)
−1JF (x∗) = 0, which establishes the
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superlinear convergence by Proposition 5.6.
In order to show that the convergence is quadratic, we begin by noticing that, since

f(xk) =

∫ t

0

d
dt

f
(
x∗ + t(xk − xx)

)
dt =

∫ t

0
Jf
(
x∗ + t(xk − xx)

)
(xk − x∗)dt,

it holds for all xk ∈ Bδ(x∗) that

‖f(xk)− Jf (x∗)(xk − x∗)‖ =
∥∥∥∥∫ 1

0

(
Jf
(
x∗ + t(xk − x∗)

)
− Jf (x∗)

)
(xk − x∗)dt

∥∥∥∥
6
∫ 1

0

∥∥Jf
(
x∗ + t(xk − x∗)

)
− Jf (x∗)

∥∥ ‖xk − x∗‖dt

6
∫ 1

0
αt‖xk − x∗‖2 dt 6 α

2
‖xk − x∗‖2. (5.21)

Let d ∈ (0, δ) be sufficiently small to ensure that

∀x ∈ Bd(x∗), ‖Jf (x)−1‖ 6 2‖Jf (x∗)
−1‖.

There exists such a d by (5.20). Using the inequality (5.21), we have that for all xk ∈ Bd(x∗),

‖xk+1 − x∗‖ = ‖F (xk)− x∗‖ = ‖xk − x∗ − Jf (xk)
−1f(xk)‖

=
∥∥Jf (xk)

−1
(
f(xk)− Jf (xk)(xk − x∗)

)∥∥ 6
∥∥Jf (xk)

−1
∥∥‖f(xk)− Jf (xk)(xk − x∗)‖

6
∥∥Jf (xk)

−1
∥∥(‖f(xk)− Jf (x∗)(xk − x∗)‖+ ‖Jf (x∗)− Jf (xk)‖‖xk − x∗‖

)
6

3α

2

∥∥Jf (xk)
−1
∥∥‖xk − x∗‖2 6 3α

∥∥Jf (x∗)
−1
∥∥‖xk − x∗‖2,

which concludes the proof.

5.4.3 The secant method �

The Newton–Raphson method exhibits very fast convergence, but it requires the knowledge of
the derivatives of the function f . To conclude this chapter, we describe a root-finding algorithm,
known as the secant method, that enjoys superlinear convergence but does not require the
derivatives of f . This method applies only when f is a function from R to R, and so we drop
the vector notation in the rest of this section.

Unlike the other methods presented so far in Section 5.2, the secant method can not be
recast as a fixed point iteration of the form xk+1 = F (xk). Instead, it is of the more general
form xk+2 = F (xk, xk+1). The geometric intuition behind the method in the following: given
xk and xk+1, the function f is approximated by the unique linear function that passes through(
xk, f(xk)

)
and

(
xk+1, f(xk+1)

)
, and the iterate xk+2 is defined as the root of this linear function.

In other words, f is approximated as follows:

f̃(x) = f(xk) +
f(xk+1)− f(xk)

xk+1 − xk
(x− xk).
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Solving f̃(x) = 0 gives the following expression for xk+2:

xk+2 =
f(xk+1)xk − f(xk)xk+1

f(xk+1)− f(xk)
, (5.22)

Showing the convergence of the secant method rigorously under general assumptions is tedious,
so in this course we restrict our attention to the case where f is a quadratic function. Extending
the proof of convergence to a more general smooth function can be achieved by using a quadratic
Taylor approximation of f around the root x∗, which is accurate in a close neighborhood of x∗.

Theorem 5.10 (Convergence of the secant method). Assume that f is a convex quadratic
polynomial with a simple root at x∗ and that the secant method converges: limk→∞ xk = x∗.
Then the order of convergence is given by the golden ratio

ϕ =
1 +
√
5

2
.

More precisely, there exists a positive real number y∞ such that

lim
k→∞

|xk+1 − x∗|
|xk − x∗|ϕ

= y∞. (5.23)

Proof. Equation (5.22) implies that

xk+2 − x∗ =
f(xk+1)(xk − x∗)− f(xk)(xk+1 − x∗)

f(xk+1)− f(xk)
.

By assumption, the function f may be expressed as

f(x) = λ(x− x∗) + µ(x− x∗)2, λ 6= 0.

Substituting this expression in (5.4.3) and letting ek = xk − x∗, we obtain

ek+2 =
µekek+1(ek+1 − ek)

λ(ek+1 − ek) + µ(e2k+1 − e2k)
=

µekek+1

λ+ µ(ek+1 + ek)
.

Rearranging this equation, we have

ek+2

ek+1
=

µek
λ+ µ(ek+1 + ek)

. (5.24)

By assumption, the right-hand side converges to zero, and so the left-hand side must also
converge to zero; the convergence is superlinear.

To conclude the proof, we first reason formally in order to guess the order convergence, and
then give a rigorous proof that our guess is correct. If ek is small, then it holds approximately
by (5.24) that

ek+2

ek+1
≈ µek. (5.25)

Assume that there exists q > 0 such that the equation ek+1 = Ceqk is valid for all k. Then it
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holds that ek+2 = Ceqk+1 = C(Ceqk)
q and (5.25) enables to determine q:

C(Ceqk)
q

Ceqk
=
µ

λ
ek ⇒ Cqeq

2−q
k =

µ

λ
ek ⇒ q2 − q − 1 = 0. ⇒ q = ϕ.

Now comes the rigorous justification. Take absolute values in (5.24) to obtain, after rearranging,

|ek+2|
|ek+1|ϕ

=

(
|ek+1|

|ek|
1

ϕ−1

)1−ϕ
µ

|λ+ µ(ek+1 + ek)|
=

(
|ek+1|
|ek|ϕ

)1−ϕ |µ|
|λ+ µ(ek+1 + ek)|

,

where we used that ϕ = 1
ϕ−1 , since ϕ is a root of the equation ϕ2−ϕ−1 = 0. Thus, introducing

the ratio yk = |ek+1|/|ek|ϕ, we have

yk+1 = y1−ϕ
k

|µ|
|λ+ µ(ek+1 + ek)|

.

Taking logarithms in this equation, we deduce

log(yk+1) = (1− ϕ) log(yk) + ck, ck := log
(

|µ|
|λ+ µ(ek+1 + ek)|

)
.

This is a recurrence equation for log(yk), whose explicit solution can be obtained from the
variation-of-constants formula:

log(yk) = (1− ϕ)k−1 log(y1) +
k−1∑
i=1

(1− ϕ)k−1−ici.

Since (ck)k>0 converges to the constant c∞ = log|µ/λ| by the assumption that ek → 0, the se-
quence

(
log(yk)

)
k>0

converges to c∞/ϕ (prove this!). Therefore, by continuity of the exponential
function, it holds that

yk = exp
(
log(yk)

)
−−−→
k→∞

exp
(
c∞
ϕ

)
=
∣∣∣µ
λ

∣∣∣ 1ϕ
and so we deduce (5.23).

5.5 A numerical experiment

To conclude this chapter, we present the results of a numerical experiment. Specifically, we
consider four different fixed point methods for calculating the square root of 2, i.e. for solving
the nonlinear equation

f(x) := x2 − 2 = 0. (5.26)

The unique positive solution to this equation is x∗ =
√
2. The methods we consider are the

following:

• The chord method with large α = 10.

• The chord method with the optimal parameter α, which is such that F ′(x∗) = 0. The
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optimum value for α for solving (5.26) is given by α∗ = 2
√
2.

• The Newton–Raphson method, where each iteration is given by

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

x2k − 2

2xk
=

1

2

(
xk +

2

xk

)
=: F (xk),

with
F (x) =

1

2

(
x+

2

x

)
.

Notice that F ′(x∗) = 0 and that F ∈ C2
(
(0,∞)

)
. Therefore, by Taylor’s theorem it holds

for all x ∈ (x∗ − 1, x∗ + 1) that

|F (x)− F (x∗)| =
∣∣F ′′(ξ(x))∣∣ 6 L(x− x∗)2, L := sup

|x−x∗|61
|F ′′(x)|.

We deduce that the convergence is at least quadratic by (5.11).

Remark 5.4. Note that the ancient Babylonian method coincides with the Newton–Raphson
method applied to (5.26).

The following code implements these methods. Note that we use the arbitrary precision BigFloat

format with a precision we manually set to 2000 bits, which enables using a very small ε in the
stopping criterion.

function count_digits(x, y)
xdigits = split(string(x), "")
ydigits = split(string(y), "")
len = min(length(xdigits), length(ydigits))
for i in 1:len

xdigits[i] != ydigits[i] && return i-2
end

end

function my_sqrt(a)
exact = sqrt(a)
f(x) = x*x - a
fp(x) = 2x

# Uncomment desired line
F(x) = x - f(x)/10 # Chord method
# F(x) = x - f(x)/(2√a) # Chord method with optimal α

# F(x) = 1/2 * (x + a/x) # Babylonian / Newton Raphson

r, ε = 1, 1e-200
while abs(f(r)) > ε
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r = F(r)
digits = ceil(Int, -log10(abs(r - exact)))
println("Number of correct digits: $digits")

end

end

# Sets the precision of BigFloats to 1000 bits
setprecision(2000)
my_sqrt(BigFloat(2))

For each of the methods, the number of correct digits of the approximation as the iterations
progress is illustrated in Table 5.1. Observe that for all the methods except the first one, the
number of correct digits is approximately doubled at each iteration, which is consistent with
quadratic convergence.

Method Chord α = 10 Chord α = 2
√
2 Newton–Raphson

# Iterations 1357 8 9
# Correct digits i = 1 1 1 1
# Correct digits i = 2 1 3 3
# Correct digits i = 3 1 6 6
# Correct digits i = 4 1 12 12
# Correct digits i = 5 1 26 24
# Correct digits i = 6 1 53 48
# Correct digits i = 7 1 107 97
# Correct digits i = 8 1 214 196
# Correct digits i = 9 1 n/a 392

Table 5.1: Comparison of different fixed point methods for calculating
√
2. Here i denotes the

iteration index.

5.6 Exercises

� Exercise 5.1. Implement the bisection method for finding the solution(s) to the equation

x = cos(x).

� Exercise 5.2. Find a discrete-time dynamical system over R of the form

xk+1 = F (xk)

for which 0 is an attractor but is not stable.
Hint: Use a function F that is discontinuous.

� Exercise 5.3. Show that if x∗ is a globally exponentially stable fixed point of F , then F

does not have any other fixed point: x∗ is the unique fixed point.

� Exercise 5.4. Prove Theorem 5.3.
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� Exercise 5.5. Let x∗ be a fixed point of (5.5). Show that if

ρ
(
JF (x∗)

)
< 1,

then x∗ is locally exponentially stable. It is sufficient by Proposition 5.5 to find a subordinate
matrix norm such that ‖JF (x∗)‖ < 1. In other words, this exercise amounts to showing that for
any matrix A ∈ Rn×n with ρ(A) < 1, there exists a matrix norm such that ‖A‖ < 1.
Hint: One may employ a matrix norm of the form ‖A‖T := ‖T−1AT‖2, which is a subordinate
norm by Exercise 4.10. The Jordan normal form is useful for constructing the matrix T, and
equation (4.24) is also useful.

Solution. Let J = P−1AP denote the Jordan normal form of A, and let

Eε =


ε

ε2

. . .
εn


By Eq. (4.24), the matrix Jε := E−1

ε JEε coincides with J, except that the first superdiagonal is
multiplied by ε. Let D denote the diagonal part of Jε. We have that

‖Jε − D‖2 =
√
λmax(ET

ε Eε).

The matrix ET
ε Eε is diagonal with entries equal to either 0 or ε2, and so ‖Jε−D‖2 < ε. By the triangle

inequality, we have
‖Jε‖ 6 ‖D‖+ ‖Jε − D‖2 6 ρ(A) + ε. (5.27)

Let ‖A‖ε := ‖E−1
ε P−1APEε‖. By (4.10) with T = PEε, this is indeed a subordinate matrix norm.

By (5.27) and the assumption that ρ(A) < 1, it is clear that ‖A‖ε < 1 provided that ε is sufficiently
small. 4

Remark 5.5. A corollary of Exercise 4.10 is that the spectral radius of a matrix A is the
infimum of ‖A‖ over all subordinate matrix norms.

� Exercise 5.6. Calculate x = 3

√
3 + 3

√
3 + 3

√
3 +
√
. . . using the bisection method.

� Exercise 5.7. Solve the equation f(x) = ex− 2 = 0 using a fixed point iteration of the form

xk+1 = F (xk), F (x) = x− α−1f(x).

Using your knowledge of the exact solution x∗ = log 2, write a sufficient condition on α to
guarantee that x∗ is locally exponentially stable. Verify your findings numerically and plot,
using a logarithmic scale for the y axis, the error in absolute value as a function of k.

� Exercise 5.8. Implement the Newton–Raphson method for solving f(x) = ex − 2 = 0, and
plot the error in absolute value as a function of the iteration index k.
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� Exercise 5.9. Find the point (x, y) on the parabola y = x2 that is closest to the point (3, 1).

� Exercise 5.10. Consider the linear system{
y = (x− 1)2

x2 + y2 = 4

By drawing these two constraints in the xy plane, find an approximation of the solution(s).
Then calculate the solution(s) using a fixed-point method.

� Exercise 5.11. Find solutions (ψ, λ), with λ > 0, to the following eigenvalue problem:

ψ′′ = −λ2ψ, ψ(0) = 0, ψ′(1) = ψ(1).

� Exercise 5.12. Suppose that we have n data points (xi, yi) of an unknown function y = f(x).
We wish to approximate f by a function of the form

f̃(x) =
a

b+ x

by minimizing the sum of squares
n∑

i=1

|f̃(xi)− yi|2.

Write a system of nonlinear equations that the minimizer (a, b) must satisfy, and solve this
system using the Newton–Raphson method starting from (1, 1). The data is given below:

x = [0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0]
y = [0.6761488864859304; 0.6345697680852508; 0.6396283580587062; 0.6132010027973919;

0.5906142598705267; 0.5718728461471725; 0.5524549902830562; 0.538938885654085;
0.5373495476994958; 0.514904589752926; 0.49243437874655027]

Plot the data points together with the function f̃ over the interval [0, 1]. Your plot should look
like Figure 5.3.

Figure 5.3: Solution to Exercise 5.12.
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� Exercise 5.13 (Nonlinear least-squares). Suppose that we are given n data points (xi, yi)

of an unknown function y = f(x). We wish to approximate f by a straight line

f̃(x) = ax+ b

by minimizing the sum of squared Euclidean distances between the data points and the straight
line f̃ . Since the distance between a point (xi, yi) and the straight line is given by

|yi − axi − b|√
1 + a2

,

the objective function to minimize is given by

J(a, b) :=

n∑
i=1

(yi − axi − b)2

1 + a2
.

This is a smooth function of a and b, and so a necessary condition for a pair (a∗, b∗) ∈ R2 to
be a minimizer is that

∇J(a∗, b∗) = 0,

which is a nonlinear equation for the unknowns a∗ and b∗. Solve this equation by using the
Newton–Raphson method initialized at (1, 1), and then plot the data points together with the
function f̃ over the interval [0, 1]. Your plot should look like Figure 5.4. The data is given
hereafter:

x = [0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0]
y = [-0.9187980789440975; -0.6159791344678258; -0.25568734869121856;

-0.14269370171581808; 0.3094396057228459; 0.6318327173549161;
0.8370437988106428; 1.0970402798788812; 1.6057799131867696;
1.869090784869698; 2.075369730726694]

Figure 5.4: Solution to Exercise 5.13.
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5.7 Discussion and bibliography

The content of this chapter is largely based on the lecture notes [15]. Several of the exercises are
taken or inspired from [7]. The proof of convergence of the secant method is inspired from the
general proof presented in the short paper [17]. For a detailed treatment of iterative methods
for nonlinear equations, see the book [9].
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