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Introduction

In this chapter, we study numerical methods for interpolating and approximating functions.
The Cambridge dictionary defines interpolation as the addition of something different in the
middle of a text, piece of music, etc. or the thing that is added. The concept of interpolation
in mathematics is consistent with this definition; interpolation consists in finding, given a set
of points (xi, yi), a function f in a finite-dimensional space that goes through these points.
Throughout this course, you use the plot function in Julia, which performs piecewise linear
interpolation for drawing functions, but there are a number of other standard interpolation
methods. Our first goal in this chapter is to present an overview of these methods and the
associated error estimates.

In the second part of this chapter, we focus on function approximation, which is closely
related to the subject of mathematical interpolation. Indeed, a simple manner for approximating
a general function by another one in a finite-dimensional space is to select a set of real numbers
on the x axis, called nodes, and find the associated interpolant. As we shall demonstrate, not
all sets of interpolation nodes are equal, and special care is required in order to avoid undesired
oscillations. The field of function approximation is vast, so our aim in this chapter is to present
only an introduction to the subject. In order to quantify the quality of an approximation, a
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Chapter 2. Interpolation and approximation

metric on the space of functions, or a subset thereof, must be specified in order to measure
errors. Without a metric, saying that two functions are close is almost meaningless!

2.1 Interpolation

Assume that we are given n+1 nodes x0, . . . , xn on the x axis, together with values u0, . . . , un,
which may be the values taken by an unknown function u(x) when evaluated at these points.
Suppose that we are looking for an interpolation û(x) in a subspace Span{ϕ0, . . . , ϕn} of the
vector space of continuous functions, i.e. an interpolating function of the form

û(x) = α0ϕ0(x) + · · ·+ αnϕn(x),

where α0, . . . , αn are real coefficients. In order for û(x) to be an interpolating function, we must
require that

∀i ∈ {0, . . . , n}, û(xi) = ui.

This leads to a linear system of n + 1 equations and n + 1 unknowns, the latter being the
coefficients α0, . . . , αn. This system of equations in matrix form reads

ϕ0(x0) ϕ1(x0) . . . ϕn(x0)

ϕ0(x1) ϕ1(x1) . . . ϕn(x1)
...

...
...

ϕ0(xn) ϕ1(xn) . . . ϕn(xn)



α0

α1

...
αn

 =


u0

u1
...
un

 . (2.1)

2.1.1 Vandermonde matrix

Since polynomials are very convenient for evaluation, integration, and differentiation, they are
a natural choice for interpolation purposes. The simplest basis of the subspace of polynomials
of degree less than or equal to n is given by the monomials:

ϕ0(x) = 1, ϕ1(x) = x, . . . , ϕn(x) = xn.

In this case, the linear system (2.1) for determining the coefficients of the interpolant reads
1 x0 . . . xn0
1 x1 . . . xn1
...

...
...

1 xn . . . xnn



α0

α1

...
αn

 =


u0

u1
...
un

 . (2.2)

The matrix on the left-hand side is called a Vandermonde matrix. If the abcissae x0, . . . , xn
are distinct, then this is a full rank matrix, and so (2.2) admits a unique solution, implying
as a corollary that the interpolating polynomial exists and is unique. It is possible to show
that the condition number of the Vandermonde increases dramatically with n. Consequently,
solving (2.2) is not a viable method in practice for calculating the interpolating polynomial.
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2.1.2 Lagrange interpolation formula

One may wonder whether polynomial basis functions ϕ0, . . . , ϕn can be defined in such a manner
that the matrix in (2.1) is the identity matrix. The answer to this question is positive; it suffices
to take as a basis the Lagrange polynomials, which are given by

ϕi(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
=

n∏
j=0
j 6=i

x− xj
xi − xj

.

It is simple to check that

ϕi(xj) = δi,j =

1 if i = j,

0 otherwise.

Finding the interpolant in this basis is immediate:

û(x) = u0ϕ0(x) + · · ·+ unϕn(x).

While simple, this approach to polynomial interpolation has a few disadvantages:

• First, evaluating û(x) is computationally costly when n is large.

• Second, all the basis functions change when adding new interpolation nodes.

• Finally, Lagrange interpolation is numerically unstable because of cancellations between
large terms. Indeed, it is often the case that Lagrange polynomials take very large values
over the interpolation intervals; this occurs, for example, when many equidistant interpo-
lation nodes are employed, as illustrated in Figure 2.2.

2.1.3 Gregory–Newton interpolation

By Taylor’s formula, any polynomial p of degree n may be expressed as

p(x) = p(0) + p′(0)x+
p′′(0)

2
x2 + . . .+

p(n)(0)

n!
xn. (2.3)

The constant coefficient can be obtained by evaluating the polynomial at 0, the linear coefficient
can be identified by evaluating the first derivative at 0, and so on. Assume now that we are given
the values taken by p when evaluated at the integer numbers {0, . . . , n}. We ask the following
question: can we find a formula similar in spirit to (2.3), but including only evaluations of p and
not of its derivatives? To answer this question, we introduce the difference operator ∆ which
acts on functions as follows:

∆f(x) = f(x+ 1)− f(x).

The operator ∆ is a linear operator on the space of continuous functions. It maps constant
functions to 0, and the linear function x to the constant function 1, suggesting a resemblance
with the differentiation operator. In order to further understand this connection, let us define
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Figure 2.2: Lagrange polynomials associated with equidistant nodes over the (0, 1) interval.

the falling power of a real number x as

xk = x(x− 1)(x− 2) . . . (x− k + 1). (2.4)

We then have that

∆xk = (x+ 1)x(x− 1) . . . (x− k + 2)− x(x− 1)(x− 2) . . . (x− k + 1)

=
(
(x+ 1)− (x− k + 1)

)(
x(x− 1) . . . (x− k + 2)

)
= kxk−1 (2.5)

In other words, the action of the difference operator on falling powers mirrors that of the differ-
entiation operator on monomials. The falling powers form a basis of the space of polynomials,
and so any polynomial in P(n), i.e. of degree less than or equal to n, can be expressed as

p(x) = α0 + α1x
1 + α2x

2 + · · ·+ αnx
n. (2.6)

It is immediate to show that αi = ∆ip(0)/i!, where ∆ip denotes the function obtained after i
applications of the operator ∆. Therefore, any polynomial of degree less than or equal to n may
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be expressed as

p(x) = p(0) + ∆p(0)x1 +
∆2p(0)

2
x2 + · · ·+ ∆np(0)

n!
xn. (2.7)

An expansion of the form (2.7) is called a Newton series, which is the discrete analog of the
continuous Taylor series. From the definition of ∆, it is clear that the coefficients in (2.7) depend
only on p(0), . . . , p(n). We conclude that, given points n+1 points (i, ui) for i ∈ {0, . . . , n}, the
unique interpolating polynomial is given by (2.7), after replacing p(i) by ui.

Example 2.1. Let us use (2.6) in order to calculate the value of

S(n) :=
n∑

i=0

i2.

Since ∆S(n) = (n+ 1)2, which is a second degree polynomial in n, we deduce that S(n) is a
polynomial of degree 3. Let us now determine its coefficients.

n 0 1 2 3

∆0S(n) 0 1 5 14

∆1S(n) 1 4 9

∆2S(n) 3 5

∆3S(n) 2

We conclude that

S(n) = 1n+
3
2!
n(n− 1) +

2
3!
n(n− 1)(n− 2) =

n(2n+ 1)(n+ 1)

6

Notice that when falling powers are employed as polynomial basis, the matrix in (2.1) is lower
triangular, and so the algorithm described in Example 2.1 could be replaced by the forward
substitution method. Whereas the coefficients of the Lagrange interpolant can be obtained im-
mediately from the values of u at the nodes, calculating the coefficients of the expansion in (2.6)
requires O(n2) operations. However, Gregory–Newton interpolation has several advantages over
Lagrange interpolation:

• If a point (n + 1, pn+1) is added to the set of interpolation points, only one additional
term, corresponding to the falling power xn+1, needs to be calculated in (2.7). All the
other coefficients are unchanged. Therefore, the Gregory–Newton approach is well-suited
for incremental interpolation.

• The Gregory–Newton interpolation method is more numerically stable than Lagrange
interpolation, because the basis functions do not take very large values.

• A polynomial in the form of a Newton series can be evaluated efficiently using Horner’s
method, which is based on rewriting the polynomial as

p(x) = α0 + x

(
α1 + (x− 1)

(
α2 + (x− 2)

(
α3 + (x− 3) . . .

)))
.
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Evaluating this expression starting from the innermost bracket leads to an algorithm with
a cost scaling linearly with the degree of the polynomial.

Non-equidistant nodes

So far, we have described the Gregory–Newton method in the simple setting where interpolation
nodes are just a sequence of successive natural numbers. The method can be generalized to the
setting of nodes x0 6= . . . 6= xn which are not necessarily equidistant. In this case, we take as
basis the following functions instead of the falling powers:

ϕi(x) = (x− x0)(x− x1) . . . (x− xi−1), (2.8)

with the convention that the empty product is 1. By (2.1), the coefficients of the interpolating
polynomial in this basis solve the following linear system:

1 . . . 0

1 x1 − x0

1 x2 − x0 (x2 − x0)(x2 − x1)
...

...
... . . .

1 xn − x0 . . . . . .
∏n−1

j=0 (xn − xj)





α0

α1

α2

...
αn


=



u0

u1

u2
...
un


. (2.9)

This system could be solved using, for example, forward substitution. Clearly α0 = u0 from the
first equation, and then from the second equation we obtain

α1 =
u1 − u0
x1 − x0

=: [u0, u1],

which may be viewed as an approximation of the slope of u at x0. The right-hand side of
this equation is an example of a divided difference. In general, divided differences are defined
recursively as follows:

[u0, u1, . . . , ud] :=
[u1, . . . , ud]− [u0, . . . , ud−1]

xd − x0
, [ui] = ui. (2.10)

Let us start by observing that our divided differences coincide with the coefficients in (2.6).

Lemma 2.1. Assume that (0, u0), . . . , (n, un) ∈ R2. Then, provided that (i, k) ∈ N2 satisfies
i+ k 6 n, we have

1

k!
∆ku(i) = [ui, . . . , ui+k].

Proof. The result is clearly true for k = 0, and we shall assume by induction that it holds
for k − 1. Using our induction hypothesis, we get

1

k!
∆ku(i) =

1

k

(
∆k−1u(i+ 1)

(k − 1)!
− ∆k−1u(i)

(k − 1)!

)
=

1

k

(
[ui+1, . . . , ui+k]− [ui, . . . , ui+k−1]

)
.
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By the definition of divided differences in (2.10), it follows that we have

1

k!
∆ku(i) =

1

k
(xi+k − xi︸ ︷︷ ︸

i+k−i

)[ui, . . . , ui+k] = [ui, . . . , ui+k],

which allows us to conclude the proof.

In light of Lemma 2.1, the reader will not be surprised that the coefficients in the ϕ0, . . . , ϕn

basis in (2.8) are given by the divided differences.

Proposition 2.2. Assume that (x0, u0), . . . , (xn, un) are n+1 points in the plane with distinct
abcissae. Then the interpolating polynomial of degree n may be expressed as

p(x) =

n∑
i=0

[u0, . . . , ui]ϕi(x),

where ϕi(x), for i = 0, . . . , n, are the basis functions defined in (2.8).

Proof. The statement is true for n = 0. Reasoning by induction, we assume that it holds true
for polynomials of degree up to n− 1. Let p1(x) and p2(x) be the interpolating polynomials at
the points x0, x1, . . . , xn−2, xn−1 and x0, x1, . . . , xn−2, xn, respectively. Then

p(x) = p1(x) +
x− xn−1

xn − xn−1

(
p2(x)− p1(x)

)
(2.11)

is a polynomial of degree n that interpolates all the data points. By the induction hypothesis,
it holds that

p1(x) = u0 + [u0, u1](x− x0) + . . .+ [u0, u1, . . . , un−2,un−1]
n−2∏
i=0

(x− xi),

p2(x) = u0 + [u0, u1](x− x0) + . . .+ [u0, u1, . . . , un−2,un]
n−2∏
i=0

(x− xi).

Here we used a bold font in order to emphasize the difference between the two expressions.
Substituting these expressions in (2.11), we obtain

p(x) =u0 + [u0, u1](x− x0) + . . .+ [u0, . . . , un−2]
n−2∏
i=0

(x− xi)

+
[u0, u1, . . . , un−2, un]− [u0, u1, . . . , un−2, un−1]

xn − xn−1

n−1∏
i=0

(x− xi).

In Exercise 2.4, we show that divided differences are invariant under permutations of the data
points, and so we have that

[u0, u1, . . . , un−2, un]− [u0, u1, . . . , un−2, un−1]

xn − xn−1
= [u0, . . . , un],

which enables to conclude.
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Example 2.2. Assume that we are looking for the third degree polynomial going through the
following points:

(−1, 10), (0, 4), (2,−2), (4,−40).

We have to calculate the divided difference αi = [u0, . . . , ui] for i ∈ {0, 1, 2, 3}. To this end,
it is convenient to use a table:

i 0 1 2 3

[ui] 10 4 −2 −40

xi+1 − xi 1 2 2

[ui, ui+1] −6 −3 −19

xi+2 − xi 3 4

[ui, ui+1, ui+2] 1 −4

xi+3 − xi 5

[ui, ui+1, ui+2, ui+3] −1

We deduce that the expression of the interpolating polynomial is

p(x) = 10 + (−6)(x+ 1) + 1(x+ 1)x+ (−1)(x+ 1)x(x− 2) = −x3 + 2x2 +−3x+ 4.

2.1.4 Interpolation error

Assume that u(x) is a continuous function and denote by û(x) its interpolation through the
points (xi, ui), where ui = u(xi) for i = 0, . . . , n. In this section, we study the behavior of the
error in the limit as n→ ∞.

Theorem 2.3 (Interpolation error). Assume that u : [a, b] → R is a function in Cn+1([a, b])

and let x0, . . . , xn denote n + 1 distinct interpolation nodes. Then for all x ∈ [a, b], there
exists ξ = ξ(x) in the interval [a, b] such that

en(x) := u(x)− û(x) =
u(n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn).

Proof. The statement is obvious if x ∈ {x0, . . . , xn}, so we assume from now on that x does not
coincide with an interpolation node. Let us use the compact notation ωn =

∏n
i=0(x − xi) and

introduce the function
g(t) = en(t)ωn(x)− en(x)ωn(t). (2.12)

The function g is smooth and takes the value 0 when evaluated at x0, . . . , xn, x. Since g has
n+2 roots in the interval [a, b], Rolle’s theorem implies that g′ has at least n+1 distinct roots
in (a, b). Another application of Rolle’s theorem then yields that g′′ has at least n distinct roots
in (a, b). Iterating this reasoning, we deduce that g(n+1) has one root t∗ in (a, b). From (2.12),
we calculate that

g(n+1)(t) = e(n+1)
n (t)ωn(x)− en(x)ω

(n+1)
n (t) = u(n+1)(t)ωn(x)− en(x)(n+ 1)!. (2.13)
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Here we employed the fact that û(n+1)(t) = 0, because û is a polynomial of degree at most n.
Evaluating (2.13) at t∗ and rearranging, we obtain that

en(x) =
u(n+1)(t∗)

(n+ 1)!
ωn(x),

which completes the proof.

As a corollary to Theorem 2.3, we deduce the following error bound.

Corollary 2.4 (Upper bound on the interpolation error). Assume that u is smooth in the
interval [a, b] and let

Cn+1 = sup
x∈[a,b]

∣∣∣u(n+1)(x)
∣∣∣ .

Then
En := sup

x∈[a,b]

∣∣en(x)∣∣ 6 Cn+1

4(n+ 1)
hn+1 (2.14)

where h is the maximum spacing between two successive interpolation nodes.

Proof. By Theorem 2.3, it holds that

∀x ∈ [a, b], |en(x)| 6
Cn+1

(n+ 1)!

∣∣∣(x− x0) . . . (x− xn)
∣∣∣. (2.15)

The product on the right-hand side is bounded from above by

h2

4
× 2h× 3h× 4h× · · · × nh =

n!hn+1

4
. (2.16)

The first factor comes from the fact that, if x ∈ [xi, xi+1], then

∣∣∣(x− xi)(x− xi+1)
∣∣∣ 6 (xi+1 − xi)

2

4
,

because the left-hand side is maximized when x is the midpoint of the interval [xi, xi+1]. Sub-
stituting (2.16) into (2.15), we deduce the statement.

We now ask the following natural question: does En given in (2.14) tend to zero as the maximum
spacing between successive nodes tends to 0? By Corollary 2.4, the answer to this question is
positive when Cn does not grow too quickly as n → ∞. For example the interpolation error
for the function u(x) = sin(x) decreases very quickly as n→ ∞ when equidistant interpolation
nodes are employed, as illustrated in Figure 2.3.

In some cases, however, the constant Cn grows quickly with n, to the extent that En may
increase with n; in this case, the maximum interpolation error grows when nodes are added!
The classic example illustrating this potential issue is that of the Runge function:

u(x) =
1

1 + 25x2
. (2.17)

It is possible to show that, for this function, the upper bound in (2.14) tends to ∞ in the
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Figure 2.3: Interpolation (in orange) of the function u(x) = sin(x) (in blue) using 3, 4, 6, and
8 equidistant nodes.

limit as the number n of interpolation nodes increases. We emphasize that this does not prove
that En → ∞ in the limit as n→ ∞, because (2.14) provides only an upper bound on the error.
In fact, the interpolation error for the Runge function can either grow or decrease, depending
on the choice of interpolation nodes. With equidistant nodes, it turns out that En → ∞, as
illustrated in Figure 2.4.

Figure 2.4: Interpolation (in orange) of the Runge function (2.17) (in blue) using 6, 10, 14, and
20 equidistant nodes.
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2.1.5 Interpolation at Chebyshev nodes

Sometimes, interpolation is employed as a technique for approximating functions. The spectral
collocation method, for example, is a technique for solving partial differential equations where
a discrete solution is first calculated, and then a continuous solution is constructed using poly-
nomial or Fourier interpolation. When the interpolation nodes are not given a priori as data, it
is natural to wonder whether these can be picked in such a manner that the interpolation error,
measured in a function norm, is minimized. For example, given a continuous function u(x) and
a number of nodes n+ 1, is it possible to choose nodes x0, . . . , xn such that

E := sup
x∈[a,b]

∣∣u(x)− û(x)
∣∣

is minimized? Here û is the polynomial interpolating u at the nodes. Achieving this goal in
general is a difficult task, because ξ = ξ(x) is unknown in the expression of the interpolation
error from Theorem 2.3:

en(x) =
u(n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn).

In view of this difficulty, we will focus on the simpler problem of finding interpolation nodes
such that the product (x− x0) . . . (x− xn) is minimized in the supremum norm. This problem
amounts to finding the optimal interpolation nodes, in the sense that E is minimized, in the
particular case where u is a polynomial of degree n+1, because in this case u(n+1)(ξ) is a constant
factor. It turns out that this problem admits an explicit solution, which we will deduce from
the following theorem.

Theorem 2.5 (Minimum ∞ norm). Assume that p is a monic polynomial of degree n > 1:

p(x) = α0 + α1x+ · · ·+ αn−1x
n−1 + xn.

Then it holds that
sup

x∈[−1,1]

∣∣p(x)∣∣ > 1

2n−1
=: E. (2.18)

In addition, the lower bound is achieved for p∗(x) = 2−(n−1)Tn(x), where Tn is the Chebyshev
polynomial of degree n:

Tn(x) = cos(n arccosx) (−1 6 x 6 1). (2.19)

Proof. By Exercise C.5, the polynomial x 7→ 2−(n−1)Tn(x) is indeed monic, and it is clear that
it achieves the lower bound (2.18) since |Tn(x)| 6 1 for all x ∈ [−1, 1].

In order to prove (2.18), we assume by contradiction that there is a different monic polyno-
mial q of degree n such that

sup
x∈[−1,1]

∣∣q(x)∣∣ < E. (2.20)
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Let us introduce xi = cos(iπ/n), for i = 0, . . . , n, and observe that

p(xi) = 2−(n−1)Tn(xi) = (−1)iE.

The function h(x) := p(x) − q(x) is a polynomial of degree at most n − 1 which, by the
assumption (2.20), is strictly positive at x0, x2, x4, . . . and strictly negative at x1, x3, x5, . . . .
Therefore, the polynomial h(x) changes sign at least n times and so, by the intermediate value
theorem, it has at least n roots. But this is impossible, because h(x) 6= 0 and h(x) is of degree
at most n− 1.

Remark 2.1 (Derivation of Chebyshev polynomials). The polynomial p∗ achieving the lower
bound in (2.18) oscillates between the values −E and E, which are respectively its minimum
and maximum values over the interval [−1, 1]. It attains the values E or −E at n+1 distinct
points x0 < . . . < xn, with x0 = −1 and xn = 1. It turns out that these properties, which can
be shown to hold a priori using Chebyshev’s equioscillation theorem, are sufficient to derive
an explicit expression for the polynomial p∗, as we formally demonstrate hereafter.

The points x1, . . . , xn−1 are local extrema of p∗, and so p′∗(x) = 0 at these nodes. We
therefore deduce that p∗ satisfies the differential equation

n2
(
E2 − p∗(x)

2
)
= p′∗(x)

2(1− x2). (2.21)

Indeed, both sides are polynomials of degree 2n with single roots at -1 and 1, with double roots
at x1, . . . , xn−1, and with the same coefficient of the leading power. In order to solve (2.21),
we rearrange the equation and take the square root:

p′∗(x)
E√

1− p∗(x)2

E2

= ± n√
1− x2

⇔ d
dx

(
arccos

(
p∗(x)

E

))
= ±n d

dx
arccos(x).

Integrating both sides and taking the cosine, we obtain

p∗(x) = E cos
(
C + n arccos(x)

)
.

Requiring that |p∗(−1)| = E, we deduce C = 0.

From Theorem 2.5, we deduce the following corollary.

Corollary 2.6 (Chebyshev nodes). Assume that x0 < x1 < . . . < xn are in the interval [a, b].
The supremum norm of the product ω(x) := (x−x0) · · · (x−xn) over [a, b] is minimized when

xi = a+ (b− a)
1 + cos

(
(2i+1)π
2(n+1)

)
2

(2.22)
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Proof. We consider the affine change of variable

ζ : [−1, 1] → [a, b];

y 7→ a+ b+ y(b− a)

2
.

The function

p(y) :=
2n+1

(b− a)n+1
ω
(
ζ(y)

)
=

2n+1

(b− a)n+1

(
ζ(y)− x0

)
· · ·

(
ζ(y)− xn

)
=

(
y − y0

)
· · ·

(
y − yn

)
, yi = ζ−1(xi),

is a monic polynomial of degree n+ 1 such that

sup
y∈[−1,1]

|p(y)| = 2n+1

(b− a)n+1
sup

x∈[a,b]
|(x− x0) . . . (x− xn)|. (2.23)

By Theorem 2.5, the left-hand side is minimized when p is equal to 2−nTn+1, i.e. when the roots
of p coincide with the roots of Tn+1. This occurs when

yi = ζ−1(xi) = cos
(
(2i+ 1)π

2(n+ 1)

)
.

Applying the inverse change of variable xi = ζ(yi), we deduce the result.

Corollary 2.6 is useful for interpolation. The nodes

xi = a+ (b− a)
1 + cos

(
(2i+1)π
2(n+1)

)
2

, i = 0, . . . , n, (2.24)

are known as Chebyshev nodes and, more often than not, employing these nodes for interpolation
produces much better results than using equidistant nodes, both in the case where u is a
polynomial of degree n + 1, as we just proved, but also for general u. As an example we plot
in Figure 2.5 the interpolation of the Runge function using Chebyshev nodes. In this case, the
interpolating polynomial converges uniformly to the Runge function as we increase the number
of interpolation nodes!

2.1.6 Hermite interpolation

Hermite interpolation, sometimes also called Hermite–Birkoff interpolation, generalizes La-
grange interpolation to the case where, in addition to the function values u0, . . . , un, the values
of some of the derivatives are given at the interpolation nodes. For simplicity, we assume in this
section that only the first derivative is specified. In this case, the aim of Hermite interpolation
is to find, given data (xi, ui, u

′
i) for i ∈ {0, . . . , n}, a polynomial û of degree at most 2n+1 such

that
∀i ∈ {0, . . . , n}, û(xi) = ui, û′(xi) = u′i.
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Figure 2.5: Interpolation (in orange) of the Runge function (2.17) (in blue) using 10, 15, 20,
and 30 Chebyshev nodes.

In order to construct the interpolating polynomial, it is useful to define the functions

ψi(x) =
n∏

j=0,j 6=i

(
x− xj
xi − xj

)2

, i = 0, . . . , n.

The function ψi is the square of the usual Lagrange polynomials associated with xi, and it
satisfies

ψi(xi) = 1, ψ′
i(xi) =

n∑
j=0,j 6=i

2

xi − xj
, ∀j 6= i ψi(xj) = ψ′

i(xj) = 0.

We consider the following ansatz for û:

û(x) =

n∑
i=0

ψi(x)qi(x),

where qi are polynomials to be determined of degree at most one, so that û is of degree at
most 2n+ 1. We then require

û(xi) = qi(xi), û′(xi) = ψ′
i(xi)q(xi) + q′(xi).

From the first equation, we deduce that qi(xi) = ui, and from the second equation we then
have q′(xi) = û′(xi)− ψ′

i(xi)ui. We conclude that the interpolating polynomial is given by

û(x) =

n∑
i=0

ψi(x)
(
ui +

(
u′i − ψ′

i(xi)ui
)
(x− xi)

)
.

The following theorem gives an expression of the error.
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Theorem 2.7 (Hermite interpolation error). Assume that u : [a, b] → R is a function in
C2n+2([a, b]) and let û denote the Hermite interpolation of u at the nodes x0, . . . , xn. Then
for all x ∈ [a, b], there exists ξ = ξ(x) in the interval [a, b] such that

u(x)− û(x) =
u(2n+2)(ξ)

(2n+ 2)!
(x− x0)

2 . . . (x− xn)
2.

Proof. See Exercise 2.8.

2.1.7 Piecewise interpolation

The interpolation methods we discussed so far are in some sense global; they aim to construct
one polynomial that goes through all the data points. This approach is attractive because
the interpolant is infinitely smooth but, as we observed, it is not always fruitful, in particular
when equidistant interpolation nodes are employed. An alternative approach is to divide the
domain in a number of small intervals and perform polynomial interpolation within each interval.
Although the resulting interpolating function is usually not smooth over the full domain, this
“local” approach to interpolation is more robust.

Several methods belong in the category of piecewise interpolation. We mention, for instance,
piecewise Lagrange interpolation and cubic splines interpolation. In this section, we briefly
describe the former method, which is widely used in the context of the finite element method.
Information on the latter method is available in [10, Section 8.7.1.].

For simplicity, we illustrate the method in dimension 1, but piecewise Lagrange interpo-
lation can be extended to several dimensions. Assume that we wish to approximate a func-
tion u : [a, b] → R. We consider a subdivision a = x0 < x1 < . . . < xn = b of the interval [a, b]
and let h denote the maximum spacing:

h = max
i∈{0,...,n−1}

|xi+1 − xi|.

Within each subinterval Ii = [xi, xi+1], we consider a further subdivision

xi = x
(0)
i < x

(1)
i < . . . < x

(m)
i = xi+1,

where the nodes x(0)i , . . . , x
(m)
i are equally spaced with distance h/m. The idea of piecewise

Lagrange interpolation is to calculate, for each interval Ii in the partition, the interpolating
polynomial pi at the nodes x(0)i , . . . , x

(m)
i . The interpolant is then defined as

û(x) = pι(x), (2.25)

where ι = ι(x) is the index of the interval to which x belongs. Since x
(m)
i = xi+1 = x

(0)
i+1,

the interpolant defined by (2.25) is continuous. If the function u belongs to Cm+1([a, b]), then
by Corollary 2.4 the interpolation error within each subinterval may be bounded from above as
follows:

sup
x∈Ii

|u(x)− û(x)| 6 Cm+1(h/m)m+1

4(m+ 1)
, Cm+1 := sup

x∈[a,b]
|u(m+1)(x)|, (2.26)
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and so we deduce
sup

x∈[a,b]
|u(x)− û(x)| 6 Chm+1,

for an appropriate constant C independent of h. This equation shows that the error is guaran-
teed to decrease to 0 in the limit as h → 0. In practice, the number m of interpolation nodes
within each interval can be small.

2.2 Approximation

In this section, we focus on the subject of approximation, both of discrete data points and of
continuous functions. We begin, in Section 2.2.1 with a discussion of least squares approximation
for data points, and in Section 2.2.2 we focus on function approximation in the mean square
sense.

2.2.1 Least squares approximation of data points

Consider n+1 distinct x values x0 < . . . < xn, and suppose that we know the values u0, . . . , un
taken by an unknown function u when evaluated at these points. We wish to approximate the
function u by a function of the form

û(x) =
m∑
i=0

αiϕi(x) ∈ Span{ϕ0, . . . , ϕm}, (2.27)

for some m < n. In many cases of practical interest, the basis functions ϕ0, . . . , ϕm are polyno-
mials. In contrast with interpolation, here we seek a function û in a finite-dimensional function
space of dimension m strictly lower than the number of data points. In order for û to be a good
approximation, we wish to find coefficients α0, . . . , αm such that the following linear system is
approximately satisfied.

Aα :=



ϕ0(x0) ϕ1(x0) . . . ϕm(x0)

ϕ0(x1) ϕ1(x1) . . . ϕm(x1)

ϕ0(x2) ϕ1(x2) . . . ϕm(x2)
...

...
...

ϕ0(xn−2) ϕ1(xn−2) . . . ϕm(xn−2)

ϕ0(xn−1) ϕ1(xn−1) . . . ϕm(xn−1)

ϕ0(xn) ϕ1(xn) . . . ϕm(xn)




α0

α1

...
αm

 ≈



u0

u1

u2
...

un−2

un−1

un


=: b.

In general, since the matrix on the left-hand side has more lines than columns, there does not
exist an exact solution to this equation. In order to find an approximate solution, a natural
approach is to find coefficients α0, . . . , αm such that the residual vector r = Aα− b is small in
some vector norm. A particularly popular approach, known as least squares approximation, is
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to minimize the Euclidean norm of r or, equivalently, the square of the Euclidean norm:

‖r‖2 =
n∑

i=0

|ui − û(xi)|2 =
n∑

i=0

ui − m∑
j=0

αjϕj(xi)

2

.

Let us denote the right-hand side of this equation by J(α), which we view as a function of the
vector of coefficients α. A necessary condition for a∗ to be a minimizer is that ∇J(α∗) = 0.
The gradient of J , written as a column vector, is given by

∇J(α) = ∇
(
(Aα− b)T (Aα− b)

)
= ∇

(
αT (ATA)α− bAα−αTATb+ bTb)

)
= 2(ATA)α− 2ATb.

We deduce that α∗ solves the linear system

ATAα∗ = ATb, (2.28)

where the matrix on the left-hand side is given by:

ATA :=


∑n

i=0 ϕ0(xi)ϕ0(xi)
∑n

i=0 ϕ0(xi)ϕ1(xi) . . .
∑n

i=0 ϕ0(xi)ϕm(xi)∑n
i=0 ϕ1(xi)ϕ0(xi)

∑n
i=0 ϕ1(xi)ϕ1(xi) . . .

∑n
i=0 ϕ1(xi)ϕm(xi)

...
...

...∑n
i=0 ϕm(xi)ϕ0(xi)

∑n
i=0 ϕm(xi)ϕ1(xi) . . .

∑n
i=0 ϕm(xi)ϕm(xi)

 .

Equation (2.28) is a system of m equations with m unknowns, which admits a unique solution
provided that ATA is full rank or, equivalently, the columns of A are linearly independent. The
linear equations (2.28) are known as the normal equations. As a side note, we mention that
the solution α∗ = (ATA)−1ATb coincides with the maximum likelihood estimator for α under
the assumption that the data is generated according to ui = u(xi) + εi, for some function
u ∈ Span{ϕ0, . . . , ϕm} and random noise εi ∼ N (0, 1).

Remark 2.2. From equation (2.28) we deduce that

Aα∗ = A(ATA)−1ATb.

The matrix ΠA := A(ATA)−1AT on the right-hand side is the orthogonal projection operator
onto col(A) ⊂ Rn, the subspace spanned by the columns of A. Indeed, it holds that Π2

A = ΠA,
which is the defining property of a projection operator.

To conclude this section, we note that the matrix A+ = (ATA)−1AT is a left inverse of the
matrix A, because A+A = I. It is also called the Moore–Penrose inverse or pseudoinverse of the
matrix A, which generalizes the usual inverse matrix. In Julia, the backslash operator silently
uses the Moore–Penrose inverse when employed with a rectangular matrix. Therefore, solving
the normal equations (2.28) can be achieved by just writing α = A\b.
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2.2.2 Mean square approximation of functions

The approach described in Section 2.2.1 can be generalized to the setting where the actual
function u, rather than just discrete evaluations of it, is available. In this section, we seek an
approximation of the form (2.27) such that the error û(x) − u(x), measured in some function
norm, is minimized. Of course, the solution to this minimization problem depends in general on
the norm employed, and may in some cases not even be unique. Instead of specifying a particular
norm, as done in Section 2.2.1, in this section we retain some generality and assume only that
the norm is induced by an inner product on the space of real-valued continuous functions:

〈•, •〉 : C([a, b])× C([a, b]) → R. (2.29)

In other words, we seek to minimize

J(α) := ‖û− u‖2 = 〈û− u, û− u〉.

This is again a function of the m + 1 variables α0, . . . , αm. Before calculating its gradient, we
rewrite the function J(α) in a simpler form:

J(α) =

〈
u−

m∑
j=0

αjϕj , u−
m∑
k=0

αkϕk

〉

=
m∑
j=0

m∑
k=0

αjαk〈ϕj , ϕk〉 − 2
m∑
j=0

αj〈u, ϕj〉+ 〈u, u〉 = αTGα− 2bTα+ 〈u, u〉,

where we introduced

G :=


〈ϕ0, ϕ0〉 〈ϕ0, ϕ1〉 . . . 〈ϕ0, ϕm〉
〈ϕ1, ϕ0〉 〈ϕ1, ϕ1〉 . . . 〈ϕ1, ϕm〉

...
...

...
〈ϕm, ϕ0〉 〈ϕm, ϕ1〉 . . . 〈ϕm, ϕm〉

 , b :=


〈u, ϕ0〉
〈u, ϕ1〉

...
〈u, ϕm〉

 . (2.30)

Employing the same approach as in the previous section, we then obtain ∇J(α) = Gα− b, and
so the minimizer of J(α) is the solution to the equation

Gα = b. (2.31)

The matrix G, known as the Gram matrix, is positive semi-definite and nonsingular provided
that the basis functions are linearly independent, see Exercise 2.9. Therefore, the solution α∗

exists and is unique. In addition, since the Hessian of J is equal to G, the vector α∗ is indeed
a minimizer. Note that if 〈•, •〉 is defined as a finite sum of the form

〈f, g〉 =
n∑

i=0

f(xi)g(xi), (2.32)
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then (2.31) coincides with the normal equations (2.28) from the previous section. We remark
that (2.32) is in fact not an inner product on the space of continuous functions, but it is an
inner product on the space of polynomials of degree less than or equal to n.

In practice, the matrix and right-hand side of the linear system (2.31) can usually not be
calculated exactly, because the inner product 〈•, •〉 is defined through an integral; see (2.33) in
the next section.

Remark 2.3. Rewriting the normal equations (2.31) in terms of û we obtain

〈û− u, ϕ0〉 = 0, . . . , 〈û− u, ϕm〉 = 0.

Therefore, the optimal approximation û ∈ Span{ϕ0, . . . , ϕm} satisfies

∀v ∈ Span{ϕ0, . . . , ϕm}, 〈û− u, v〉 = 0.

This shows that the optimal approximation û, in the sense of the norm ‖•‖, is the orthogonal
projection of u onto Span{ϕ0, . . . , ϕm}.

2.2.3 Orthogonal polynomials

The Gram matrix G in (2.31) is equal to the identity matrix when the basis functions are
orthonormal for the inner product considered. In this case, the solution to the linear system is

αi = 〈u, ϕi〉, i = 0, . . . ,m,

and so the best approximation û (for the norm induced by the inner product considered!) is
simply given by

û =

m∑
i=0

〈u, ϕi〉ϕi.

The coefficients 〈u, ϕi〉 of the basis functions in this expansion are called Fourier coefficients.
Given a finite dimensional subspace S of the space of continuous functions, an orthonormal basis
can be constructed via the Gram–Schmidt process. In this section, we focus on the particular
case where S = P(n) – the subspace of polynomials of degree less than or equal to n. Another
widely used approach, which we do not explore in this course, is to use trigonometric basis
functions. We also assume that the inner product (2.29) is of the form

〈f, g〉 =
∫ b

a
f(x)g(x)w(x)dx, (2.33)

where w(x) is a given nonnegative weight function such that∫ b

a
w(x)dx > 0.

Let ϕ0(x), ϕ1(x), ϕ2(x) . . . denote the orthonormal polynomials obtained by applying the Gram–
Schmidt procedure to the monomials 1, x, x2, . . . . These depend in general on the weight w(x)
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and on the interval [a, b]. A few of the popular classes of orthogonal polynomials are presented
in the table below:

Name w(x) [a, b]

Legendre 1 [−1, 1]

Chebyshev 1√
1−x2

(−1, 1)

Hermite exp
(
−x2

2

)
[−∞,∞]

Laguerre e−x [0,∞]

Orthogonal polynomials have a rich structure, and in the rest of this section we prove
some of their key properties, one of which will be very useful in the context of numerical
integration in Chapter 3. We begin by showing that orthogonal polynomials have distinct real
roots.

Proposition 2.8. Assume for simplicity that w(x) > 0 for all x ∈ [a, b], and let ϕ0, ϕ1, . . .

denote orthonormal polynomials of increasing degree for the inner product (2.33). Then for
all n ∈ N, the polynomial ϕn has n distinct roots in the open interval (a, b).

Proof. Reasoning by contradiction, we assume that ϕn changes sign at only k < n points of the
open interval (a, b), which we denote by x1, . . . , xk. Then

ϕn(x)× (x− x0)(x− x1) . . . (x− xk)

is either everywhere nonnegative or everywhere nonpositive over [a, b]. But then∫ b

a
ϕn(x)× (x− x1) . . . (x− xk)w(x)dx

is nonzero, which is a contradiction because the product (x− x1) . . . (x− xk) is a polynomial of
degree k, which is orthogonal to ϕn by assumption. Indeed, being orthogonal to ϕ0, . . . , ϕn−1,
the polynomial ϕn is also orthogonal to any linear combination of these polynomials.

Next, we show that orthogonal polynomials satisfy a three-term recurrence relation.

Proposition 2.9. Assume that ϕ0, ϕ1, . . . are orthonormal polynomials for some inner prod-
uct of the form (2.33) such that ϕi is of degree i. Then

∀n ∈ {1, 2, . . . }, αn+1ϕn+1(x) = (x− βn)ϕn(x)− αnϕn−1(x), (2.34)

where
αn = 〈xϕn, ϕn−1〉, βn = 〈xϕn, ϕn〉.

In addition, α1ϕ1(x) = (x− β0)ϕ0(x).
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Proof. Since xϕn(x) is a polynomial of degree n+ 1, it may be decomposed as

xϕn(x) =

n+1∑
i=0

γn,iϕi(x). (2.35)

Taking the inner product of both sides of this equation with ϕi and employing the orthonormality
assumption, we obtain an expression for the coefficients:

γn,i = 〈xϕn, ϕi〉.

From the expression (2.33) of the inner product, it is clear that 〈xϕn, ϕi〉 = 〈ϕn, xϕi〉. Since xϕi

is a polynomial of degree i + 1 and ϕn is orthogonal to all polynomials of degree strictly less
than n, we deduce that γn,i = 0 if i < n− 1. Consequently, we can rewrite the right-hand side
of (2.35) as a sum involving only three terms

xϕn(x) = 〈xϕn, ϕn−1〉ϕn−1(x) + 〈xϕn, ϕn〉ϕn(x) + 〈xϕn, ϕn+1〉ϕn+1(x). (2.36)

Since 〈xϕn, ϕn+1〉 = 〈xϕn+1, ϕn〉, we obtain the statement after rearranging.

Remark 2.4. Notice that the polynomials in Proposition 2.9 are orthonormal by assumption,
and so the coefficient αn+1 is just a normalization constant. We deduce that

ϕn+1(x) =
(x− βn)ϕn(x)− αnϕn−1(x)

‖(x− βn)ϕn(x)− αnϕn−1(x)‖
,

which enables to calculate the orthogonal polynomials recursively.

2.2.4 Orthogonal polynomials and numerical integration: an introduction �

Equation (2.36) may be rewritten in matrix form as follows:

xϕ0(x)

xϕ1(x)

xϕ2(x)
...

xϕm−1(x)

xϕm(x)


=



β0 α1

α1 β1 α2

α2 β2 α3

. . . . . . . . .
αm−1 βm−1 αm

αm βm





ϕ0(x)

ϕ1(x)

ϕ2(x)
...

ϕm−1(x)

ϕm(x)


+



0

0

0
...
0

αm+1ϕm+1(x)


.

Let T denote the matrix on the left-hand side of this equation, and let r0, . . . , rm denote the
roots of ϕm+1. By Proposition 2.8, these are distinct and all belong to the interval (a, b). The
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second term on the right-hand side cancels out when x is a root of ϕm+1, and so

∀r ∈
{
r0, . . . , rm

}
,



rϕ0(r)

rϕ1(r)
...

rϕm−1(r)

rϕm(r)


=



β0 α1

α1 β1 α2

. . . . . . . . .
αm−1 βm−1 αm

αm βm





ϕ0(r)

ϕ1(r)
...

ϕm−1(r)

ϕm(r)


.

In other words, for any root r of ϕm+1, the vector
(
ϕ0(r) . . . ϕm(r)

)T
is an eigenvector of the

matrix T, with associated eigenvalue equal to r. Since T is a symmetric matrix, the eigenvectors
associated with distinct eigenvalues are orthogonal for the Euclidean inner product of Rm+1, so
given that the eigenvalues of T are distinct, we deduce that

∀i 6= j,

m∑
i=0

ϕi(ri)ϕi(rj) = 0. (2.37)

Let us construct the matrix

P =



ϕ0(r0) ϕ1(r0) . . . ϕm(r0)

ϕ0(r1) ϕ1(r1) . . . ϕm(r1)

ϕ0(r2) ϕ1(r2) . . . ϕm(r2)
...

... . . .
...

ϕ0(rm) ϕ1(rm) . . . ϕm(rm)


.

Equation (2.37) indicates that the rows of P are orthogonal, and so the matrix D = PPT is
diagonal with elements given by

dii =

m∑
j=0

|ϕj(ri)|2, i = 0, . . . ,m.

(Here we start counting the rows from 0 for convenience.) Since PPTD−1 = I, we deduce that
the inverse of P is given by P−1 = PTD−1. Consequently,

PTD−1P = P−1P = I,

which means that the columns of P are orthonormal for the inner product (x,y) 7→ xTD−1y.
In other words, the polynomials ϕ1, . . . , ϕm are orthonormal for the inner product

〈•, •〉m+1 : P(m)× P(m) → R;

(p, q) 7→
∑m

i=0

p(ri)q(ri)

dii
.

We have thus shown that, if ϕ0, ϕ1, ϕ2, . . . is a family of orthonormal polynomials for an inner
product 〈•, •〉, then these are also orthonormal for the inner product 〈•, •〉m+1. We reformulate
our findings in the following result where, since m was arbitrary in the previous reasoning, we
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add a superscript to indicate when the quantities involved depend on m.

Theorem 2.10. Orthonormal polynomials ϕ0, . . . , ϕm for the inner product

〈f, g〉 =
∫ b

a
f(x)g(x)w(x)dx

are also orthonormal for the inner product

〈f, g〉m+1 =

m∑
i=0

f
(
r
(m+1)
i

)
g
(
r
(m+1)
i

)
w

(m+1)
i ,

where r(m+1)
0 , . . . , r

(m+1)
m are the roots of ϕm+1 and the weights w(m+1)

i are given by

w
(m+1)
i =

1∑m
j=0

∣∣∣ϕj

(
r
(m+1)
i

)∣∣∣2 , i = 0, . . . ,m.

As an immediate corollary, we deduce that

∀(p, q) ∈ P(m)× P(m), 〈p, q〉 = 〈p, q〉m+1, (2.38)

Indeed, denoting by p = α0ϕ0 + · · ·+ αmϕm and q = β0ϕ0 + · · ·+ βmϕm the expansions of the
polynomials p and q in the orthonormal basis, we have

〈p, q〉 = 〈α0ϕ0 + · · ·+ αmϕm, β0ϕ0 + · · ·+ βmϕm〉

=

m∑
i=0

m∑
j=0

αiβj〈ϕi, ϕj〉 = α0β0 + · · ·+ αmβm =

m∑
i=0

m∑
j=0

αiβj〈ϕi, ϕj〉m+1

= 〈α0ϕ0 + · · ·+ αmϕm, β0ϕ0 + · · ·+ βmϕm〉m+1 = 〈p, q〉m+1.

To conclude this section, we prove the following statement, which is another consequence
of Theorem 2.10 and has applications to numerical integration.

Theorem 2.11. It holds that

∀p ∈ P(2m+ 1),

∫ b

a
p(x)w(x)dx =

m∑
i=0

p
(
r
(m+1)
i

)
w

(m+1)
i . (2.39)

Proof. Taking q = 1 in (2.38) and employing the definitions of 〈•, •〉 and 〈•, •〉m+1, we have
that (2.38) is satisfied for any p ∈ P(m). Next, any polynomial p ∈ P(2m + 1) may be
decomposed as p(x) = ϕm+1(x)q(x) + ρ(x), for some polynomial q of degree m (the quotient
of the polynomial division of p by ϕm+1) and some polynomial ρ of degree lower than or equal
to m (the remainder of the polynomial division). Therefore, since (2.39) was already shown to
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hold for polynomials of degree up to m, we obtain∫ b

a
p(x)w(x)dx =

∫ b

a
ϕm+1(x)q(x)w(x)dx+

∫ b

a
ρ(x)w(x)dx

= 0 +

∫ b

a
ρ(x)w(x)dx = 0 +

m∑
i=0

ρ (ri)wi

=

m∑
i=0

ϕm+1 (ri) q (ri)wi +

m∑
i=0

ρ (ri)wi =

m∑
i=0

p (ri)wi,

where we dropped the (m+1) superscript for conciseness and we used, in the penultimate in-
equality, the fact that r0, . . . , rm are the roots of the polynomial ϕm+1.

Since the left-hand side of (2.39) is an integral and the right-hand side is a sum, we have
just constructed an integration formula, which enjoys a very nice property: it is exact for
polynomials of degree up to 2m + 1! A formula of this type is called a quadrature formula,
with m+ 1 nodes r(m+1)

0 , . . . , r
(m+1)
m and associated weights w(m+1)

0 , . . . , w
(m+1)
m . Note that the

nodes and weights of the quadrature depend on the weight w(x) and on the degree m. We will
revisit this subject in Chapter 3.

2.3 Exercises

� Exercise 2.1. Find the polynomial p(x) = ax + b (a straight line) that goes through the
points (x0, u0) and (x1, u1).

� Exercise 2.2. Find the polynomial p(x) = ax2 + bx + c (a parabola) that goes through the
points (0, 1), (1, 3) and (2, 7).

� Exercise 2.3. Prove the following recurrence relation for Chebyshev polynomials:

Ti+1(x) = 2xTi(x)− Ti−1(x), i = 1, 2, . . . .

� Exercise 2.4. Show by recursion that

[u0, u1, . . . , un] =
n∑

j=0

uj∏
k∈{0,...,n}\{j}(xj − xk)

. (2.40)

Deduce from this identity that

[u0, u1, . . . , un] = [uσ1 , uσ2 , . . . , uσn ],

for any permutation σ of (0, 1, 2, . . . , n).

Solution. The first statement (2.40) is clear when n = 0. Reasoning by induction, we assume that the
statement is true up to n− 1 and prove that it then also holds for n. Using the definition (2.10) and
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the induction hypothesis, we obtain that

[u0, u1, . . . , un] =
[u1, . . . , un]− [u0, . . . , un−1]

xn − x0

=
1

xn − x0

 n∑
j=1

uj∏
k∈{1,...,n}\{j}(xj − xk)

−
n−1∑
j=0

uj∏
k∈{0,...,n−1}\{j}(xj − xk)


Rewriting the fractions with a common denominator leads to

[u0, u1, . . . , un] =
1

xn − x0

n∑
j=0

uj
(
(xj − x0)− (xj − xn)

)∏
k∈{0,...,n}\{j}(xj − xk)

=
n∑

j=0

uj∏
k∈{0,...,n}\{j}(xj − xk)

,

which concludes the proof of the first statement. The second statement then follows immediately,
because the right-hand side of (2.40) is invariant under permutations. 4

� Exercise 2.5. Using the Gregory–Newton formula, find an expression for

n∑
i=1

i4.

� Exercise 2.6. Let (f0, f1, f2, . . . ) = (1, 1, 2, . . . ) denote the Fibonacci sequence. Prove that
there does not exist a polynomial p such that

∀n ∈ N, fn = p(n). (2.41)

Solution. Assume by contradiction that p : R → R is a polynomial such that (2.41) is satisfied, and
let n be the degree of this polynomial. Then it holds that ∆n+1p = 0 (2.5), where both sides are
viewed as functions from R to R. On the other hand, since p(n) = fn for all n ∈ N, we can calculate
explicitly the values of taken by the function ∆mp when evaluated at all the natural numbers, for all
m ∈ N. We collate a few values in the following table.

n 0 1 2 3 4 5 6
∆0p(n) 1 1 2 3 5 8 13
∆1p(n) 0 1 1 2 3 5 8
∆2p(n) 1 0 1 1 2 3 5
∆3p(n) −1 1 0 1 1 2 3

It appears from these calculations that the Fibonacci sequence is shifted one position to the right with
each additional application of ∆. In other words, our calculations suggest that

∀(m,n) ∈ N × N, ∆mp(m+ n) = fn, (2.42)

which is a contradiction. To conclude, let us prove (2.42) rigorously. This equation is obvious for
m = 0 by assumption. Now, reasoning by contradiction, we assume that (2.42) is true up to m. Then
by definition of the difference operator ∆, we have

∆m+1p(m+ n+ 1) = ∆mp(m+ n+ 2)−∆mp(m+ n+ 1)

= fn+2 − fn+1 = fn.
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Here, we used the induction hypothesis (2.42) in the second equality, and the definition of the Fibonacci
series in the third one. 4

� Exercise 2.7. Using the Gregory–Newton formula, show that

∀n ∈ N, 2n = 1 + n+
n2

2!
+
n3

3!
+
n4

4!
+ · · · (2.43)

Solution. Equation (2.43) is a particular case of the following more general statement: for any function
f ∈ R → R, it holds that

∀n ∈ N, f(n) = f(0) + ∆f(0)n+∆2f(0)
n2

2!
+ ∆3f(0)

n3

3!
+ ∆4f(0)

n4

4!
+ · · · (2.44)

In order to show this equation, it is sufficient to prove that for any n∗ ∈ N, the two sides of (2.44)
coincide for every n ∈ {0, . . . , n∗}. Since np = 0 for all n ∈ {0, . . . , p − 1} by definition (2.4) of the
falling powers, the right-hand side of (2.44) coincides for all n ∈ {0, . . . , n∗} with

g(n) = f(0) + ∆f(0)n+∆2f(0)
n2

2!
+ · · ·+∆n∗f(0)

nn∗

n∗!
.

We recognize on the right-hand side Newton’s expression of the interpolating polynomial through
the points

(
0, f(0)

)
, . . . ,

(
n∗, f(n∗)

)
, and so g(n) = f(n) for all n ∈ {0, . . . , n∗}, which concludes the

proof. 4

Remark 2.5. Remarkably, equation (2.43) holds in fact for any n ∈ R>0. However, showing
this more general statement is beyond the scope of this course.

� Exercise 2.8. Prove Theorem 2.7.

� Exercise 2.9. Show that the matrix G in (2.30) is positive definite if the basis func-
tions ϕ0, . . . , ϕm are linearly independent.

� Exercise 2.10. Write a Julia code for interpolating the following function using a polynomial
of degree 20 over the interval [−1, 1].

f(x) = tanh
(
x+ 1/2

ε

)
+ tanh

(x
ε

)
+ tanh

(
x− 1/2

ε

)
, ε = .01.

Use equidistant and then Chebyshev nodes, and compare the two approaches in terms of accuracy.
Plot the function f together with the approximating polynomials.

� Exercise 2.11. Write from scratch a function to obtain the polynomial interpolating the
data points

(x0, u0), . . . , (xn, un).

Your function should return the values taken by the interpolating polynomial when evaluated at
the points X0, . . . , Xm. You may use the following code to test your function

import Plots
function interp(X, x, u)
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# Your code comes here
end

n, m = 10, 100
f(t) = cos(2π * t)
x = LinRange(0, 1, n)
X = LinRange(0, 1, m)
u = f.(x)
U = interp(X, x, u)
Plots.plot(X, f.(X), label="Original function")
Plots.plot!(X, U, label="Interpolation")
Plots.scatter!(x, u, label="Data")

� Exercise 2.12. We wish to use interpolation to approximate the following parametric func-
tion, called an epitrochoid:

x(θ) = (R+ r) cos θ + d cos
(
R+ r

r
θ

)
(2.45)

y(θ) = (R+ r) sin θ − d sin
(
R+ r

r
θ

)
, (2.46)

with R = 5, r = 2 and d = 3, and for θ ∈ [0, 4π]. Write a Julia program to interpolate x(θ)
and y(θ) using 40 equidistant points. Use the BigFloat format in order to reduce the impact
of round-off errors. After constructing the polynomial interpolations x̂(θ) and ŷ(θ), plot the
parametric curve θ 7→

(
x̂(θ), ŷ(θ)

)
. Your plot should look similar to Figure 2.6.

Figure 2.6: Solution for Exercise 2.12.

� Exercise 2.13 (Solving the Laplace equation using a spectral method). The classical Laplace
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equation with homogeneous Dirichlet boundary conditions in dimension 1 reads

Find u ∈ C2
(
[0, 1]

)
such that

{
− u′′(x) = f(x) ∀x ∈ (0, 1),

u(0) = u(1) = 0.
(2.47)

Our goal in this exercise is to approximate the exact solution u(x) using interpolation. Specifi-
cally, we propose to proceed in two steps:

• Interpolate the right-hand side using a polynomial with equidistant nodes. That is, find a
polynomial f̂ ∈ P(n) such that

∀i ∈ {0, . . . , n}, f̂(xi) = f(xi), xi =
i

n
.

• Solve (2.47) with f̂ instead of f . Since f̂ is a polynomial, this can be achieved analytically.

Implement this program in the case where

f(x) = exp
(
sin(2πx)

)
cos(2πx)2 − exp

(
sin(2πx)

)
sin(2πx),

and compare for various values of n the approximate solution you obtain with the exact solution
to (2.47), which is given by u(x) = (2π)−2 exp

((
sin(2πx)

)
− 1

)
in this case.

� Exercise 2.14 (Modeling the vapor pressure of mercury). The dataset loaded through the
following Julia commands contains data on the vapor pressure of mercury as a function of the
temperature.

import RDatasets
data = RDatasets.dataset("datasets", "pressure")

Find a low-dimensional mathematical model of the form

p(T ) = exp
(
α0 + α1T + α2T

2 + α3T
3
)

(2.48)

for the pressure as a function of the temperature. Plot the approximation together with the data.
An example solution is given in Figure 2.7.

� Exercise 2.15. Let u : [0, 2π] → R and

xk =

(
2kπ

2n+ 1

)
, k = 0, . . . , 2n. (2.49)

We wish to interpolate u at these nodes using complex exponentials:

û =

n∑
k=−n

akeikx.

Write a function
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Figure 2.7: Solution for Exercise 2.14.

function fourier_interpolate(u, x, X)
# Your code comes here ...

end

which takes three arguments:

• u is the function to interpolate;

• x are the interpolation nodes, given by (2.49) in the test code below; you can assume that
this array contains an odd number of elements.

• X is a one-dimensional array of values on the x axis.

The function should return a one-dimensional array containing the values that û takes when
evaluated at the points contained in X. You can use the following code to test your function:

import Plots
n, m = 5, 1000
x = 2π/(2n+1) * (0:2n)
X = 2π/m * (0:m)

u(x) = sign(x - π)
# u(x) = exp(sin(x) + cos(5x))
# u(x) = x^2 * (x - 2π)^2 / π^4

@time U = fourier_interpolate(u, x, X)
Plots.plot(X, u.(X), label="u(x)", legend=:bottomright)
Plots.plot!(X, U, label="û(x)")
Plots.scatter!(x, u.(x), label="Interpolation points")
Plots.xlims!(0, 2π)

An example of the output plot is illustrated in Figure 2.8.
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Figure 2.8: Example solution for Exercise 2.15.

2.4 Discussion and bibliography

A comprehensive study of approximation theory would require to cover the L∞ setting as well
as other functional settings. A pillar of L∞ approximation theorem is Chebyshev’s equioscil-
lation theorem, which we alluded to in Remark 2.1. An excellent introductory reference on
approximation theory is [8] (in French). See also [10, Chapter 10] and the references therein.
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