
Appendix C

Chebyshev polynomials

The Chebyshev polynomials (Tn)n∈N are given on [−1, 1] by the formula

∀x ∈ [−1, 1], Tn(x) = cos
(
n arccos(x)

)
. (C.1)

Although this formula makes sense only if x ∈ [−1, 1], the polynomials are defined for all x ∈ R.
Equivalently, the Chebyshev polynomials can be defined from the equation

∀x ∈ [1,∞), Tn(x) = cosh
(
n arccosh(x)

)
, (C.2)

where cosh(θ) = 1
2

(
eθ + e−θ

)
and arccosh : [1,∞) → [0,∞) is the inverse function of cosh. The

first few Chebyshev polynomials are illustrated in Figure C.1. It is immediate to show the
following properties from (C.1):

• The roots of Tn are given by

zk = cos
(

π

2n
+

kπ

n

)
, k = 0, . . . , n− 1.

These are illustrated in Figure C.2.

• The polynomial Tn takes the value 1 or -1 when evaluated at

xk = cos
(
kπ

n

)
, k = 0, . . . , n. (C.3)

More precisely, it holds that Tn(xk) = (−1)k.

� Exercise C.1. Show that (C.1) defines a polynomial of degree n, and find its expression in
the usual polynomial notation.

Solution. The key idea is to rewrite the cosine function in terms of the complex exponential:

cos(nθ) = 1

2

(
einθ + e−inθ) = 1

2

((
cos(θ) + i sin(θ)

)n
+
(
cos(θ)− i sin(θ)

)n)
.
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Figure C.1: Illustration of the first few Chebyshev polynomials over the interval [−1, 1].

By expanding the powers on the right-hand side, we obtain

(
cos(θ) + i sin(θ)

)n
=

n∑
j=0

(
n

j

)
cos(θ)n−j ij sin(θ)j

(
cos(θ)− i sin(θ)

)n
=

n∑
j=0

(
n

j

)
cos(θ)n−j (−i)j sin(θ)j .

The terms corresponding to odd values of j cancel out in the expression of cos(nθ), and so we obtain
the following expression for cos(nθ) in terms of cos(θ) and sin(θ):

cos(nθ) =
bn/2c∑
j=0

(
n

2j

)
cos(θ)n−2j i2j sin(θ)2j

=

bn/2c∑
j=0

(−1)j
(
n

2j

)
cos(θ)n−2j

(
1− cos(θ)2

)j
.

Therefore, we conclude that

Tn(x) =

bn/2c∑
j=0

(
n

2j

)
xn−2j

(
x2 − 1

)j
. (C.4)

4

� Exercise C.2. Show that the same polynomials are obtained from (C.2).

Solution. Notice that

cosh(nξ) = 1

2

(
enξ + e−nξ

)
=

1

2

((
cosh(ξ) + sinh(ξ)

)n
+
(
cosh(ξ)− sinh(ξ)

)n)
.
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Using the binomial formula, we obtain

cosh(nξ) = 1

2

n∑
j=0

(
n

j

)(
cosh(ξ)n−j sinh(ξ)j + cosh(ξ)n−j(−1)j sinh(ξ)j

)
=

1

2

n∑
j=0

(
n

j

)
cosh(ξ)n−j

(
sinh(ξ)j + (−1)j sinh(ξ)j

)
.

The contributions of the odd values of j cancel out, and so we obtain

cosh(nξ) =
bn/2c∑
j=0

(
n

2j

)
cosh(ξ)n−2j sinh(ξ)2j .

Since cosh(ξ)2 − sinh(ξ)2 = 1, we deduce that

cosh(nξ) =
bn/2c∑
j=0

(
n

j

)
cosh(ξ)n−2j(cosh(ξ)2 − 1)j ,

which after the substitution of ξ = arccosh(x) leads to (C.4). 4

� Exercise C.3 (Yet another expression for the Chebyshev polynomials). Show that Tn(x)

may be defined from the formula

Tn(x) =
1

2

(
x+

√
x2 − 1

)n
+

1

2

(
x−

√
x2 − 1

)n
for |x| ≥ 1. (C.5)

Solution. We showed in the solution of Exercise C.2 that

cosh(nξ) = 1

2

((
cosh(ξ) + sinh(ξ)

)n
+
(
cosh(ξ)− sinh(ξ)

)n)
.

Letting ξ = arccosh(x) in this equation and using that cosh(ξ)2 − sinh(ξ)2 = 1, we obtain

Tn(x) =
1

2

((
x+

√
x2 − 1

)n
+

(
x−

√
x2 − 1

)n)
,

which is the required formula. 4

� Exercise C.4 (Recursion relation). Show that the Chebyshev polynomials satisfy the relation

∀n ∈ {1, 2, . . . }, Tn+1 = 2xTn − Tn−1. (C.6)

Solution. It is sufficient to show the identity for x ∈ [−1, 1], where the formula (C.1) applies. Using
well-known trigonometric identities, we have

cos
(
(n+ 1)θ

)
= cos(nθ) cos(θ)− sin(nθ) sin(θ)

cos
(
(n− 1)θ

)
= cos(nθ) cos(θ) + sin(nθ) sin(θ).

Adding both equations and rearranging, we obtain

cos
(
(n+ 1)θ

)
= 2 cos(nθ) cos(θ)− cos

(
(n− 1)θ

)
.
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Therefore, using this equation with θ = arccos(x), we obtain the statement. 4

Remark C.1. The recursion relation in Exercise C.4 can be employed to show by recursion
that Tn(x) is indeed a polynomial of degree n.

� Exercise C.5. Since Tn : R → R is a polynomial, it may be written in the standard form

Tn(x) = α(n)
n xn + . . .+ α

(n)
1 x+ α

(n)
0 .

Prove that α(n)
n = 2(n−1) provided that n > 1.

Solution. From the definition (C.1), the Chebyshev polynomials of degrees 0 and 1 are given by
T0(x) = 1 and T1(x) = x. The statement then follows by recursion, using Exercise C.4. 4

� Exercise C.6. Let ξ ∈ R\(−1, 1). Show that, among all the polynomials in P(n) that are
bounded from above by 1 in absolute value uniformly over the interval (−1, 1), the Chebyshev
polynomial Tn achieves the largest absolute value when evaluated at ξ.

Solution. Reasoning by contradiction, we assume that there exists p ∈ P(n) that satisfies

sup
x∈(−1,1)

|p(x)| 6 1 and |p(ξ)| > |Tn(ξ)|.

Let q(x) = p(x)Tn(ξ)/p(ξ). Then by construction q(ξ) = Tn(ξ) and

sup
x∈(−1,1)

|q(x)| < 1.

Consequently, denoting by xk the points defined in (C.3), we have that

∀k ∈ {0, . . . , n}, (−1)k(Tn − q)(xk) > 0.

In other words, the polynomial Tn − q takes positive values at {x0, x2, x4, . . . } and negative values
at {x1, x3, x5, . . . }. Consequently, by the intermediate value theorem, Tn−q possesses n distinct roots
in the open interval (−1, 1). Since, in addition, (Tn−q)(ξ) = 0, we deduce that Tn−q has n+1 distinct
roots, which is a contradiction given that Tn − q is a nonzero polynomial of degree at most n. 4

� Exercise C.7. Assume that 0 < λ1 < λ2. Prove that for any polynomial p ∈ P(n) that
satisfies p(0) = 1, it holds that

sup
λ∈(λ1,λ2)

|p(λ)| > 1

Tn(ξ)
, ξ :=

λ2 + λ1

λ2 − λ1
,

with equality for

p∗(λ) =
Tn

(
λ1+λ2−2λ
λ2−λ1

)
Tn

(
λ1+λ2
λ2−λ1

) . (C.7)
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Figure C.2: Roots of the Chebyshev polynomial T8.

Solution. Assume that p ∈ P(n) is such that p(0) = 1, and let q ∈ P(n) be given by

q(µ) = p

(
λ1 + λ2 − (λ2 − λ1)µ

2

)
⇔ p(λ) = q

(
λ1 + λ2 − 2λ

λ2 − λ1

)
.

Since ξ > 1, it holds from (C.5) that Tn(ξ) > 0 and it follows from Exercise C.6 that

p(0) = q(ξ) 6 Tn(ξ) sup
µ∈(−1,1)

|q(µ)| = Tn(ξ) sup
λ∈(λ1,λ2)

|p(λ)|,

with equality when q ∝ Tn, i.e. when

p(λ) ∝ Tn

(
λ1 + λ2 − 2λ

λ2 − λ1

)
.

The expression (C.7) then follows from the fact that p∗(0) = 1. 4
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