Appendix C

Chebyshev polynomials

The Chebyshev polynomials (7},)nen are given on [—1, 1] by the formula
Ve e [-1,1], T (z) = cos(narccos(z)). (C.1)

Although this formula makes sense only if x € [—1, 1], the polynomials are defined for all = € R.
Equivalently, the Chebyshev polynomials can be defined from the equation

Vo € [1,00), Ty, (x) = cosh(narccosh(z)), (C.2)

where cosh(¢) = 1 (e + e7?) and arccosh: [1,00) — [0, 00) is the inverse function of cosh. The
first few Chebyshev polynomials are illustrated in Figure C.1. It is immediate to show the

following properties from (C.1):

e The roots of T;, are given by

k
zk:cos<7r+w>, k=0,...,n—1.
2n

n
These are illustrated in Figure C.2.
e The polynomial 7}, takes the value 1 or -1 when evaluated at

Zf = COS <IZT> , k=0,...,n. (C.3)

More precisely, it holds that T}, (zz) = (—1)*.

&% Exercise C.1. Show that (C.1) defines a polynomial of degree n, and find its expression in

the usual polynomial notation.

Solution. The key idea is to rewrite the cosine function in terms of the complex exponential:

(eine + e—inﬁ’) = %((005(9) + isin(9))n + (COS(Q) - iSin(H))n).

N =

cos(nf) =

223



Appendixz C. Chebyshev polynomials

—1F

|
-12 -1 -08-06-04-02 0 02 04 06 08 1 1.2

Figure C.1: Tllustration of the first few Chebyshev polynomials over the interval [—1, 1].
By expanding the powers on the right-hand side, we obtain
(cos(f) +isin(h))" = Zn: (?) cos(0)" 7 i/ sin(6)?
=0
(cos(f) —isin(h))" = z": (?) cos(0)" 7 (—i)7 sin(0)7.
=0

The terms corresponding to odd values of j cancel out in the expression of cos(nf), and so we obtain

the following expression for cos(nf) in terms of cos(d) and sin(6):

[n/2]
_ n n—25:25 . 2j
cos(nf) = jzz;) <2j> cos(6)"27i%7 sin(9)*
[n/2] n A
= Z (—1)J< ) cos(6)" % (1 — cos(0)?)’
: 2j
Jj=0
Therefore, we conclude that
[n/2]
n n— J
Tolz) = Z <2j)x % (2 — 1) (C.4)

&} Exercise C.2. Show that the same polynomials are obtained from (C.2).

Solution. Notice that

cosh(ng) = (e"5 + e_”g)

N — N —

((cosh(f) + sinh(f))n + (cosh(¢) — sinh(f))").
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Using the binomial formula, we obtain
cosh(n¢) = % E (n) (cosh(€)™ 7 sinh(€)? + cosh(£)" 7 (—1) sinh(€)7)
: J
7=0

DN | =

; (;) cosh(€)" 7 (sinh(€)? + (—1)7 sinh(£)7) .

The contributions of the odd values of j cancel out, and so we obtain
[n/2] n ' ,
cosh(n§) = jz:; (2]') cosh (&)™ 27 sinh(¢)%.

Since cosh(£)? — sinh(£)? = 1, we deduce that

ln/2]

cosh(ng) = Y (") cosh(£)" % (cosh(€)* — 1)7,
] J
7=0
which after the substitution of £ = arccosh(z) leads to (C.4). A

£ Exercise C.3 (Yet another expression for the Chebyshev polynomials). Show that T),(x)

may be defined from the formula

Tn(x):%<a:+\/a:2—l>n+%<x— x2—1>n for |z| > 1. (C.5)

Solution. We showed in the solution of Exercise C.2 that
cosh(ng) = %((cosh(f) + sinh(f))n + (cosh(&) — sinh(f))n).
Letting ¢ = arccosh(x) in this equation and using that cosh(£)? — sinh(¢)? = 1, we obtain
Tu(z) = 5 ((@+ V)" + o~ Va2 1)"),
which is the required formula. A

&} Exercise C.4 (Recursion relation). Show that the Chebyshev polynomials satisfy the relation

Vn € {1, 2,... }, Tn+1 = 22T, —T,_1. (06)

Solution. It is sufficient to show the identity for « € [—1, 1], where the formula (C.1) applies. Using

well-known trigonometric identities, we have

cos((n +1)6)
cos((n — 1)6)

cos(nf) cos(f) — sin(nh) sin(0)
cos(nf) cos(0) + sin(nh) sin(0).

Adding both equations and rearranging, we obtain

cos((n + 1)8) = 2 cos(nb) cos(6) — cos((n — 1)6).
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Therefore, using this equation with § = arccos(x), we obtain the statement. A

Remark C.1. The recursion relation in Exercise C.4 can be employed to show by recursion

that T, (x) is indeed a polynomial of degree n.

& Exercise C.5. Since Ty,: R — R is a polynomial, it may be written in the standard form
To(z) = o™Ma™ + .. + a&n)aj + a(()n).

Prove that aq(zn) = 2(n—1) provided that n > 1.

Solution. From the definition (C.1), the Chebyshev polynomials of degrees 0 and 1 are given by

To(z) =1 and Ty (z) = . The statement then follows by recursion, using Exercise C.4. A

&} Exercise C.6. Let ¢ € R\(—1,1). Show that, among all the polynomials in P(n) that are
bounded from above by 1 in absolute value uniformly over the interval (—1,1), the Chebyshev

polynomial T,, achieves the largest absolute value when evaluated at &.

Solution. Reasoning by contradiction, we assume that there exists p € P(n) that satisfies

sup [p(z)| <1 and  |p(§)] > [Tn(E)I-
z€(—1,1)

Let q(z) = p(x)T,(€)/p(§). Then by construction ¢(&) = T;,(§) and

o )] < L
ze(—1,1)

Consequently, denoting by xj the points defined in (C.3), we have that
Vk € {0,...,n}, (=D)™(T,, — q)(x1) > 0.

In other words, the polynomial T,, — g takes positive values at {zg, 2,24, ...} and negative values
at {x1,x3,x5,...}. Consequently, by the intermediate value theorem, T;, — ¢ possesses n distinct roots
in the open interval (—1,1). Since, in addition, (T}, —q)(§) = 0, we deduce that T}, —q has n+1 distinct

roots, which is a contradiction given that T,, — ¢ is a nonzero polynomial of degree at most n. A

&% Exercise C.7. Assume that 0 < A1 < Ao. Prove that for any polynomial p € P(n) that
satisfies p(0) = 1, it holds that

1 L Ao+ A1

sup |p()\)| > §:= m»

)\E()\l,)\g) Tn(é.) ’

with equality for

(C.7)
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=7 <6 <5 24 <3 <2 <1 <0

Figure C.2: Roots of the Chebyshev polynomial Tg.

Solution. Assume that p € P(n) is such that p(0) = 1, and let ¢ € P(n) be given by

o —p (AERELZAIY g (R,

Since ¢ > 1, it holds from (C.5) that T;,(§) > 0 and it follows from Exercise C.6 that

To.(&) sup |q(u)| =Tn(§) sup [p(N)],
pe(=1,1) AE(A1,N2)

=
E
[
=
&
N

with equality when g & T}, i.e. when

A+ A2 —2X
T, | ——— .
b o 7, (2R
The expression (C.7) then follows from the fact that p.(0) = 1. A

227



