
MATH-UA 9252: Numerical Analysis

Urbain Vaes
urbain.vaes@nyu.edu

NYU Paris, Fall term 2024

Weekly schedule:

• Lectures on Monday and Wednesday from 15:00 to 16:15 in room 406;

• Recitation on Monday and Wednesday from 16:20 to 17:05 in room 406;

• Office hour on Monday from 17:15 to 18:15 (Paris time).

License

The copyright of these notes rests with the author and their contents are made available under
a Creative Commons “Attribution-ShareAlike 4.0 Interational” license. You are free to copy,
distribute, transform and build upon the course material under the following terms:

• Attribution. You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike. If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

i

https://creativecommons.org/licenses/by-sa/4.0/

Course syllabus

Course content. This course is aimed at giving a first introduction to classical topics in numer-
ical analysis, including floating point arithmetics and round-off errors, the numerical solution
of linear and nonlinear equations, iterative methods for eigenvalue problems, interpolation and
approximation of functions, and numerical quadrature. If time permits, we will also cover
numerical methods for solving ordinary differential equations.

Prerequisites. The course assumes a basic knowledge of linear algebra and calculus. Prior
programming experience in Julia, Python or a similar language is desirable but not required.

Study goals. After the course, the students will be familiar with the key concepts of stability,
convergence and computational complexity in the context of numerical algorithms. They will
have gained a broad understanding of the classical numerical methods available for performing
fundamental computational tasks, and be able to produce efficient computer implementations
of these methods.

Education method. The weekly schedule comprises two lectures (2× 1h15 per week) and
an exercise session (1h30 per week). The course material includes rigorous proofs as well as
illustrative numerical examples in the Julia programming language, and the weekly exercises
blend theoretical questions and practical computer implementation tasks.

Assessment. Computational homework will be handed out on a weekly or biweekly basis, each
of them focusing on one of the main topics covered in the course. The homework assignments
will count towards 70% of the final grade, and the final exam will count towards 30%.

Literature and study material. A comprehensive reference for this course is the following
textbook: A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics, volume 37 of
Texts in Applied Mathematics. Springer-Verlag, Berlin, 2007. Other pointers to the literature
will be given within each chapter.

ii

Acknowledgments

I am grateful to Vincent Legat, Tony Lelièvre, Gabriel Stoltz and Paul Van Dooren for allowing
me to draw inspiration from their lectures notes in numerical analysis.

• Chapter 5 of these notes follows closely the structure of [15, Chapter 3].

• The presentation of the material in Chapter 2 is based on [7].

• Chapter 7 is based on [2, Chapter 2] and [15, Chapter 5].

• Chapter 8 is based on [2, Chapter 3].

I would also like to thank Jean-François Barthélémy and Khôi Nguyễn, who made contributions
to several chapters, as well as the students who found several errors and typos in these notes.

iii

Notations

Unless otherwise specified, we use the following notation throughout these notes.

• Lower case bold is used to denote vectors, e.g. x ∈ Cn, and upper case sans serif is used
to denote matrices, e.g. A ∈ Cm×n. The entries of a vector x ∈ Cn are denoted by (xi),
and those of a matrix A ∈ Cm×n are denoted by (aij) or (ai,j).

• The notations 〈•, •〉 and ‖•‖ without a subscript always refer to the Euclidean inner
product (A.1) and induced norm.

• The sequence x1, x2, . . . is denoted by (xn)n∈N, or sometimes just (xn).

• The notation BR(y) refers to the open ball of radius R centered at y.

iv

Contents

Notations iv

1 Floating point arithmetic 4
1.1 Binary representation of real numbers . 5
1.2 Set of values representable in floating point formats 7
1.3 Arithmetic operations between floating point formats 10
1.4 Encoding of floating point numbers � . 13
1.5 Integer formats � . 15
1.6 Exercises . 16
1.7 Discussion and bibliography . 24

2 Interpolation and approximation 25
2.1 Interpolation . 26
2.2 Approximation . 40
2.3 Exercises . 48
2.4 Discussion and bibliography . 54

3 Numerical integration 55
3.1 The closed Newton–Cotes method . 56
3.2 Composite methods with equidistant nodes 57
3.3 Richardson extrapolation and Romberg’s method 63
3.4 Methods with non-equidistant nodes . 67
3.5 Introduction to probabilistic integration methods 71
3.6 Exercises . 73
3.7 Discussion and bibliography . 79

4 Solution of linear systems of equation 80
4.1 Conditioning . 81
4.2 Direct solution method . 85
4.3 Iterative methods for linear systems . 97
4.4 Exercises . 117
4.5 Discussion and bibliography . 126

v

Contents

5 Solution of nonlinear systems 127
5.1 The bisection method . 128
5.2 Fixed point methods . 129
5.3 Convergence of fixed point methods . 130
5.4 Examples of fixed point methods . 134
5.5 A numerical experiment . 142
5.6 Exercises . 144
5.7 Discussion and bibliography . 147

6 Numerical computation of eigenvalues 148
6.1 Numerical methods for eigenvalue problems: general remarks 149
6.2 Simple vector iterations . 149
6.3 Methods based on a subspace iteration . 153
6.4 Projection methods . 158
6.5 Exercises . 163
6.6 Discussion and bibliography . 168

7 Numerical ordinary differential equations 169
7.1 Analysis of the continuous problem . 170
7.2 One-step methods . 174
7.3 Multistep methods . 183
7.4 Absolute stability . 187
7.5 Exercises . 193

8 Optimization 194
8.1 Definition and characterization of convexity 195
8.2 Unconstrained optimization . 197
8.3 Constrained optimization . 199

A Background material 202
A.1 Inner products and norms . 202
A.2 Completeness . 205
A.3 Contraction mappings and the Banach fixed point theorem 206
A.4 Vector norms . 207
A.5 Matrix norms . 207
A.6 Diagonalization and spectral theorem . 209
A.7 Similarity transformation and Jordan normal form 212
A.8 Oldenburger’s theorem and Gelfand’s formula 213

B Brief introduction to Julia 215

C Chebyshev polynomials 223

vi

Introduction

Goals of computer simulation

In a wide variety of scientific disciplines, ranging from physics to biology and economics, the
phenomena under consideration are well-described by mathematical equations. More often than
not, it is too difficult to solve these equations analytically, and so one has to recur to computer
simulation in order to obtain approximate solutions. Computer simulation enables to gain
understanding of the phenomena examined, to explain observations and to make predictions.
It plays a crucial role in a number of practical applications including weather forecasting, drug
discovery through molecular modeling, flight simulation, and structural engineering, to mention
just a few.

Numerical simulation may also be employed in order to calibrate mathematical models of
physical phenomena, particularly when observation through experiment is impractical or too
costly. For example, it is frequently the case that the parameters in mathematical models for
turbulence are estimated not from real data, but from synthetic data generated by computer
simulation of the fundamental equations of fluid mechanics. Relying on “computer experiments”
is attractive in this context because these enable to perform accurate measurements without
disturbing the system being observed. Numerical simulation is also very useful to understand
and build simplified models for physical phenomena at very small scales, if direct observation
is beyond the capabilities of experimental physics.

The definition of numerical analysis

Numerical analysis sits at the interface between mathematics and computer science. Nick
Trefethen, author of several influential works in mathematics, defines numerical analysis as
the study of algorithms for the problems of continuous mathematics [14]. Devising and studying
algorithms to solve mathematical problems is the central concern of numerical analysis and our
main focus in this course. The word continuous in the definition is used to indicate that the
problems in the realm of numerical analysis involve real or complex variables. Discrete problems,
which involve variables that take finitely or countably many values, are usually studied in other
fields of mathematics or computer science.

1

Contents

Sources of error in computational science

It is important for practitioners of computer simulation to be aware of the different sources
of error likely to affect numerical results obtained in applications, which may be classified as
follows:

• Modeling error. There may be a discrepancy between the mathematical model and the
underlying physical phenomenon.

• Data error. The data of the problem, such as the initial conditions or the parameters
entering the equations, are usually known only approximately.

• Discretization error. The discretization of mathematical equations, i.e. turning them
into finite-dimensional problems amenable to computer simulation, adds another source
of error.

• Discrete solver error. The method employed to solve the discretized equations, espe-
cially if it is of iterative nature, may also introduce an error.

• Round-off errors. Finally, the limited accuracy of computer arithmetics causes addi-
tional errors.

Of these, only the last three are in the domain of numerical analysis, and in this course we
focus mainly on the solver and round-off errors. The order of magnitude of the overall error is
dictated by the largest among the above sources of error.

Aims of this course

The aim of this course is to present the standard numerical methods for performing the tasks
most commonly encountered in applications: the solution of linear and nonlinear systems of
equations, the solution of eigenvalue problems, interpolation and approximation of functions,
and numerical integration. For a given task, there are usually several numerical methods to
choose from, and these often include parameters which must be fixed appropriately in order to
guarantee a good efficiency. In order to guide these choices, we study carefully the convergence
and stability of the various methods we present. Six topics will be covered in these lecture notes.

• Floating point arithmetic. In Chapter 1, we discuss how real numbers are represented,
manipulated and stored on a computer. There is an uncountable infinity of real numbers,
but only a finite subset of these can be represented exactly on a machine. This subset
is specified in the IEEE 754 standard, which is widely accepted today and employed in
most programming languages, including Julia.

• Interpolation and extrapolation of functions. In Chapter 2, we focus on the topics
of interpolation and approximation. Interpolation is concerned with the construction of
a function within a given set, for example that of polynomials, that takes given values
when evaluated at a discrete set of points. The aim of approximation, on the other hand,

2

Contents

is usually to determine, within a class of simple functions, which one is closest to a given
function. Depending on the metric employed to measure closeness, this may or may not
be a well-defined problem.

• Numerical integration. In Chapter 3, we study numerical methods for computing
definite integrals. This chapter is strongly related to the previous one, as numerical
approximations of the integral of a function are often obtained by first approximating the
function, say by a polynomial, and then integrating this approximation exactly.

• Solution of linear systems. In Chapter 4, we study the standard numerical methods
for solving linear systems. Linear systems are ubiquitous in science, often arising from
the discretization of linear elliptic partial differential equations, which themselves govern
a large number of physical phenomena including heat propagation, electromagnetism,
gravitation and the deformation of solids.

• Solution of nonlinear equations. In Chapter 5, we present widely used methods for
solving nonlinear equations. Like linear equations, nonlinear equations are omnipresent in
science, a prime example being the Navier–Stokes equation describing the motion of fluid
flows. Nonlinear equations are usually much more difficult to solve and require dedicated
techniques.

• Solution of eigenvalue problems. In Chapter 6, we present and study the standard
iterative methods for calculating the eigenfunctions and eigenvalues of a matrix. Eigen-
value problems have a large number of applications, for instance in quantum physics and
vibration analysis. They are also at the root of the PageRank algorithm for ranking web
pages, which played a key role in the early success of Google search.

Why Julia?

Throughout the course, the Julia programming language is employed to exemplify some of the
methods and key concepts. In the author’s opinion, the Julia language has several advantages
compared to other popular languages in the context of scientific computing, such as Matlab
or Python.

• Its main advantage over Matlab is that it is free and open source, with the byproduct that
it benefits from contributions from a large number of contributors around the world. Ad-
ditionally, Julia is a fully-fledged programming language that can be used for applications
unrelated to mathematics.

• Its main advantages over Python are significantly better performance and a more concise
syntax for mathematical operations, especially those involving vectors and matrices. It
should be recognized, however, that although adoption of Julia is rapidly increasing,
Python still enjoys a more mature ecosystem and is much more widely used.

3

Chapter 1

Floating point arithmetic

1.1 Binary representation of real numbers 5

1.1.1 Conversion between binary and decimal formats 6

1.2 Set of values representable in floating point formats 7

1.2.1 Denormalized floating point numbers 8

1.2.2 Relative error and machine epsilon 8

1.3 Arithmetic operations between floating point formats 10

1.4 Encoding of floating point numbers � 13

1.5 Integer formats � . 15

1.6 Exercises . 16

1.7 Discussion and bibliography . 24

Introduction

When we study numerical algorithms in the next chapters, we assume implicitly that the op-
erations involved are performed exactly. On a computer, however, only a subset of the real
numbers can be stored and, consequently, many arithmetic operations are performed only ap-
proximately. This is the source of the so-called round-off errors. The rest of this chapter is
organized as follows.

• In Section 1.1, we discuss the binary representation of real numbers.

• In Section 1.2, we describe the set of floating point numbers that can be represented in
the usual floating point formats;

• In Section 1.3 we explain how arithmetic operations between floating point numbers be-
have. We insist in particular on the fact that, in a calculation involving several successive
arithmetic operations, the result of each intermediate operation is stored as a floating
point number, with a possible error.

4

Chapter 1. Floating point arithmetic

• In Section 1.4, we briefly present how floating point numbers are encoded according to
the IEEE 754 standard, which is widely adopted today. We discuss also the encoding of
special values such as Inf, -Inf and NaN.

• Finally, in Section 1.5, we present the standard integer formats and their encoding.

In order to completely describe computer arithmetic, one would in principle need to also discuss
the conversion mechanisms between different number formats, as well as a number of edge cases.
A comprehensive discussion of the subject is beyond the scope of this course; our aim in this
chapter is only to introduce the key concepts.

1.1 Binary representation of real numbers

Given any integer number β > 0, called the base, a real number x can always be expressed as
a finite or infinite series of the form

x = ±
∞∑

k=−n

akβ
−k, ak ∈ {0, . . . , β − 1}. (1.1)

The number x may then be denoted as ±(a−na−n+1 . . . a−1a0.a1a2 . . .)β, where the subscript β
indicates the base. This numeral system is called the positional notation and is universally used
today, both by humans (usually with β = 10) and machines (usually with β = 2). If the base β
is omitted, it is always assumed in this course that β = 10 unless otherwise specified – this is
the decimal representation. The digits a−n, a−n+1, . . . are also called bits if β = 2. In computer
science, several bases other than 10 are regularly employed, for example the following:

• Base 2 (binary) is the usual choice for storing numbers on a machine. The binary format
is convenient because the digits have only two possible values, 0 or 1, and so they can
be stored using simple electrical circuits with two states. We employ the binary notation
extensively in the rest of this chapter. Notice that, just like multiplying and dividing
by 10 is easy in base 10, multiplying and dividing by 2 is very simple in base 2: these
operations amount to shifting all the bits by one position to the left or right, respectively.

• Base 16 (hexadecimal) is sometimes convenient to represent numbers in a compact manner.
In order to represent the values 0-15 with a single digit, 16 different symbols are required,
which are conventionally denoted by {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}. With this
notation, we have (FF)16 = (255)10, for example.

The hexadecimal notation is often used in programming languages for describing colors
specified by a triplet (r, g, b) of values between 0 and 255, corresponding to the primary
colors red, green and blue. The number of possible values for each component is 256 =

162, and so only 2 digits are required to represent these in the hexadecimal notation.
Hexadecimal numbers are also employed in IPv6 addresses, which are used to identify
computers connected to a network.

5

Chapter 1. Floating point arithmetic

1.1.1 Conversion between binary and decimal formats

Obtaining the decimal representation of a binary number can be achieved from (1.1), using
the decimal representations of the powers of 2. Since all the positive and negative powers of
2 have a finite decimal representation, any real number with a finite representation in base 2
has a finite representation also in base 10. For example, (0.01)2 = (0.25)10 and (0.111)2 =

(0.875)10.

Example 1.1 (Converting a binary number to decimal notation). Let us calculate the dec-
imal representation of x = (0.10)2, where the horizontal line indicates repetition: x =

(0.101010 . . .)2. By definition, it holds that

x =
∞∑
k=0

ak2
−k,

where ak = 0 if k is even and 1 otherwise. Thus, the series may be rewritten as

x =
∞∑
k=0

2−(2k+1) =
1

2

∞∑
k=0

(2−2)k.

We recognize on the right-hand side a geometric series with common ratio r = 2−2 = 1
4 , and

so we obtain
x =

1

2

(
1

1− r

)
=

2

3
= (0.6)10.

Obtaining the binary representation of a decimal number is more difficult, because negative
powers of 10 have infinite binary representations, as Exercise 1.4 demonstrates. There is,
however, a simple procedure to perform the conversion, which we present for the specific case of
a real number x with decimal representation of the form x = (0.a1 . . . an)10. In this setting, the
bits (b1, b2, . . .) in the binary representation of x = (0.b1b2b2 . . .)2 may be obtained as follows:

Algorithm 1 Conversion of a number to binary format
1: i← 1
2: while x 6= 0 do
3: x← 2x
4: if x > 1 then
5: bi ← 1
6: else
7: bi ← 0
8: end if
9: x← x− bi

10: i← i+ 1
11: end while

Example 1.2 (Converting a decimal number to binary notation). Let us calculate the binary
representation of x = 1

3 = (0.3)10. We apply Algorithm 1 and collate the values of i and x

obtained at the beginning of each iteration, i.e. just before Line 3, in the table below.

6

Chapter 1. Floating point arithmetic

i x Result
1 1

3 0.0000…
2 2

3 0.0100…
3 1

3 0.0000…

Since x in the last row is again 1
3 , successive bits alternate between 0 and 1, and the binary

representation of x is given by (0.01)2. This is not surprising since 2x = (0.66)10 = (0.10)2,
as we saw in Example 1.1.

1.2 Set of values representable in floating point formats

We mentioned in the introduction that, because of memory limitations, only a subset of the real
numbers can be stored exactly in a computer. Nowadays, the vast majority of programming
languages comply with the IEEE 754 standard, which requires that the set of representable
numbers be of the form

F(p,Emin, Emax) =
{
(−1)s2E(b0.b1b2 . . . bp−1)2 :

s ∈ {0, 1}, bi ∈ {0, 1} andEmin 6 E 6 Emax

}
. (1.2)

In addition to these, floating number formats provide the special entities Inf, -Inf and NaN,
the latter being an abbreviation for Not a Number. Three parameters appear in the set defini-
tion (1.2). The parameter p ∈ N>0 is the number of significant bits (also called the precision),
and (Emin, Emax) ∈ Z2 are respectively the minimum and maximum exponents. From the preci-
sion, the machine epsilon is defined as εM = 2−(p−1); its significance is discussed in Section 1.2.2.

For a number x ∈ F(p,Emin, Emax), s is called the sign, E is the exponent and b0.b1b2 . . . bp−1

is the significand. The latter can be divided into a leading bit b0 and the fraction b1b2 . . . bp−1,
to the right of the binary point. The most widely used floating point formats are the sin-
gle and double precision formats, which are called respectively Float32 and Float64 in Julia.
Their parameters, together with those of the lesser-known half-precision format, are summa-
rized in Table 1.1. In the rest of this section we use the shorthand notation F16, F32 and F64.
Note that F16 ⊂ F32 ⊂ F64.

Half precision Single precision Double precision
p 11 24 53

Emin -14 -126 -1022
Emax 15 127 1023

Table 1.1: Floating point formats. The first column corresponds to the half-precision format.
This format, which is available through the Float16 type in Julia, is more recent than the single
and double precision formats. It was introduced in the 2008 revision to the IEEE 754 standard
of 1985, a revision known as IEEE 754-2008.

Remark 1.1. Some definitions, notably that in [10, Section 2.5.2], include a general base β
instead of the base 2 as an additional parameter in the definition of the number format (1.2).

7

Chapter 1. Floating point arithmetic

Since the binary format (β = 2) is always employed in practice, we focus on this case for
simplicity in most of this chapter.

Remark 1.2. Given a real number x ∈ F(p,Emin, Emax), the exponent E and significand are
generally not uniquely defined. For example, the number 2.0 ∈ F64 may be expressed as
(−1)021(1.00 . . . 00)2 or, equivalently, as (−1)022(0.100 . . . 00)2.

In Julia, non-integer number literals are interpreted as Float64 by default, which can be
verified by using the typeof function. For example, the instruction “a = 0.1” is equivalent
to “a = Float64(0.1)”. In order to define a number of type Float32, the suffix f0 must be
appended to the decimal expansion. For instance, the instruction “a = 4.0f0” defines a floating
point number a of type Float32; it is equivalent to writing “a = Float32(4.0)”.

1.2.1 Denormalized floating point numbers

We can decompose the set F(p,Emin, Emax) in two disjoint parts:

F(p,Emin, Emax) =
{
(−1)s2E(1.b1b2 . . . bp−1)2 :

s ∈ {0, 1}, bi ∈ {0, 1} andEmin 6 E 6 Emax

}
∪
{
(−1)s2Emin(0.b1b2 . . . bp−1)2 : s ∈ {0, 1}, bi ∈ {0, 1}

}
.

The numbers in the second set are called subnormal or denormalized.

1.2.2 Relative error and machine epsilon

Let x be a nonzero real number and x̂ be an approximation. We define the absolute and relative
errors of the approximation as follows.

Definition 1.1 (Absolute and relative error). The absolute error is given by |x− x̂|, whereas
the relative error is

|x− x̂|
|x|

The following result establishes a link between the machine εM and the relative error between
a real number and the closest member of a floating point format.

Proposition 1.1. Let xmin and xmax denote the smallest and largest non-denormalized pos-
itive numbers in a format F = F(p,Emin, Emax). If x ∈ [−xmax,−xmin] ∪ [xmin, xmax], then

min
x̂∈F

|x− x̂|
|x|

6
1

2
2−(p−1) =

1

2
εM . (1.3)

Proof. For simplicity, we assume that x > 0. Let n = blog2(x)c and y := 2−nx. Since y ∈ [1, 2),
it admits a binary representation of the form (1.b1b2 . . .)2 6= (1.1)2 Thus x = 2n(1.b1b2 . . .)2,

8

Chapter 1. Floating point arithmetic

Figure 1.1: Absolute spacing between double-precision floating point numbers, for x ∈ F64. In
this figure, ∆(x) denotes the distance between x and its successor in F64.

and from the assumption that xmin 6 x 6 xmax we deduce that Emin 6 n 6 Emax. We now
define the number x− ∈ F by truncating the binary expansion of x as follows:

x− = 2n(1.b1 . . . bp−1)2.

The distance between x− and its successor in F , which we denote by x+, is given by 2n−p+1.
Consequently, it holds that

(x+ − x) + (x− x−) = x+ − x− = 2n−p+1.

Since both summands on the left-hand side are positive, this implies that either x+−x or x−x−
is bounded from above by 1

22
n−p+1 6 1

22
−p+1x, which concludes the proof.

The machine epsilon, which was defined as εM = 2−(p−1), coincides with the maximum
relative spacing between a non-denormalized floating point number x and its successor in the
floating point format, defined as the smallest number in the format that is strictly larger than x.

Figure 1.1 depicts the density of double-precision floating point numbers, i.e. the number
of F64 members per unit on the real line. The figure shows that the density decreases as
the absolute value of x increases. We also notice that the density is piecewise constant with
discontinuities at powers of 2. Figure 1.2 illustrates the relative spacing between successive
floating point numbers. Although the absolute spacing increases with the absolute value of x,
the relative spacing oscillates between 1

2εM and εM .
The picture of the relative spacing between successive floating point numbers looks quite

different for denormalized numbers. This is illustrated in Figure 1.3, which shows that the
relative spacing increases beyond the machine epsilon in the denormalized range. Fortunately,
in the usual F32 and F64 formats, the transition between denormalized and non-denormalized
numbers occurs at such a small value that it rarely needs worrying about.

9

Chapter 1. Floating point arithmetic

Figure 1.2: Relative spacing between successive double-precision floating point numbers in the
“normal range”. The relative spacing oscillates between 1

2εM and εM .

Figure 1.3: Relative spacing between successive double-precision floating point numbers, over a
range which includes denormalized number. The vertical red line indicates the transition from
denormalized to non-denormalized numbers.

Example 1.3. In Julia, the machine epsilon can be obtained using the eps function. For
example, the instruction eps(Float16) returns εM for the half-precision format.

1.3 Arithmetic operations between floating point formats

Now that we have presented the set of values representable on a computer, we attempt in
this section to understand precisely how arithmetic operations between floating point formats
are performed. The key mechanism governing arithmetic operations on a computer is that of
rounding, the action of approximating a real number regarded as infinitely precise by a number
in a floating point format F(p,Emin, Emax). The IEEE 754 standard stipulates that the default
mechanism for rounding a real number x, called round to nearest, should behave as follows:

• Standard case: The number x is rounded to the nearest representable number, if this
number is unique.

• Edge case: When there are two equally near representable numbers in the floating point
format, the one with the least significant bit equal to zero is delivered.

10

Chapter 1. Floating point arithmetic

• Infinities: If the real number x is larger than the largest representable number in the
format, that is larger than or equal to xmax = 2Emax(2− ε), then there are two cases,

– If x < 2Emax(2− 2−p), then xmax is delivered;

– Otherwise, the special value Inf is delivered.

In other words, xmax is delivered if it would be delivered by following the rules of the first
two bullet points in a different floating point format with the same precision but a larger
exponent Emax. A similar rule applies for large negative numbers.

When a binary arithmetic operation (+, −, ×, /) is performed on floating point numbers
in format F, the result delivered by the computer is obtained by rounding the exact result of
the operation according to the rules given above. In other words, the arithmetic operation is
performed as if the computer first calculated an intermediate exact result, and then rounded
this intermediate result in order to provide a final result in F.

Mathematically, arithmetic operations between floating point numbers in a given format F
may be formalized by introducing the rounding operator fl : R → F and by defining, for any
binary operation ◦ ∈ {+,−,×, /}, the corresponding machine operation

◦̂ : F× F→ F; (x, y) 7→ fl(x ◦ y).

We defined this operator for arguments in the same floating point format F. If the arguments
of a binary arithmetic operation are of different types, the format of the end result, known as
the destination format, depends on that of the arguments: as a rule of thumb, it is given by
the most precise among the formats of the arguments. In addition, recall that a floating point
literal whose format is not explicitly specified is rounded to double-precision format and so, for
example, the addition 0.1 + 0.1 produces the result fl64

(
fl64(0.1)+ fl64(0.1)

)
, where fl64 is the

rounding operator to the double-precision format.

Example 1.4. Using the typeof function, we check that the floating point literal 1.0 is indeed
interpreted as a double-precision number:

julia> a = 1.0; typeof(a)
Float64

When two numbers in different floating point formats are passed to a binary operation, the
result is in the more precise format.

julia> typeof(Float16(1) + Float32(1))
Float32

julia> typeof(Float32(1) + Float64(1))
Float64

If a mathematical expression contains several binary arithmetic operations to be performed
in succession, the result of each intermediate calculation is stored in a floating point format

11

Chapter 1. Floating point arithmetic

dictated by the formats of its argument, and this floating point number is employed in the next
binary operation. A consequence of this mechanism is that the machine operands +̂ and ∗̂ are
generally not associative. For example, in general

(x +̂ y) +̂ z 6= x +̂ (y +̂ z)

Example 1.5. Let x = 1 and y = 3×2−13. Both of these numbers belong to F16 and, denoting
by +̂ machine addition in F16, we have

(x +̂ y) +̂ y = 1 (1.4)

but
x +̂ (y +̂ y) = 1 + 2−10. (1.5)

To explain this somewhat surprising result, we begin by writing the normalized representa-
tions of x and y in the F16 format:

x = (−1)0 × 20 × (1.0000000000)2

y = (−1)0 × 2−12 × (1.1000000000)2.

The exact result of the addition x+ y is given by r = 1+ 3× 2−13, which in binary notation
is

r = (1. 00000000000︸ ︷︷ ︸
11 zeros

11)2.

Since the length of the significand in the half-precision (F16) format is only p = 11, this
number is not part of F16. The result of the machine addition +̂ is therefore obtained by
rounding r to the nearest member of F16, which is 1. This reasoning can then be repeated in
order to conclude that, indeed,

(x +̂ y) +̂ y = x +̂ y = 1.

In order to explain the result of (1.5), note that the exact result of the addition y + y is
r = 3×2−12, which belongs to the floating point format, so it also holds that y +̂y = 3×2−12.
Therefore,

x +̂ (y +̂ y) = 1 +̂ 3× 2−12 = fl16(1 + 3× 2−12).

The argument of the F16 rounding operator does not belong to F16, since its binary represen-
tation is given by

(1. 0000000000︸ ︷︷ ︸
10 zeros

11)2.

This time the nearest member of F16 is given by 1 + 2−10.

When a numerical computation unexpectedly returns Inf or -Inf, we say that an overflow
error occurred. Similarly, underflow is said to occur when a number is smaller than the smallest

12

Chapter 1. Floating point arithmetic

representable number in a floating point format.

1.4 Encoding of floating point numbers �

Once a number format is specified through parameters (p,Emin, Emax), the choice of encoding,
i.e. the machine representation of numbers in this format, has no bearing on the magnitude and
propagation of round-off errors. Studying encoding is, therefore, not essential for our purposes
in this course, but we opted to cover the topic anyway in the hope that it will help the students
build intuition on floating point numbers. We focus mainly on the single precision format, but
the following discussion applies mutatis mutandis to the double and half-precision formats. The
material in this section is for information purposes only.

We already mentioned in Remark 1.2 that a number in a floating point format may have
several representations. On a computer, however, a floating point number is always stored in
the same manner (except for the number 0, see Remark 1.4). The values of the exponent and
significand which are selected by the computer, in the case where there are several possible
choices, are determined from the following rules:

• Either E > Emin and b0 = 1;

• Or E = Emin, in which case the leading bit may be 0.

The following result proves that these rules enable to define the exponent and significand of a
number in a set of floating point numbers uniquely.

Proposition 1.2. Assume that

(−1)s(2Eb0.b1 . . . bp−1)2 = (−1)s̃(2Ẽ b̃0 .̃b1 . . . b̃p−1)2, (1.6)

where the parameter sets (s,E, b0, . . . bp−1) and (s̃, Ẽ, b̃0, . . . , b̃p−1) both satisfy the above rule.
Then E = Ẽ and bi = b̃i for i ∈ {0, . . . , p− 1}.

Proof. We show that E = Ẽ, after which the equality of significands follows trivially. Let us
assume for contradiction that E > Ẽ and denote the left and right-hand sides of (1.6) by x

and x̃, respectively. Then E > Emin, implying that b0 = 1 and so 2E 6 |x| < 2E+1. On the
other hand, it holds that |x̃| < 2Ẽ+1 regardless of whether Ẽ = Emin or not. Since E > Ẽ + 1

by assumption, we deduce that |x̃| < 2E 6 |x|, which contradicts the equality x = x̃.

Now that we have explained how a unique set of parameters (sign, exponent, significand)
can be assigned to any floating point number, we describe how these parameters are stored on
the computer in practice. As their names suggest, the Float16, Float32 and Float64 formats
use 16, 32 and 64 bits of memory, respectively. A naive approach for encoding these number
formats would be to store the full binary representations of the sign, exponent and significand.

For the Float32 format, this approach would requires 1 bit for the sign, 8 bits to cover the
254 possible values of the exponent, and 24 bits for the significand, i.e. for storing b0, . . . , bp−1.
This leads to a total number of 33 bits, which is one more than is available, and this is without

13

Chapter 1. Floating point arithmetic

the special values NaN, Inf and -Inf. So how are numbers in the F32 format actually stored?
To answer this question, we begin with two observations:

• If E > Emin, then necessarily b0 = 1 in the unique representation of the significand.
Consequently, the leading bit need not be explicitly specified in the case; it is said to be
implicit. We will see, as a consequence, that p − 1 instead of p bits are in fact sufficient
for the significand.

• In the F32 format, 8 bits at minimum need to be reserved for the exponent, which enables
the representation of 28 = 256 different values, but there are only 254 possible values for
the exponent. This suggests that 256−254 = 2 combinations of the 8 bits can be exploited
in order to represent the special values Inf, -Inf and NaN.

Simplifying a little bit, we may view single precision floating point number as an array of
32 bits as illustrated below:

Sign Encoded exponent Encoded significand
1 bit 8 bits 23 bits

According to the IEEE 754 standard, the first bit is the sign s, the next 8 bits e0e1 . . . e6e7 encode
the exponent, and the last 23 bits b1b2 . . . bp−2bp−1 encode the significand. Let us emphasize
that when we say “encode the exponent” here, we just mean that the bits contain information
from which the exponent can be uniquely determined, but we have not yet described how this is
achieved. Let us introduce the integer number e = (e0e1 . . . e6e7)2; that is to say, 0 6 e 6 28−1

is the integer number whose binary representation is given by e0e1 . . . e6e7. One may determine
the exponent and significand of a floating point number from the following rules.

• Denormalized numbers: If e = 0, then the implicit leading bit b0 is zero, the frac-
tion is b1b2 . . . bp−2bp−1, and the exponent is E = Emin. In other words, using the
notation of Section 1.2, we have x = (−1)s2Emin(0.b1b2 . . . bp−2bp−1)2. In particular, if
b1b2 . . . bp−2bp−1 = 00 . . . 00, then it holds that x = 0.

• Non-denormalized numbers: If 0 < e < 255, then the implicit leading bit b0 of the
significand is 1 and the fraction is given by b1b2 . . . bp−2bp−1. The exponent is given by

E = e− bias = Emin + e− 1.

where the exponent bias for the single and double precision formats are given in Table 1.2.
In this case x = (−1)s2e−bias1.b1b2 . . . bp−2bp−1. Notice that E = Emin if e = 1, as in the
case of denormalized numbers.

• Infinities: If e = 255 and b1b2 . . . bp−2bp−1 = 00 . . . 00, then x = Inf if s = 0 and -Inf
otherwise.

• Not a Number: If e = 255 and b1b2 . . . bp−2bp−1 6= 00 . . . 00, then x = NaN. Notice that
the special value NaN can be encoded in many different manners. These extra degrees of

14

Chapter 1. Floating point arithmetic

freedom were reserved for passing information on the reason for the occurrence of NaN,
which is usually an indication that something has gone wrong in the calculation.

Half precision Single precision Double precision
Exponent bias (−Emin + 1) 15 127 1023

Exponent encoding (bits) 5 8 11
Significand encoding (bits) 10 23 52

Table 1.2: Encoding parameters for floating point formats

Remark 1.3 (Encoding efficiency). With 32 bits, at most 232 different numbers could in
principle be represented. In practice, as we saw in Exercise 1.10, the Float32 format enables
to represent

(Emax − Emin)2
p + 2p+1 − 1 = 253× 223 + 225 − 1 = 232 − 224 − 1 ≈ 99.6%× 232,

different real numbers, indicating a very good encoding efficiency.

Remark 1.4 (Nonuniqueness of the floating point represention of 0.0). The sign s is clearly
unique for any number in a floating point format, except for 0.0, which could in principle be
represented as

(−1)02Emin(0.00 . . . 00)2 or (−1)12Emin(0.00 . . . 00)2.

In practice, both representations of 0.0 are available on most machines, and these behave
slightly differently. For example 1/(0.0) = Inf but 1/(-0.0) = -Inf.

1.5 Integer formats �

The machine representation of integer formats is much simpler than that of floating point
numbers. In this short section, we give a few orders of magnitude for common integer formats
and briefly discuss overflow issues. Programming languages typically provide integer formats
based on 16, 32 and 64 bits. In Julia, these correspond to the types Int16, Int32 and Int64, the
latter being the default for integer literals.

The most common encoding for integer numbers, which is used in Julia, is known as two’s
complement: a number encoded with p bits given by bp−1bp−2 . . . b0 corresponds to

x = −bp−12
p−1 +

p−2∑
i=0

bi2
i.

This encoding enables to represent uniquely all the integers from Nmin = −2p−1 to Nmax =

2p−1 − 1. In contrast with floating point formats, integer formats do not provide special values
like Inf and NaN. The number delivered by the machine when a calculation exceeds the maxi-

15

Chapter 1. Floating point arithmetic

mum representable value in the format, called the overflow behavior, generally depends on the
programming language.

Since the overflow behavior of integer formats is not universal across programming languages,
a detailed discussion is of little interest. We only mention that Julia uses a wraparound behavior,
where Nmax + 1 silently returns Nmin and, similarly, −Nmin − 1 gives Nmax; the numbers loop
back. This can lead to unexpected results, such as 2^64 evaluating to 0.

1.6 Exercises

� Exercise 1.1. Show that if a number x ∈ R admits a finite representation (1.1) in base β,
then it also admits an infinite representation in the same base. Hint: You may have learned
before that (0.9)10 = 1.

� Exercise 1.2. How many digits does it take to represent all the integers from 0 to 1010 − 1

in decimal and binary formats? What about the hexadecimal format?

� Exercise 1.3. Find the decimal representation of (0.0001100)2.

� Exercise 1.4. Find the binary representation of (0.1)10.

� Exercise 1.5. Implement Algorithm 1 on a computer and verify that it works. Your function
should take two arguments: an array of integers [a_1, ..., a_n] containing the digits after
the decimal point and the m number of bits to return. The bits should be returned as an
array [b_1, ..., b_m].

� Exercise 1.6. As mentioned above, Algorithm 1 works only for decimal numbers of the
specific form x = (0.a1 . . . an)10. Find and implement a similar algorithm for integer numbers.
More precisely, write a function that takes an integer n as argument and returns an array
containing the bits of the binary expansion (bm . . . b0)2 of n, from the least significant b0 to the
most significant bm. That is to say, your code should return [b_0, b_1, ...].

function to_binary(n)
Your code comes here

end

Check that it works
number = 123456789
bits = to_binary(number)
pows2 = 2 .^ range(0, length(bits) - 1)
@assert sum(bits'pows2) == number

� Exercise 1.7. Show that the successor of 1 in F64 is 1 + ε64, where ε64 is the machine
epsilon for the double-precision format.

� Exercise 1.8. Write down the values of the smallest and largest, in absolute value, positive
real numbers representable in the F32 and F64 formats.

16

Chapter 1. Floating point arithmetic

� Exercise 1.9 (Relative error and machine epsilon). Prove that the inequality (1.3) is sharp.
That is to say, find x ∈ R such that the inequality is an equality.

� Exercise 1.10 (Cardinality of the set of floating point numbers). Show that, if Emax > Emin,
then F(p,Emin, Emax) contains exactly

(Emax − Emin)2
p + 2p+1 − 1

distinct real numbers. (In particular, the special values Inf, -Inf and NaN are not counted.)
Hint: Count first the numbers with E > Emin and then those with E = Emin.

� Exercise 1.11. Calculate the machine epsilon ε16 for the F16 format. Write the results of
the arithmetic operations 1 +̂ ε16 and 1 −̂ ε16 in the form

2E(1.b1 . . . bp−1)2.

� Exercise 1.12. Let ε16 be the machine epsilon for the F16 format, and define y = 4
3ε16. What

is the relative error between ∆ = (1 + y)− 1, and the machine approximation ∆̂ = (1 +̂ y) −̂ 1?

� Exercise 1.13 (Numerical differentiation). Let f(x) = exp(x). By definition, the derivative
of f at 0 is given by

f ′(0) = lim
δ→0

(
f(δ)− f(0)

δ

)
.

The expression within brackets on the right-hand side may be used with a small but nonzero δ

as an approximation for f ′(0). Implement this approach using double-precision numbers and
the same values for δ as in the table below. Explain the results you obtain.

δ ε64
4

ε64
2 ε64

Approximation of f ′(0) 0 2 1

� Exercise 1.14 (Avoiding overflow). Write a code to calculate the weighted average

S :=

∑J
j=0wjj∑J
j=0wj

, wj = exp(j), J = 1000.

You may need to first rewrite S differently.

� Exercise 1.15. Plot the function x 7→ log
(
eex − 1

)
over the interval [0, 10].

� Exercise 1.16 (Calculating the sample variance). Assume that (xn)16n6N , with N = 106,
are independent random variables distributed according to the uniform distribution U(L,L+1).
That is, each xn takes a random value uniformly distributed between L and L+1 where L = 109.
In Julia, these samples can be generated with the following lines of code:

N, L = 10^6, 10^9
x = L .+ rand(N)

17

Chapter 1. Floating point arithmetic

It is well know that the variance of xn ∼ U(L,L + 1) is given by σ2 = 1
12 . Numerically, the

variance can be estimated from the sample variance:

s2 =
1

N − 1

((
N∑

n=1

x2n

)
−Nx̄2

)
, x̄ =

1

N

N∑
n=1

xn. (1.7)

Write a computer code to calculate s2 with the best possible accuracy. Can you find a formula
that enables better accuracy than (1.7)?

Remark 1.5. In order to estimate the true value of s2 for your samples, you can use the
BigFloat format, to which the array x can be converted by using the instruction

x = BigFloat.(x)

� Exercise 1.17. Euler proved that

π2

6
= lim

N→∞

N∑
n=1

1

n2
.

Using the default Float64 format, estimate the error obtained when the series on the right-hand
side is truncated after 1010 terms. Can you rearrange the sum for best accuracy?

� Exercise 1.18. Let x and y be positive real numbers in the interval [2−10, 210] (so that we
do not need to worry about denormalized numbers, assuming we are working in single or double
precision), and let us define the machine addition operator +̂ for arguments in real numbers as

+̂ : R×R→ R; (x, y) 7→ fl
(
fl(x) + fl(y)

)
.

Prove the following bound on the relative error between the sum x+ y and its machine approx-
imation x +̂ y: ∣∣(x+ y)− (x +̂ y)

∣∣
|x+ y|

6
εM
2

(
2 +

εM
2

)
.

Hint: decompose the numerator as

(x+ y)− (x +̂ y) =
(
x− fl(x)

)
+
(
y − fl(y)

)
+
(
fl(x) + fl(y)− (x+̂y)

)
,

and then use Proposition 1.1.

� Exercise 1.19. Is Float32(0.1) * Float32(10) == 1 equal to true or false given the
default rounding rule defined by the IEEE standard? Explain.

Solution. By default, real numbers are rounded to the nearest floating point number. This can be
checked in Julia with the command rounding(Float32), which prints the default rounding mode. The

18

Chapter 1. Floating point arithmetic

exact binary representation of the real number x = 0.1 is

x = (0.0001100)2

= 2−4 × (1.10011001100110011001100︸ ︷︷ ︸
24 bits

1100)2

The first task is to determine the member of F32 that is nearest x. We have

x− := max
{
y : y ∈ F32 and y 6 x

}
= 2−4 × (1.10011001100110011001100)2

x+ := min
{
y : y ∈ F32 and y > x

}
= 2−4 × (1.10011001100110011001101)2.

Since the number (0.1100)2 is closer to 1 than to 0, the number x is closer to x+ than to x−. There-
fore, the number obtained when writing Float32(0.1) is x+. To conclude the exercise, we need to
calculate fl

(
10×x+

)
, and to this end we first write the exact binary representation of the real number

10× x+ = (1010)2 × x+. We have

(1010)2 × x+ = (1000)2 × x+ + (10)2 × x+ = 2−4 × (1100.11001100110011001101)2

+ 2−4 × (11.0011001100110011001101)2

= 2−4 × (10000.0000000000000000000︸ ︷︷ ︸
24 bits

001)2.

This can be checked in Julia by writing bitstring(Float32(0.1) * Float64(10.0)). Clearly, when
rounding to the nearest F32 number, the number 2−4(10000)2 = 1 is obtained; the boolean expression
in the question is thus true. 4

Remark 1.6. It should not be inferred from Exercise 1.19 that Float32(1/i) * i is always
exact in floating point arithmetic. For example Float32(1/41) * 41 does not evaluate to 1,
and neither do Float16(1/11) * 11 and Float64(1/49) * 49.

� Exercise 1.20. Given that the default rounding rule specified by the IEEE 754 standard is
“round to nearest, tie to even”, does Float16(0.1) + Float16(0.2) == Float16(0.3) evaluate
to true or false. Explain.

� Exercise 1.21. Explain why Float32(sqrt(2))^2 - 2 is not zero in Julia.

Solution. The exact binary representation of x :=
√
2, found using the bitstring in the Float64

format, is given by

x = (1.01101010000010011110011︸ ︷︷ ︸
24 bits

001100 . . .)2.

The first task is to determine the member of F32 that is nearest x. We have

x− := max
{
x : x ∈ F32 and x 6

√
2
}
= (1.01101010000010011110011︸ ︷︷ ︸

24 bits

)2

x+ := min
{
x : x ∈ F32 and x >

√
2
}
= (1.01101010000010011110100︸ ︷︷ ︸

24 bits

)2,

19

Chapter 1. Floating point arithmetic

and we calculate

x− x− = 2−24(0.01100 . . .)2,

x+ − x = 2−21
(
1− (0.11001100 . . .)2

)
> 2−21

(
1− (0.11001101)2

)
= 2−21 (0.00110011)2 .

We deduce that x− x− < x+ − x, and so fl(x) = x−. To conclude the exercise, we need to show that
fl
(
(x−)2

)
is not equal to 2. The exact binary expansion of (x−)2 is

(x−)2 = (1.11111111111111111111111︸ ︷︷ ︸
24 bits

01101100111111010101001)2.

The member of F32 nearest this number is

(1.11111111111111111111111)2 = 2− 2−23,

which is precisely the result returned by Julia. 4

� Exercise 1.22 (Numerical differentiation). Let f(x) = exp(x) and let d(δ) be the approxi-
mation of f ′(x) obtained from the following piece of code:

f, x = exp, 1
d(δ) = (f(x+δ) - f(x))/δ

Plot for fixed x = 1 the error abs(d(δ) - exp(x)) as a function of δ in logarithmic scale, and
explain the result.

Solution. We assume that δ ∈ F64 for simplicity. This is not a restrictive assumption as δ can only
take floating point values in computer programs. The proof is rather technical, and so it is given for
information purposes only. We rewrite d(δ) mathematically as

d(δ) =
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ,

where f̂(x) = fl
(
f(x)

)
. We wish to bound |f ′(x)− d(δ)|. By the triangle inequality,

|f ′(x)− d(δ)| 6
∣∣∣∣f ′(x)− f(x+ δ)− f(x)

δ

∣∣∣∣+ ∣∣∣∣f(x+ δ)− f(x)
δ

−
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ

∣∣∣∣ . (1.8)

Bounding the first term in (1.8). By Taylor’s theorem, there exists ξ ∈ [x, x+ δ] such that

f(x+ δ) = f(x) + δf ′(x) +
δ2

2
f ′′(ξ).

Therefore, the first term in (1.8) satisfies∣∣∣∣f ′(x)− f(x+ δ)− f(x)
δ

∣∣∣∣ = δ

2
|f ′′(ξ)| = δ

2
|f ′′(x)|+O(δ2).

20

Chapter 1. Floating point arithmetic

Bounding the second term in (1.8) – the roundoff error. This is more tedious but not difficult; the
main ingredient is the triangle inequality. Specifically, we will use the bound∣∣∣∣f(x+ δ)− f(x)

δ
−
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ

∣∣∣∣
6 δ−1

∣∣f(x+ δ)− f(x +̂ δ)
∣∣+ δ−1

∣∣∣f(x +̂ δ)− f̂(x +̂ δ)
∣∣∣+ δ−1

∣∣∣f̂(x)− f(x)∣∣∣
+ δ−1

∣∣∣(f̂(x +̂ δ)− f̂(x)
)
−
(
f̂(x +̂ δ) −̂ f̂(x)

)∣∣∣
+
∣∣∣(f̂(x +̂ δ) −̂ f̂(x)

)
/δ −

(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ
∣∣∣ . (1.9)

Note that without absolute values, both sides are indeed equal. The first three terms on the right-hand
side are together a bound from above for∣∣∣∣∣f(x+ δ)− f(x)

δ
− f̂(x +̂ δ)− f̂(x)

δ

∣∣∣∣∣ , (1.10)

while the two other terms account for the roundoff errors associated with the machine subtraction and
division operators, respectively. We will show that the dominant terms in (1.9) are the first three; the
latter two are negligible in comparison. Employing Proposition 1.1 with x = f(a), with x = a± b and
with x = a/b, we deduce that the following inequalities are satisfied:∣∣∣f̂(a)− f(a)∣∣∣ 6 ε|f(a)|, |(a± b)− (a ±̂ b)| 6 ε|a± b|, |a/b− a /̂ b| 6 ε|a/b|. (1.11)

The first two inequalities are valid for all (a, b) ∈ F64 × F64, while the third inequality is valid for
all (a, b) ∈ F64×F64\{0}. The first inequality in (1.11) can be employed in order to bound the second
and third term on the right-hand side of (1.9):

δ−1
∣∣∣f(x +̂ δ)− f̂(x +̂ δ)

∣∣∣+ δ−1
∣∣∣f̂(x)− f(x)∣∣∣ 6 δ−1ε

(∣∣f(x+ δ)
∣∣+ ∣∣f(x)∣∣)

= 2δ−1ε|f(x)|+O(ε). (1.12)

Using Taylor’s theorem and then the second inequality in (1.11) (with +), we then bound the first
term on right-hand side of (1.9) as

δ−1
∣∣f(x+ δ)− f(x +̂ δ)

∣∣ = δ−1
∣∣f ′(ξ)((x+ δ)− (x +̂ δ)

)∣∣
6 δ−1ε|f ′(ξ)||x+ δ| = δ−1ε|f ′(x)x|+O(ε). (1.13)

Combining (1.12) and (1.13), we obtain that the expression in (1.10) scales as δ−1ε:∣∣∣∣∣f(x+ δ)− f(x)
δ

− f̂(x +̂ δ)− f̂(x)
δ

∣∣∣∣∣ = O(δ−1ε). (1.14)

Next, using the second inequality in (1.11) (with −) and then (1.14), we bound the fourth term in (1.9)
as follows:

δ−1
∣∣∣(f̂(x +̂ δ)− f̂(x)

)
−
(
f̂(x +̂ δ) −̂ f̂(x)

)∣∣∣
6 δ−1ε|f̂(x +̂ δ)− f̂(x)| = δ−1ε |f(x+ δ)− f(x)|︸ ︷︷ ︸

=O(δ)

+O(δ−1ε2) = O
(
ε+ δ−1ε2

)
. (1.15)

21

Chapter 1. Floating point arithmetic

Notice that this term is smaller than the first three in (1.9) when δ � 1. We deduce by a triangle
inequality from (1.14) and (1.15) that

δ−1
∣∣∣(f(x+ δ)− f(x)

)
−
(
f̂(x +̂ δ) −̂ f̂(x)

)∣∣∣ = O(δ−1ε).

Finally, using the third inequality in (1.11) together with this equation, we bound the fifth term on
the right-hand side of (1.9):∣∣∣(f̂(x +̂ δ) −̂ f̂(x)

)
/δ −

(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ
∣∣∣

6 ε
∣∣f̂(x +̂ δ) −̂ f̂(x)

∣∣/δ = ε

δ

∣∣f(x+ δ)− f(x)
∣∣︸ ︷︷ ︸

O(δ)

+O(δ−1ε2) = O(ε+ δ−1ε2).

This term is also negligible in front of the other dominant contributions to the roundoff error given
in (1.12) and (1.13). Going back to (1.9), we conclude that∣∣∣∣f(x+ δ)− f(x)

δ
−
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ

∣∣∣∣ 6 δ−1ε
(
2|f(x)|+ |f ′(x)x|

)
+O

(
ε+ δ−1ε2

)
.

Concluding the proof. Going back to (1.8), we conclude that

|f ′(x)− d(δ)| 6 δ

2
|f ′′(x)|+ ε

δ

(
2|f(x)|+ |f ′(x)x|

)
,

up to higher order terms. For fixed x, the right-hand side is minimized when

δ =
√
ε

√
2|f(x)|+ |f ′(x)x|

|f ′′(x)|
,

which is a well-known formula for the optimal step size in numerical differentiation. The error as a
function of δ for x = 1 is depicted in Figure 1.4. 4

Figure 1.4: Solution to Exercise 1.22.

� Exercise 1.23. Explain why exp(log(Float16(7))) == 7 is false.

22

Chapter 1. Floating point arithmetic

Solution. We begin by finding the binary representation of log(7). In the F64 format, the sign and
exponent are encoded over 1 and 11 bits respectively, and so the fraction is given by the last 52 bits,
which can be obtained from the command

julia> bitstring(log(7))[13:end]
"1111001000100111001010101110001100100101101001010111"

Therefore, since exponent(log(7)) returns 0, we have

log(7) = (1.1111001000︸ ︷︷ ︸
11 bits

10011100101010111000110010010110100101011...)2 (1.16)

The number returned by the command log(Float16(7)) is given by fl16
(
log(7)

)
, where fl16 denotes

the half-precision rounding operator. Rounding the right-hand side of (1.16) to 11 bits, we obtain

fl16
(
log(7)

)
= (1.1111001001)2 = 1.9462890625.

The number returned by the code exp(log(Float16(7))) is

fl16
(

exp
(

fl16
(
log(7)

)))
= fl16

(
exp(1.9462890625)

)
.

The rounding operator appears twice on the left-hand side, because the computer rounds after ev-
ery operation. To explain the result of the rounding operation, we begin by calculating the binary
expansion of exp(1.9462890625).

julia> bitstring(exp(1.9462890625))[13:end]
"1100000000101011011101110000111000100001100010001110"

julia> exponent(exp(1.9462890625))
2

Therefore,

exp(1.9462890625) = 22(1.1100000000︸ ︷︷ ︸
11 bits

1010110111011100001110001000011000100011...)2,

and, rounding to 11 bits, we finally obtain

fl16
(
exp(1.9462890625)

)
= 22(1.1100000001)2 = 4

(
1 +

1

2
+

1

4
+

1

210

)
= 7 +

1

28
= 7.00390625,

which is different from 7. 4

� Exercise 1.24. Determine the encoding of the following Float32 numbers:

• x1 = 2.0Emin

• x2 = −2.0Emin−p−1 = −2.0−149

• x3 = 2.0Emax(2− 2−p+1)

Check your results using the Julia function bitstring.

23

Chapter 1. Floating point arithmetic

� Exercise 1.25 (Summary). True or false?

1. Let (•)2 denote binary representation. It holds that (0.1111)2 + (0.0001)2 = 1.

2. It holds that (1000)2 × (0.001)2 = 1.

3. It holds that
(0.1)3 =

1

2
.

4. In base 16, all the natural numbers from 1 to 200 can be represented using 2 digits.

5. In Julia, Float64(.1) == Float32(.1) evaluates to true.

6. The spacing (in absolute value) between successive double-precision (Float64) floating point
numbers is constant.

7. It holds that (0.10101)2 = (1.2345)10.

8. Machine addition +̂ is an associative operation. More precisely, given any three double-
precision floating point numbers x, y and z, the following equality holds:

(x +̂ y) +̂ z = x +̂ (y +̂ z).

9. The machine epsilon is the smallest strictly positive number that can be represented in a
floating point format.

10. Let ε denote the machine epsilon for the double-precision format. Let also +̂ and /̂

denote respectively the machine addition and the machine division operators for the double-
precision format. It holds that 1 +̂ (ε /̂ 64) = 1 and that ε /̂ 64 6= 0.

11. Assume that x ∈ R belongs to the double-precision floating point format (that is, assume
that x ∈ F64). Then −x ∈ F64.

1.7 Discussion and bibliography

This chapter is mostly based on the original 1985 IEEE 754 standard [4] and the reference
book [10]. A significant revision to the 1985 IEEE standard was published in 2008 [5], adding for
example specifications for the half precision and quad precision formats, and a minor revision was
published in 2019 [6]. The original IEEE standard and its revisions constitute the authoritative
guide on floating point formats. It was intended to be widely disseminated and is written very
clearly and concisely, but is not available for free online. Another excellent source for learning
about floating point numbers and round-off errors is D. Goldberg’s paper “What every computer
scientist should know about floating-point arithmetic” [3], freely available online.

24

Chapter 2

Interpolation and approximation

2.1 Interpolation . 26

2.1.1 Vandermonde matrix . 27

2.1.2 Lagrange interpolation formula . 27

2.1.3 Gregory–Newton interpolation . 28

2.1.4 Interpolation error . 33

2.1.5 Interpolation at Chebyshev nodes . 35

2.1.6 Hermite interpolation . 38

2.1.7 Piecewise interpolation . 39

2.2 Approximation . 40

2.2.1 Least squares approximation of data points 40

2.2.2 Mean square approximation of functions 42

2.2.3 Orthogonal polynomials . 43

2.2.4 Orthogonal polynomials and numerical integration: an introduction � 46

2.3 Exercises . 48

2.4 Discussion and bibliography . 54

Figure 2.1: Source: https://xkcd.com/605/

25

https://xkcd.com/605/

Chapter 2. Interpolation and approximation

Introduction

In this chapter, we study numerical methods for interpolating and approximating functions.
The Cambridge dictionary defines interpolation as the addition of something different in the
middle of a text, piece of music, etc. or the thing that is added. The concept of interpolation
in mathematics is consistent with this definition; interpolation consists in finding, given a set
of points (xi, yi), a function f in a finite-dimensional space that goes through these points.
Throughout this course, you use the plot function in Julia, which performs piecewise linear
interpolation for drawing functions, but there are a number of other standard interpolation
methods. Our first goal in this chapter is to present an overview of these methods and the
associated error estimates.

In the second part of this chapter, we focus on function approximation, which is closely
related to the subject of mathematical interpolation. Indeed, a simple manner for approximating
a general function by another one in a finite-dimensional space is to select a set of real numbers
on the x axis, called nodes, and find the associated interpolant. As we shall demonstrate, not
all sets of interpolation nodes are equal, and special care is required in order to avoid undesired
oscillations. The field of function approximation is vast, so our aim in this chapter is to present
only an introduction to the subject. In order to quantify the quality of an approximation, a
metric on the space of functions, or a subset thereof, must be specified in order to measure
errors. Without a metric, saying that two functions are close is almost meaningless!

2.1 Interpolation

Assume that we are given n+1 nodes x0, . . . , xn on the x axis, together with values u0, . . . , un,
which may be the values taken by an unknown function u(x) when evaluated at these points.
Suppose that we are looking for an interpolation û(x) in a subspace Span{ϕ0, . . . , ϕn} of the
vector space of continuous functions, i.e. an interpolating function of the form

û(x) = α0ϕ0(x) + · · ·+ αnϕn(x),

where α0, . . . , αn are real coefficients. In order for û(x) to be an interpolating function, we must
require that

∀i ∈ {0, . . . , n}, û(xi) = ui.

This leads to a linear system of n + 1 equations and n + 1 unknowns, the latter being the
coefficients α0, . . . , αn. This system of equations in matrix form reads

ϕ0(x0) ϕ1(x0) . . . ϕn(x0)

ϕ0(x1) ϕ1(x1) . . . ϕn(x1)
...

...
...

ϕ0(xn) ϕ1(xn) . . . ϕn(xn)

α0

α1

...
αn

 =

u0

u1
...
un

 . (2.1)

26

Chapter 2. Interpolation and approximation

2.1.1 Vandermonde matrix

Since polynomials are very convenient for evaluation, integration, and differentiation, they are
a natural choice for interpolation purposes. The simplest basis of the subspace of polynomials
of degree less than or equal to n is given by the monomials:

ϕ0(x) = 1, ϕ1(x) = x, . . . , ϕn(x) = xn.

In this case, the linear system (2.1) for determining the coefficients of the interpolant reads
1 x0 . . . xn0
1 x1 . . . xn1
...

...
...

1 xn . . . xnn

α0

α1

...
αn

 =

u0

u1
...
un

 . (2.2)

The matrix on the left-hand side is called a Vandermonde matrix. If the abcissae x0, . . . , xn
are distinct, then this is a full rank matrix, and so (2.2) admits a unique solution, implying
as a corollary that the interpolating polynomial exists and is unique. It is possible to show
that the condition number of the Vandermonde increases dramatically with n. Consequently,
solving (2.2) is not a viable method in practice for calculating the interpolating polynomial.

2.1.2 Lagrange interpolation formula

One may wonder whether polynomial basis functions ϕ0, . . . , ϕn can be defined in such a manner
that the matrix in (2.1) is the identity matrix. The answer to this question is positive; it suffices
to take as a basis the Lagrange polynomials, which are given by

ϕi(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
=

n∏
j=0
j 6=i

x− xj
xi − xj

.

It is simple to check that

ϕi(xj) = δi,j =

1 if i = j,

0 otherwise.

Finding the interpolant in this basis is immediate:

û(x) = u0ϕ0(x) + · · ·+ unϕn(x).

While simple, this approach to polynomial interpolation has a few disadvantages:

• First, evaluating û(x) is computationally costly when n is large.

• Second, all the basis functions change when adding new interpolation nodes.

• Finally, Lagrange interpolation is numerically unstable because of cancellations between
large terms. Indeed, it is often the case that Lagrange polynomials take very large values

27

Chapter 2. Interpolation and approximation

over the interpolation intervals; this occurs, for example, when many equidistant interpo-
lation nodes are employed, as illustrated in Figure 2.2.

Figure 2.2: Lagrange polynomials associated with equidistant nodes over the (0, 1) interval.

2.1.3 Gregory–Newton interpolation

By Taylor’s formula, any polynomial p of degree n may be expressed as

p(x) = p(0) + p′(0)x+
p′′(0)

2
x2 + . . .+

p(n)(0)

n!
xn. (2.3)

The constant coefficient can be obtained by evaluating the polynomial at 0, the linear coefficient
can be identified by evaluating the first derivative at 0, and so on. Assume now that we are given
the values taken by p when evaluated at the integer numbers {0, . . . , n}. We ask the following
question: can we find a formula similar in spirit to (2.3), but including only evaluations of p and
not of its derivatives? To answer this question, we introduce the difference operator ∆ which
acts on functions as follows:

∆f(x) = f(x+ 1)− f(x).

The operator ∆ is a linear operator on the space of continuous functions. It maps constant
functions to 0, and the linear function x to the constant function 1, suggesting a resemblance

28

Chapter 2. Interpolation and approximation

with the differentiation operator. In order to further understand this connection, let us define
the falling power of a real number x as

xk = x(x− 1)(x− 2) . . . (x− k + 1). (2.4)

We then have that

∆xk = (x+ 1)x(x− 1) . . . (x− k + 2)− x(x− 1)(x− 2) . . . (x− k + 1)

=
(
(x+ 1)− (x− k + 1)

)(
x(x− 1) . . . (x− k + 2)

)
= kxk−1 (2.5)

In other words, the action of the difference operator on falling powers mirrors that of the differ-
entiation operator on monomials. The falling powers form a basis of the space of polynomials,
and so any polynomial in P(n), i.e. of degree less than or equal to n, can be expressed as

p(x) = α0 + α1x
1 + α2x

2 + · · ·+ αnx
n. (2.6)

It is immediate to show that αi = ∆ip(0)/i!, where ∆ip denotes the function obtained after i
applications of the operator ∆. Therefore, any polynomial of degree less than or equal to n may
be expressed as

p(x) = p(0) + ∆p(0)x1 +
∆2p(0)

2
x2 + · · ·+ ∆np(0)

n!
xn. (2.7)

An expansion of the form (2.7) is called a Newton series, which is the discrete analog of the
continuous Taylor series. From the definition of ∆, it is clear that the coefficients in (2.7) depend
only on p(0), . . . , p(n). We conclude that, given points n+1 points (i, ui) for i ∈ {0, . . . , n}, the
unique interpolating polynomial is given by (2.7), after replacing p(i) by ui.

Example 2.1. Let us use (2.6) in order to calculate the value of

S(n) :=

n∑
i=0

i2.

Since ∆S(n) = (n+ 1)2, which is a second degree polynomial in n, we deduce that S(n) is a
polynomial of degree 3. Let us now determine its coefficients.

n 0 1 2 3

∆0S(n) 0 1 5 14

∆1S(n) 1 4 9

∆2S(n) 3 5

∆3S(n) 2

We conclude that

S(n) = 1n+
3
2!
n(n− 1) +

2
3!
n(n− 1)(n− 2) =

n(2n+ 1)(n+ 1)

6

Notice that when falling powers are employed as polynomial basis, the matrix in (2.1) is lower
triangular, and so the algorithm described in Example 2.1 could be replaced by the forward

29

Chapter 2. Interpolation and approximation

substitution method. Whereas the coefficients of the Lagrange interpolant can be obtained im-
mediately from the values of u at the nodes, calculating the coefficients of the expansion in (2.6)
requires O(n2) operations. However, Gregory–Newton interpolation has several advantages over
Lagrange interpolation:

• If a point (n + 1, pn+1) is added to the set of interpolation points, only one additional
term, corresponding to the falling power xn+1, needs to be calculated in (2.7). All the
other coefficients are unchanged. Therefore, the Gregory–Newton approach is well-suited
for incremental interpolation.

• The Gregory–Newton interpolation method is more numerically stable than Lagrange
interpolation, because the basis functions do not take very large values.

• A polynomial in the form of a Newton series can be evaluated efficiently using Horner’s
method, which is based on rewriting the polynomial as

p(x) = α0 + x

(
α1 + (x− 1)

(
α2 + (x− 2)

(
α3 + (x− 3) . . .

)))
.

Evaluating this expression starting from the innermost bracket leads to an algorithm with
a cost scaling linearly with the degree of the polynomial.

Non-equidistant nodes

So far, we have described the Gregory–Newton method in the simple setting where interpolation
nodes are just a sequence of successive natural numbers. The method can be generalized to the
setting of nodes x0 6= . . . 6= xn which are not necessarily equidistant. In this case, we take as
basis the following functions instead of the falling powers:

ϕi(x) = (x− x0)(x− x1) . . . (x− xi−1), (2.8)

with the convention that the empty product is 1. By (2.1), the coefficients of the interpolating
polynomial in this basis solve the following linear system:

1 . . . 0

1 x1 − x0
1 x2 − x0 (x2 − x0)(x2 − x1)

...
...

... . . .
1 xn − x0

∏n−1
j=0 (xn − xj)

α0

α1

α2

...
αn

=

u0

u1

u2
...
un

. (2.9)

This system could be solved using, for example, forward substitution. Clearly α0 = u0 from the
first equation, and then from the second equation we obtain

α1 =
u1 − u0
x1 − x0

=: [u0, u1],

which may be viewed as an approximation of the slope of u at x0. The right-hand side of
this equation is an example of a divided difference. In general, divided differences are defined

30

Chapter 2. Interpolation and approximation

recursively as follows:

[u0, u1, . . . , ud] :=
[u1, . . . , ud]− [u0, . . . , ud−1]

xd − x0
, [ui] = ui. (2.10)

Let us start by observing that our divided differences coincide with the coefficients in (2.6).

Lemma 2.1. Assume that (0, u0), . . . , (n, un) ∈ R2. Then, provided that (i, k) ∈ N2 satisfies
i+ k 6 n, we have

1

k!
∆ku(i) = [ui, . . . , ui+k].

Proof. The result is clearly true for k = 0, and we shall assume by induction that it holds
for k − 1. Using our induction hypothesis, we get

1

k!
∆ku(i) =

1

k

(
∆k−1u(i+ 1)

(k − 1)!
− ∆k−1u(i)

(k − 1)!

)
=

1

k

(
[ui+1, . . . , ui+k]− [ui, . . . , ui+k−1]

)
.

By the definition of divided differences in (2.10), it follows that we have

1

k!
∆ku(i) =

1

k
(xi+k − xi︸ ︷︷ ︸

i+k−i

)[ui, . . . , ui+k] = [ui, . . . , ui+k],

which allows us to conclude the proof.

In light of Lemma 2.1, the reader will not be surprised that the coefficients in the ϕ0, . . . , ϕn

basis in (2.8) are given by the divided differences.

Proposition 2.2. Assume that (x0, u0), . . . , (xn, un) are n+1 points in the plane with distinct
abcissae. Then the interpolating polynomial of degree n may be expressed as

p(x) =

n∑
i=0

[u0, . . . , ui]ϕi(x),

where ϕi(x), for i = 0, . . . , n, are the basis functions defined in (2.8).

Proof. The statement is true for n = 0. Reasoning by induction, we assume that it holds true
for polynomials of degree up to n− 1. Let p1(x) and p2(x) be the interpolating polynomials at
the points x0, x1, . . . , xn−2, xn−1 and x0, x1, . . . , xn−2, xn, respectively. Then

p(x) = p1(x) +
x− xn−1

xn − xn−1

(
p2(x)− p1(x)

)
(2.11)

is a polynomial of degree n that interpolates all the data points. By the induction hypothesis,

31

Chapter 2. Interpolation and approximation

it holds that

p1(x) = u0 + [u0, u1](x− x0) + . . .+ [u0, u1, . . . , un−2,un−1]
n−2∏
i=0

(x− xi),

p2(x) = u0 + [u0, u1](x− x0) + . . .+ [u0, u1, . . . , un−2,un]
n−2∏
i=0

(x− xi).

Here we used a bold font in order to emphasize the difference between the two expressions.
Substituting these expressions in (2.11), we obtain

p(x) =u0 + [u0, u1](x− x0) + . . .+ [u0, . . . , un−2]

n−2∏
i=0

(x− xi)

+
[u0, u1, . . . , un−2, un]− [u0, u1, . . . , un−2, un−1]

xn − xn−1

n−1∏
i=0

(x− xi).

In Exercise 2.4, we show that divided differences are invariant under permutations of the data
points, and so we have that

[u0, u1, . . . , un−2, un]− [u0, u1, . . . , un−2, un−1]

xn − xn−1
= [u0, . . . , un],

which enables to conclude.

Example 2.2. Assume that we are looking for the third degree polynomial going through the
following points:

(−1, 10), (0, 4), (2,−2), (4,−40).

We have to calculate the divided difference αi = [u0, . . . , ui] for i ∈ {0, 1, 2, 3}. To this end,
it is convenient to use a table:

i 0 1 2 3

[ui] 10 4 −2 −40
xi+1 − xi 1 2 2

[ui, ui+1] −6 −3 −19
xi+2 − xi 3 4

[ui, ui+1, ui+2] 1 −4
xi+3 − xi 5

[ui, ui+1, ui+2, ui+3] −1

We deduce that the expression of the interpolating polynomial is

p(x) = 10 + (−6)(x+ 1) + 1(x+ 1)x+ (−1)(x+ 1)x(x− 2) = −x3 + 2x2 +−3x+ 4.

32

Chapter 2. Interpolation and approximation

2.1.4 Interpolation error

Assume that u(x) is a continuous function and denote by û(x) its interpolation through the
points (xi, ui), where ui = u(xi) for i = 0, . . . , n. In this section, we study the behavior of the
error in the limit as n→∞.

Theorem 2.3 (Interpolation error). Assume that u : [a, b]→ R is a function in Cn+1([a, b])

and let x0, . . . , xn denote n + 1 distinct interpolation nodes. Then for all x ∈ [a, b], there
exists ξ = ξ(x) in the interval [a, b] such that

en(x) := u(x)− û(x) = u(n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn).

Proof. The statement is obvious if x ∈ {x0, . . . , xn}, so we assume from now on that x does not
coincide with an interpolation node. Let us use the compact notation ωn =

∏n
i=0(x − xi) and

introduce the function
g(t) = en(t)ωn(x)− en(x)ωn(t). (2.12)

The function g is smooth and takes the value 0 when evaluated at x0, . . . , xn, x. Since g has
n+2 roots in the interval [a, b], Rolle’s theorem implies that g′ has at least n+1 distinct roots
in (a, b). Another application of Rolle’s theorem then yields that g′′ has at least n distinct roots
in (a, b). Iterating this reasoning, we deduce that g(n+1) has one root t∗ in (a, b). From (2.12),
we calculate that

g(n+1)(t) = e(n+1)
n (t)ωn(x)− en(x)ω(n+1)

n (t) = u(n+1)(t)ωn(x)− en(x)(n+ 1)!. (2.13)

Here we employed the fact that û(n+1)(t) = 0, because û is a polynomial of degree at most n.
Evaluating (2.13) at t∗ and rearranging, we obtain that

en(x) =
u(n+1)(t∗)

(n+ 1)!
ωn(x),

which completes the proof.

As a corollary to Theorem 2.3, we deduce the following error bound.

Corollary 2.4 (Upper bound on the interpolation error). Assume that u is smooth in the
interval [a, b] and let

Cn+1 = sup
x∈[a,b]

∣∣∣u(n+1)(x)
∣∣∣ .

Then
En := sup

x∈[a,b]

∣∣en(x)∣∣ 6 Cn+1

4(n+ 1)
hn+1 (2.14)

where h is the maximum spacing between two successive interpolation nodes.

33

Chapter 2. Interpolation and approximation

Proof. By Theorem 2.3, it holds that

∀x ∈ [a, b], |en(x)| 6
Cn+1

(n+ 1)!

∣∣∣(x− x0) . . . (x− xn)∣∣∣. (2.15)

The product on the right-hand side is bounded from above by

h2

4
× 2h× 3h× 4h× · · · × nh =

n!hn+1

4
. (2.16)

The first factor comes from the fact that, if x ∈ [xi, xi+1], then

∣∣∣(x− xi)(x− xi+1)
∣∣∣ 6 (xi+1 − xi)2

4
,

because the left-hand side is maximized when x is the midpoint of the interval [xi, xi+1]. Sub-
stituting (2.16) into (2.15), we deduce the statement.

We now ask the following natural question: does En given in (2.14) tend to zero as the maximum
spacing between successive nodes tends to 0? By Corollary 2.4, the answer to this question is
positive when Cn does not grow too quickly as n → ∞. For example the interpolation error
for the function u(x) = sin(x) decreases very quickly as n→∞ when equidistant interpolation
nodes are employed, as illustrated in Figure 2.3.

Figure 2.3: Interpolation (in orange) of the function u(x) = sin(x) (in blue) using 3, 4, 6, and
8 equidistant nodes.

In some cases, however, the constant Cn grows quickly with n, to the extent that En may
increase with n; in this case, the maximum interpolation error grows when nodes are added!
The classic example illustrating this potential issue is that of the Runge function:

u(x) =
1

1 + 25x2
. (2.17)

It is possible to show that, for this function, the upper bound in (2.14) tends to ∞ in the

34

Chapter 2. Interpolation and approximation

limit as the number n of interpolation nodes increases. We emphasize that this does not prove
that En →∞ in the limit as n→∞, because (2.14) provides only an upper bound on the error.
In fact, the interpolation error for the Runge function can either grow or decrease, depending
on the choice of interpolation nodes. With equidistant nodes, it turns out that En → ∞, as
illustrated in Figure 2.4.

Figure 2.4: Interpolation (in orange) of the Runge function (2.17) (in blue) using 6, 10, 14, and
20 equidistant nodes.

2.1.5 Interpolation at Chebyshev nodes

Sometimes, interpolation is employed as a technique for approximating functions. The spectral
collocation method, for example, is a technique for solving partial differential equations where
a discrete solution is first calculated, and then a continuous solution is constructed using poly-
nomial or Fourier interpolation. When the interpolation nodes are not given a priori as data, it
is natural to wonder whether these can be picked in such a manner that the interpolation error,
measured in a function norm, is minimized. For example, given a continuous function u(x) and
a number of nodes n+ 1, is it possible to choose nodes x0, . . . , xn such that

E := sup
x∈[a,b]

∣∣u(x)− û(x)∣∣
is minimized? Here û is the polynomial interpolating u at the nodes. Achieving this goal in
general is a difficult task, because ξ = ξ(x) is unknown in the expression of the interpolation
error from Theorem 2.3:

en(x) =
u(n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn).

In view of this difficulty, we will focus on the simpler problem of finding interpolation nodes
such that the product (x− x0) . . . (x− xn) is minimized in the supremum norm. This problem

35

Chapter 2. Interpolation and approximation

amounts to finding the optimal interpolation nodes, in the sense that E is minimized, in the
particular case where u is a polynomial of degree n+1, because in this case u(n+1)(ξ) is a constant
factor. It turns out that this problem admits an explicit solution, which we will deduce from
the following theorem.

Theorem 2.5 (Minimum ∞ norm). Assume that p is a monic polynomial of degree n > 1:

p(x) = α0 + α1x+ · · ·+ αn−1x
n−1 + xn.

Then it holds that
sup

x∈[−1,1]

∣∣p(x)∣∣ > 1

2n−1
=: E. (2.18)

In addition, the lower bound is achieved for p∗(x) = 2−(n−1)Tn(x), where Tn is the Chebyshev
polynomial of degree n:

Tn(x) = cos(n arccosx) (−1 6 x 6 1). (2.19)

Proof. By Exercise C.5, the polynomial x 7→ 2−(n−1)Tn(x) is indeed monic, and it is clear that
it achieves the lower bound (2.18) since |Tn(x)| 6 1 for all x ∈ [−1, 1].

In order to prove (2.18), we assume by contradiction that there is a different monic polyno-
mial q of degree n such that

sup
x∈[−1,1]

∣∣q(x)∣∣ < E. (2.20)

Let us introduce xi = cos(iπ/n), for i = 0, . . . , n, and observe that

p(xi) = 2−(n−1)Tn(xi) = (−1)iE.

The function h(x) := p(x) − q(x) is a polynomial of degree at most n − 1 which, by the
assumption (2.20), is strictly positive at x0, x2, x4, . . . and strictly negative at x1, x3, x5,
Therefore, the polynomial h(x) changes sign at least n times and so, by the intermediate value
theorem, it has at least n roots. But this is impossible, because h(x) 6= 0 and h(x) is of degree
at most n− 1.

Remark 2.1 (Derivation of Chebyshev polynomials). The polynomial p∗ achieving the lower
bound in (2.18) oscillates between the values −E and E, which are respectively its minimum
and maximum values over the interval [−1, 1]. It attains the values E or −E at n+1 distinct
points x0 < . . . < xn, with x0 = −1 and xn = 1. It turns out that these properties, which can
be shown to hold a priori using Chebyshev’s equioscillation theorem, are sufficient to derive
an explicit expression for the polynomial p∗, as we formally demonstrate hereafter.

The points x1, . . . , xn−1 are local extrema of p∗, and so p′∗(x) = 0 at these nodes. We
therefore deduce that p∗ satisfies the differential equation

n2
(
E2 − p∗(x)2

)
= p′∗(x)

2(1− x2). (2.21)

36

Chapter 2. Interpolation and approximation

Indeed, both sides are polynomials of degree 2n with single roots at -1 and 1, with double roots
at x1, . . . , xn−1, and with the same coefficient of the leading power. In order to solve (2.21),
we rearrange the equation and take the square root:

p′∗(x)
E√

1− p∗(x)2

E2

= ± n√
1− x2

⇔ d
dx

(
arccos

(
p∗(x)

E

))
= ±n d

dx
arccos(x).

Integrating both sides and taking the cosine, we obtain

p∗(x) = E cos
(
C + n arccos(x)

)
.

Requiring that |p∗(−1)| = E, we deduce C = 0.

From Theorem 2.5, we deduce the following corollary.

Corollary 2.6 (Chebyshev nodes). Assume that x0 < x1 < . . . < xn are in the interval [a, b].
The supremum norm of the product ω(x) := (x−x0) · · · (x−xn) over [a, b] is minimized when

xi = a+ (b− a)
1 + cos

(
(2i+1)π
2(n+1)

)
2

(2.22)

Proof. We consider the affine change of variable

ζ : [−1, 1]→ [a, b];

y 7→ a+ b+ y(b− a)
2

.

The function

p(y) :=
2n+1

(b− a)n+1
ω
(
ζ(y)

)
=

2n+1

(b− a)n+1

(
ζ(y)− x0

)
· · ·
(
ζ(y)− xn

)
=
(
y − y0

)
· · ·
(
y − yn

)
, yi = ζ−1(xi),

is a monic polynomial of degree n+ 1 such that

sup
y∈[−1,1]

|p(y)| = 2n+1

(b− a)n+1
sup

x∈[a,b]
|(x− x0) . . . (x− xn)|. (2.23)

By Theorem 2.5, the left-hand side is minimized when p is equal to 2−nTn+1, i.e. when the roots
of p coincide with the roots of Tn+1. This occurs when

yi = ζ−1(xi) = cos
(
(2i+ 1)π

2(n+ 1)

)
.

Applying the inverse change of variable xi = ζ(yi), we deduce the result.

37

Chapter 2. Interpolation and approximation

Corollary 2.6 is useful for interpolation. The nodes

xi = a+ (b− a)
1 + cos

(
(2i+1)π
2(n+1)

)
2

, i = 0, . . . , n, (2.24)

are known as Chebyshev nodes and, more often than not, employing these nodes for interpolation
produces much better results than using equidistant nodes, both in the case where u is a
polynomial of degree n + 1, as we just proved, but also for general u. As an example we plot
in Figure 2.5 the interpolation of the Runge function using Chebyshev nodes. In this case, the
interpolating polynomial converges uniformly to the Runge function as we increase the number
of interpolation nodes!

Figure 2.5: Interpolation (in orange) of the Runge function (2.17) (in blue) using 10, 15, 20,
and 30 Chebyshev nodes.

2.1.6 Hermite interpolation

Hermite interpolation, sometimes also called Hermite–Birkoff interpolation, generalizes La-
grange interpolation to the case where, in addition to the function values u0, . . . , un, the values
of some of the derivatives are given at the interpolation nodes. For simplicity, we assume in this
section that only the first derivative is specified. In this case, the aim of Hermite interpolation
is to find, given data (xi, ui, u

′
i) for i ∈ {0, . . . , n}, a polynomial û of degree at most 2n+1 such

that
∀i ∈ {0, . . . , n}, û(xi) = ui, û′(xi) = u′i.

In order to construct the interpolating polynomial, it is useful to define the functions

ψi(x) =
n∏

j=0,j 6=i

(
x− xj
xi − xj

)2

, i = 0, . . . , n.

38

Chapter 2. Interpolation and approximation

The function ψi is the square of the usual Lagrange polynomials associated with xi, and it
satisfies

ψi(xi) = 1, ψ′
i(xi) =

n∑
j=0,j 6=i

2

xi − xj
, ∀j 6= i ψi(xj) = ψ′

i(xj) = 0.

We consider the following ansatz for û:

û(x) =
n∑

i=0

ψi(x)qi(x),

where qi are polynomials to be determined of degree at most one, so that û is of degree at
most 2n+ 1. We then require

û(xi) = qi(xi), û′(xi) = ψ′
i(xi)q(xi) + q′(xi).

From the first equation, we deduce that qi(xi) = ui, and from the second equation we then
have q′(xi) = û′(xi)− ψ′

i(xi)ui. We conclude that the interpolating polynomial is given by

û(x) =

n∑
i=0

ψi(x)
(
ui +

(
u′i − ψ′

i(xi)ui
)
(x− xi)

)
.

The following theorem gives an expression of the error.

Theorem 2.7 (Hermite interpolation error). Assume that u : [a, b] → R is a function in
C2n+2([a, b]) and let û denote the Hermite interpolation of u at the nodes x0, . . . , xn. Then
for all x ∈ [a, b], there exists ξ = ξ(x) in the interval [a, b] such that

u(x)− û(x) = u(2n+2)(ξ)

(2n+ 2)!
(x− x0)2 . . . (x− xn)2.

Proof. See Exercise 2.8.

2.1.7 Piecewise interpolation

The interpolation methods we discussed so far are in some sense global; they aim to construct
one polynomial that goes through all the data points. This approach is attractive because
the interpolant is infinitely smooth but, as we observed, it is not always fruitful, in particular
when equidistant interpolation nodes are employed. An alternative approach is to divide the
domain in a number of small intervals and perform polynomial interpolation within each interval.
Although the resulting interpolating function is usually not smooth over the full domain, this
“local” approach to interpolation is more robust.

Several methods belong in the category of piecewise interpolation. We mention, for instance,
piecewise Lagrange interpolation and cubic splines interpolation. In this section, we briefly
describe the former method, which is widely used in the context of the finite element method.
Information on the latter method is available in [10, Section 8.7.1.].

39

Chapter 2. Interpolation and approximation

For simplicity, we illustrate the method in dimension 1, but piecewise Lagrange interpo-
lation can be extended to several dimensions. Assume that we wish to approximate a func-
tion u : [a, b] → R. We consider a subdivision a = x0 < x1 < . . . < xn = b of the interval [a, b]
and let h denote the maximum spacing:

h = max
i∈{0,...,n−1}

|xi+1 − xi|.

Within each subinterval Ii = [xi, xi+1], we consider a further subdivision

xi = x
(0)
i < x

(1)
i < . . . < x

(m)
i = xi+1,

where the nodes x(0)i , . . . , x
(m)
i are equally spaced with distance h/m. The idea of piecewise

Lagrange interpolation is to calculate, for each interval Ii in the partition, the interpolating
polynomial pi at the nodes x(0)i , . . . , x

(m)
i . The interpolant is then defined as

û(x) = pι(x), (2.25)

where ι = ι(x) is the index of the interval to which x belongs. Since x
(m)
i = xi+1 = x

(0)
i+1,

the interpolant defined by (2.25) is continuous. If the function u belongs to Cm+1([a, b]), then
by Corollary 2.4 the interpolation error within each subinterval may be bounded from above as
follows:

sup
x∈Ii
|u(x)− û(x)| 6 Cm+1(h/m)m+1

4(m+ 1)
, Cm+1 := sup

x∈[a,b]
|u(m+1)(x)|, (2.26)

and so we deduce
sup

x∈[a,b]
|u(x)− û(x)| 6 Chm+1,

for an appropriate constant C independent of h. This equation shows that the error is guaran-
teed to decrease to 0 in the limit as h → 0. In practice, the number m of interpolation nodes
within each interval can be small.

2.2 Approximation

In this section, we focus on the subject of approximation, both of discrete data points and of
continuous functions. We begin, in Section 2.2.1 with a discussion of least squares approximation
for data points, and in Section 2.2.2 we focus on function approximation in the mean square
sense.

2.2.1 Least squares approximation of data points

Consider n+1 distinct x values x0 < . . . < xn, and suppose that we know the values u0, . . . , un
taken by an unknown function u when evaluated at these points. We wish to approximate the
function u by a function of the form

û(x) =
m∑
i=0

αiϕi(x) ∈ Span{ϕ0, . . . , ϕm}, (2.27)

40

Chapter 2. Interpolation and approximation

for some m < n. In many cases of practical interest, the basis functions ϕ0, . . . , ϕm are polyno-
mials. In contrast with interpolation, here we seek a function û in a finite-dimensional function
space of dimension m strictly lower than the number of data points. In order for û to be a good
approximation, we wish to find coefficients α0, . . . , αm such that the following linear system is
approximately satisfied.

Aα :=

ϕ0(x0) ϕ1(x0) . . . ϕm(x0)

ϕ0(x1) ϕ1(x1) . . . ϕm(x1)

ϕ0(x2) ϕ1(x2) . . . ϕm(x2)
...

...
...

ϕ0(xn−2) ϕ1(xn−2) . . . ϕm(xn−2)

ϕ0(xn−1) ϕ1(xn−1) . . . ϕm(xn−1)

ϕ0(xn) ϕ1(xn) . . . ϕm(xn)

α0

α1

...
αm

 ≈

u0

u1

u2
...

un−2

un−1

un

=: b.

In general, since the matrix on the left-hand side has more lines than columns, there does not
exist an exact solution to this equation. In order to find an approximate solution, a natural
approach is to find coefficients α0, . . . , αm such that the residual vector r = Aα− b is small in
some vector norm. A particularly popular approach, known as least squares approximation, is
to minimize the Euclidean norm of r or, equivalently, the square of the Euclidean norm:

‖r‖2 =
n∑

i=0

|ui − û(xi)|2 =
n∑

i=0

ui − m∑
j=0

αjϕj(xi)

2

.

Let us denote the right-hand side of this equation by J(α), which we view as a function of the
vector of coefficients α. A necessary condition for a∗ to be a minimizer is that ∇J(α∗) = 0.
The gradient of J , written as a column vector, is given by

∇J(α) = ∇
(
(Aα− b)T (Aα− b)

)
= ∇

(
αT (ATA)α− bAα−αTATb+ bTb)

)
= 2(ATA)α− 2ATb.

We deduce that α∗ solves the linear system

ATAα∗ = ATb, (2.28)

where the matrix on the left-hand side is given by:

ATA :=

∑n

i=0 ϕ0(xi)ϕ0(xi)
∑n

i=0 ϕ0(xi)ϕ1(xi) . . .
∑n

i=0 ϕ0(xi)ϕm(xi)∑n
i=0 ϕ1(xi)ϕ0(xi)

∑n
i=0 ϕ1(xi)ϕ1(xi) . . .

∑n
i=0 ϕ1(xi)ϕm(xi)

...
...

...∑n
i=0 ϕm(xi)ϕ0(xi)

∑n
i=0 ϕm(xi)ϕ1(xi) . . .

∑n
i=0 ϕm(xi)ϕm(xi)

 .

41

Chapter 2. Interpolation and approximation

Equation (2.28) is a system of m equations with m unknowns, which admits a unique solution
provided that ATA is full rank or, equivalently, the columns of A are linearly independent. The
linear equations (2.28) are known as the normal equations. As a side note, we mention that
the solution α∗ = (ATA)−1ATb coincides with the maximum likelihood estimator for α under
the assumption that the data is generated according to ui = u(xi) + εi, for some function
u ∈ Span{ϕ0, . . . , ϕm} and random noise εi ∼ N (0, 1).

Remark 2.2. From equation (2.28) we deduce that

Aα∗ = A(ATA)−1ATb.

The matrix ΠA := A(ATA)−1AT on the right-hand side is the orthogonal projection operator
onto col(A) ⊂ Rn, the subspace spanned by the columns of A. Indeed, it holds that Π2

A = ΠA,
which is the defining property of a projection operator.

To conclude this section, we note that the matrix A+ = (ATA)−1AT is a left inverse of the
matrix A, because A+A = I. It is also called the Moore–Penrose inverse or pseudoinverse of the
matrix A, which generalizes the usual inverse matrix. In Julia, the backslash operator silently
uses the Moore–Penrose inverse when employed with a rectangular matrix. Therefore, solving
the normal equations (2.28) can be achieved by just writing α = A\b.

2.2.2 Mean square approximation of functions

The approach described in Section 2.2.1 can be generalized to the setting where the actual
function u, rather than just discrete evaluations of it, is available. In this section, we seek an
approximation of the form (2.27) such that the error û(x) − u(x), measured in some function
norm, is minimized. Of course, the solution to this minimization problem depends in general on
the norm employed, and may in some cases not even be unique. Instead of specifying a particular
norm, as done in Section 2.2.1, in this section we retain some generality and assume only that
the norm is induced by an inner product on the space of real-valued continuous functions:

〈•, •〉 : C([a, b])× C([a, b])→ R. (2.29)

In other words, we seek to minimize

J(α) := ‖û− u‖2 = 〈û− u, û− u〉.

This is again a function of the m + 1 variables α0, . . . , αm. Before calculating its gradient, we
rewrite the function J(α) in a simpler form:

J(α) =

〈
u−

m∑
j=0

αjϕj , u−
m∑
k=0

αkϕk

〉

=

m∑
j=0

m∑
k=0

αjαk〈ϕj , ϕk〉 − 2

m∑
j=0

αj〈u, ϕj〉+ 〈u, u〉 = αTGα− 2bTα+ 〈u, u〉,

42

Chapter 2. Interpolation and approximation

where we introduced

G :=

〈ϕ0, ϕ0〉 〈ϕ0, ϕ1〉 . . . 〈ϕ0, ϕm〉
〈ϕ1, ϕ0〉 〈ϕ1, ϕ1〉 . . . 〈ϕ1, ϕm〉

...
...

...
〈ϕm, ϕ0〉 〈ϕm, ϕ1〉 . . . 〈ϕm, ϕm〉

 , b :=

〈u, ϕ0〉
〈u, ϕ1〉

...
〈u, ϕm〉

 . (2.30)

Employing the same approach as in the previous section, we then obtain ∇J(α) = Gα− b, and
so the minimizer of J(α) is the solution to the equation

Gα = b. (2.31)

The matrix G, known as the Gram matrix, is positive semi-definite and nonsingular provided
that the basis functions are linearly independent, see Exercise 2.9. Therefore, the solution α∗

exists and is unique. In addition, since the Hessian of J is equal to G, the vector α∗ is indeed
a minimizer. Note that if 〈•, •〉 is defined as a finite sum of the form

〈f, g〉 =
n∑

i=0

f(xi)g(xi), (2.32)

then (2.31) coincides with the normal equations (2.28) from the previous section. We remark
that (2.32) is in fact not an inner product on the space of continuous functions, but it is an
inner product on the space of polynomials of degree less than or equal to n.

In practice, the matrix and right-hand side of the linear system (2.31) can usually not be
calculated exactly, because the inner product 〈•, •〉 is defined through an integral; see (2.33) in
the next section.

Remark 2.3. Rewriting the normal equations (2.31) in terms of û we obtain

〈û− u, ϕ0〉 = 0, . . . , 〈û− u, ϕm〉 = 0.

Therefore, the optimal approximation û ∈ Span{ϕ0, . . . , ϕm} satisfies

∀v ∈ Span{ϕ0, . . . , ϕm}, 〈û− u, v〉 = 0.

This shows that the optimal approximation û, in the sense of the norm ‖•‖, is the orthogonal
projection of u onto Span{ϕ0, . . . , ϕm}.

2.2.3 Orthogonal polynomials

The Gram matrix G in (2.31) is equal to the identity matrix when the basis functions are
orthonormal for the inner product considered. In this case, the solution to the linear system is

αi = 〈u, ϕi〉, i = 0, . . . ,m,

43

Chapter 2. Interpolation and approximation

and so the best approximation û (for the norm induced by the inner product considered!) is
simply given by

û =

m∑
i=0

〈u, ϕi〉ϕi.

The coefficients 〈u, ϕi〉 of the basis functions in this expansion are called Fourier coefficients.
Given a finite dimensional subspace S of the space of continuous functions, an orthonormal basis
can be constructed via the Gram–Schmidt process. In this section, we focus on the particular
case where S = P(n) – the subspace of polynomials of degree less than or equal to n. Another
widely used approach, which we do not explore in this course, is to use trigonometric basis
functions. We also assume that the inner product (2.29) is of the form

〈f, g〉 =
∫ b

a
f(x)g(x)w(x)dx, (2.33)

where w(x) is a given nonnegative weight function such that∫ b

a
w(x)dx > 0.

Let ϕ0(x), ϕ1(x), ϕ2(x) . . . denote the orthonormal polynomials obtained by applying the Gram–
Schmidt procedure to the monomials 1, x, x2, These depend in general on the weight w(x)
and on the interval [a, b]. A few of the popular classes of orthogonal polynomials are presented
in the table below:

Name w(x) [a, b]

Legendre 1 [−1, 1]

Chebyshev 1√
1−x2

(−1, 1)

Hermite exp
(
−x2

2

)
[−∞,∞]

Laguerre e−x [0,∞]

Orthogonal polynomials have a rich structure, and in the rest of this section we prove
some of their key properties, one of which will be very useful in the context of numerical
integration in Chapter 3. We begin by showing that orthogonal polynomials have distinct real
roots.

Proposition 2.8. Assume for simplicity that w(x) > 0 for all x ∈ [a, b], and let ϕ0, ϕ1, . . .

denote orthonormal polynomials of increasing degree for the inner product (2.33). Then for
all n ∈ N, the polynomial ϕn has n distinct roots in the open interval (a, b).

Proof. Reasoning by contradiction, we assume that ϕn changes sign at only k < n points of the
open interval (a, b), which we denote by x1, . . . , xk. Then

ϕn(x)× (x− x0)(x− x1) . . . (x− xk)

44

Chapter 2. Interpolation and approximation

is either everywhere nonnegative or everywhere nonpositive over [a, b]. But then∫ b

a
ϕn(x)× (x− x1) . . . (x− xk)w(x)dx

is nonzero, which is a contradiction because the product (x− x1) . . . (x− xk) is a polynomial of
degree k, which is orthogonal to ϕn by assumption. Indeed, being orthogonal to ϕ0, . . . , ϕn−1,
the polynomial ϕn is also orthogonal to any linear combination of these polynomials.

Next, we show that orthogonal polynomials satisfy a three-term recurrence relation.

Proposition 2.9. Assume that ϕ0, ϕ1, . . . are orthonormal polynomials for some inner prod-
uct of the form (2.33) such that ϕi is of degree i. Then

∀n ∈ {1, 2, . . . }, αn+1ϕn+1(x) = (x− βn)ϕn(x)− αnϕn−1(x), (2.34)

where
αn = 〈xϕn, ϕn−1〉, βn = 〈xϕn, ϕn〉.

In addition, α1ϕ1(x) = (x− β0)ϕ0(x).

Proof. Since xϕn(x) is a polynomial of degree n+ 1, it may be decomposed as

xϕn(x) =

n+1∑
i=0

γn,iϕi(x). (2.35)

Taking the inner product of both sides of this equation with ϕi and employing the orthonormality
assumption, we obtain an expression for the coefficients:

γn,i = 〈xϕn, ϕi〉.

From the expression (2.33) of the inner product, it is clear that 〈xϕn, ϕi〉 = 〈ϕn, xϕi〉. Since xϕi

is a polynomial of degree i + 1 and ϕn is orthogonal to all polynomials of degree strictly less
than n, we deduce that γn,i = 0 if i < n− 1. Consequently, we can rewrite the right-hand side
of (2.35) as a sum involving only three terms

xϕn(x) = 〈xϕn, ϕn−1〉ϕn−1(x) + 〈xϕn, ϕn〉ϕn(x) + 〈xϕn, ϕn+1〉ϕn+1(x). (2.36)

Since 〈xϕn, ϕn+1〉 = 〈xϕn+1, ϕn〉, we obtain the statement after rearranging.

Remark 2.4. Notice that the polynomials in Proposition 2.9 are orthonormal by assumption,
and so the coefficient αn+1 is just a normalization constant. We deduce that

ϕn+1(x) =
(x− βn)ϕn(x)− αnϕn−1(x)

‖(x− βn)ϕn(x)− αnϕn−1(x)‖
,

which enables to calculate the orthogonal polynomials recursively.

45

Chapter 2. Interpolation and approximation

2.2.4 Orthogonal polynomials and numerical integration: an introduction �

Equation (2.36) may be rewritten in matrix form as follows:

xϕ0(x)

xϕ1(x)

xϕ2(x)
...

xϕm−1(x)

xϕm(x)

=

β0 α1

α1 β1 α2

α2 β2 α3

.
αm−1 βm−1 αm

αm βm

ϕ0(x)

ϕ1(x)

ϕ2(x)
...

ϕm−1(x)

ϕm(x)

+

0

0

0
...
0

αm+1ϕm+1(x)

.

Let T denote the matrix on the left-hand side of this equation, and let r0, . . . , rm denote the
roots of ϕm+1. By Proposition 2.8, these are distinct and all belong to the interval (a, b). The
second term on the right-hand side cancels out when x is a root of ϕm+1, and so

∀r ∈
{
r0, . . . , rm

}
,

rϕ0(r)

rϕ1(r)
...

rϕm−1(r)

rϕm(r)

=

β0 α1

α1 β1 α2

.
αm−1 βm−1 αm

αm βm

ϕ0(r)

ϕ1(r)
...

ϕm−1(r)

ϕm(r)

.

In other words, for any root r of ϕm+1, the vector
(
ϕ0(r) . . . ϕm(r)

)T
is an eigenvector of the

matrix T, with associated eigenvalue equal to r. Since T is a symmetric matrix, the eigenvectors
associated with distinct eigenvalues are orthogonal for the Euclidean inner product of Rm+1, so
given that the eigenvalues of T are distinct, we deduce that

∀i 6= j,

m∑
i=0

ϕi(ri)ϕi(rj) = 0. (2.37)

Let us construct the matrix

P =

ϕ0(r0) ϕ1(r0) . . . ϕm(r0)

ϕ0(r1) ϕ1(r1) . . . ϕm(r1)

ϕ0(r2) ϕ1(r2) . . . ϕm(r2)
...

... . . .
...

ϕ0(rm) ϕ1(rm) . . . ϕm(rm)

.

Equation (2.37) indicates that the rows of P are orthogonal, and so the matrix D = PPT is
diagonal with elements given by

dii =

m∑
j=0

|ϕj(ri)|2, i = 0, . . . ,m.

46

Chapter 2. Interpolation and approximation

(Here we start counting the rows from 0 for convenience.) Since PPTD−1 = I, we deduce that
the inverse of P is given by P−1 = PTD−1. Consequently,

PTD−1P = P−1P = I,

which means that the columns of P are orthonormal for the inner product (x,y) 7→ xTD−1y.
In other words, the polynomials ϕ1, . . . , ϕm are orthonormal for the inner product

〈•, •〉m+1 : P(m)× P(m)→ R;

(p, q) 7→
∑m

i=0

p(ri)q(ri)

dii
.

We have thus shown that, if ϕ0, ϕ1, ϕ2, . . . is a family of orthonormal polynomials for an inner
product 〈•, •〉, then these are also orthonormal for the inner product 〈•, •〉m+1. We reformulate
our findings in the following result where, since m was arbitrary in the previous reasoning, we
add a superscript to indicate when the quantities involved depend on m.

Theorem 2.10. Orthonormal polynomials ϕ0, . . . , ϕm for the inner product

〈f, g〉 =
∫ b

a
f(x)g(x)w(x)dx

are also orthonormal for the inner product

〈f, g〉m+1 =

m∑
i=0

f
(
r
(m+1)
i

)
g
(
r
(m+1)
i

)
w

(m+1)
i ,

where r(m+1)
0 , . . . , r

(m+1)
m are the roots of ϕm+1 and the weights w(m+1)

i are given by

w
(m+1)
i =

1∑m
j=0

∣∣∣ϕj

(
r
(m+1)
i

)∣∣∣2 , i = 0, . . . ,m.

As an immediate corollary, we deduce that

∀(p, q) ∈ P(m)× P(m), 〈p, q〉 = 〈p, q〉m+1, (2.38)

Indeed, denoting by p = α0ϕ0 + · · ·+ αmϕm and q = β0ϕ0 + · · ·+ βmϕm the expansions of the
polynomials p and q in the orthonormal basis, we have

〈p, q〉 = 〈α0ϕ0 + · · ·+ αmϕm, β0ϕ0 + · · ·+ βmϕm〉

=
m∑
i=0

m∑
j=0

αiβj〈ϕi, ϕj〉 = α0β0 + · · ·+ αmβm =
m∑
i=0

m∑
j=0

αiβj〈ϕi, ϕj〉m+1

= 〈α0ϕ0 + · · ·+ αmϕm, β0ϕ0 + · · ·+ βmϕm〉m+1 = 〈p, q〉m+1.

To conclude this section, we prove the following statement, which is another consequence
of Theorem 2.10 and has applications to numerical integration.

47

Chapter 2. Interpolation and approximation

Theorem 2.11. It holds that

∀p ∈ P(2m+ 1),

∫ b

a
p(x)w(x)dx =

m∑
i=0

p
(
r
(m+1)
i

)
w

(m+1)
i . (2.39)

Proof. Taking q = 1 in (2.38) and employing the definitions of 〈•, •〉 and 〈•, •〉m+1, we have
that (2.38) is satisfied for any p ∈ P(m). Next, any polynomial p ∈ P(2m + 1) may be
decomposed as p(x) = ϕm+1(x)q(x) + ρ(x), for some polynomial q of degree m (the quotient
of the polynomial division of p by ϕm+1) and some polynomial ρ of degree lower than or equal
to m (the remainder of the polynomial division). Therefore, since (2.39) was already shown to
hold for polynomials of degree up to m, we obtain∫ b

a
p(x)w(x)dx =

∫ b

a
ϕm+1(x)q(x)w(x)dx+

∫ b

a
ρ(x)w(x)dx

= 0 +

∫ b

a
ρ(x)w(x)dx = 0 +

m∑
i=0

ρ (ri)wi

=
m∑
i=0

ϕm+1 (ri) q (ri)wi +
m∑
i=0

ρ (ri)wi =
m∑
i=0

p (ri)wi,

where we dropped the (m+1) superscript for conciseness and we used, in the penultimate in-
equality, the fact that r0, . . . , rm are the roots of the polynomial ϕm+1.

Since the left-hand side of (2.39) is an integral and the right-hand side is a sum, we have
just constructed an integration formula, which enjoys a very nice property: it is exact for
polynomials of degree up to 2m + 1! A formula of this type is called a quadrature formula,
with m+ 1 nodes r(m+1)

0 , . . . , r
(m+1)
m and associated weights w(m+1)

0 , . . . , w
(m+1)
m . Note that the

nodes and weights of the quadrature depend on the weight w(x) and on the degree m. We will
revisit this subject in Chapter 3.

2.3 Exercises

� Exercise 2.1. Find the polynomial p(x) = ax + b (a straight line) that goes through the
points (x0, u0) and (x1, u1).

� Exercise 2.2. Find the polynomial p(x) = ax2 + bx + c (a parabola) that goes through the
points (0, 1), (1, 3) and (2, 7).

� Exercise 2.3. Prove the following recurrence relation for Chebyshev polynomials:

Ti+1(x) = 2xTi(x)− Ti−1(x), i = 1, 2,

� Exercise 2.4. Show by recursion that

[u0, u1, . . . , un] =

n∑
j=0

uj∏
k∈{0,...,n}\{j}(xj − xk)

. (2.40)

48

Chapter 2. Interpolation and approximation

Deduce from this identity that

[u0, u1, . . . , un] = [uσ1 , uσ2 , . . . , uσn],

for any permutation σ of (0, 1, 2, . . . , n).

Solution. The first statement (2.40) is clear when n = 0. Reasoning by induction, we assume that the
statement is true up to n− 1 and prove that it then also holds for n. Using the definition (2.10) and
the induction hypothesis, we obtain that

[u0, u1, . . . , un] =
[u1, . . . , un]− [u0, . . . , un−1]

xn − x0

=
1

xn − x0

 n∑
j=1

uj∏
k∈{1,...,n}\{j}(xj − xk)

−
n−1∑
j=0

uj∏
k∈{0,...,n−1}\{j}(xj − xk)

Rewriting the fractions with a common denominator leads to

[u0, u1, . . . , un] =
1

xn − x0

n∑
j=0

uj
(
(xj − x0)− (xj − xn)

)∏
k∈{0,...,n}\{j}(xj − xk)

=

n∑
j=0

uj∏
k∈{0,...,n}\{j}(xj − xk)

,

which concludes the proof of the first statement. The second statement then follows immediately,
because the right-hand side of (2.40) is invariant under permutations. 4

� Exercise 2.5. Using the Gregory–Newton formula, find an expression for

n∑
i=1

i4.

� Exercise 2.6. Let (f0, f1, f2, . . .) = (1, 1, 2, . . .) denote the Fibonacci sequence. Prove that
there does not exist a polynomial p such that

∀n ∈ N, fn = p(n). (2.41)

Solution. Assume by contradiction that p : R → R is a polynomial such that (2.41) is satisfied, and
let n be the degree of this polynomial. Then it holds that ∆n+1p = 0 (2.5), where both sides are
viewed as functions from R to R. On the other hand, since p(n) = fn for all n ∈ N, we can calculate
explicitly the values of taken by the function ∆mp when evaluated at all the natural numbers, for all
m ∈ N. We collate a few values in the following table.

n 0 1 2 3 4 5 6
∆0p(n) 1 1 2 3 5 8 13
∆1p(n) 0 1 1 2 3 5 8
∆2p(n) 1 0 1 1 2 3 5
∆3p(n) −1 1 0 1 1 2 3

It appears from these calculations that the Fibonacci sequence is shifted one position to the right with

49

Chapter 2. Interpolation and approximation

each additional application of ∆. In other words, our calculations suggest that

∀(m,n) ∈ N×N, ∆mp(m+ n) = fn, (2.42)

which is a contradiction. To conclude, let us prove (2.42) rigorously. This equation is obvious for
m = 0 by assumption. Now, reasoning by contradiction, we assume that (2.42) is true up to m. Then
by definition of the difference operator ∆, we have

∆m+1p(m+ n+ 1) = ∆mp(m+ n+ 2)−∆mp(m+ n+ 1)

= fn+2 − fn+1 = fn.

Here, we used the induction hypothesis (2.42) in the second equality, and the definition of the Fibonacci
series in the third one. 4

� Exercise 2.7. Using the Gregory–Newton formula, show that

∀n ∈ N, 2n = 1 + n+
n2

2!
+
n3

3!
+
n4

4!
+ · · · (2.43)

Solution. Equation (2.43) is a particular case of the following more general statement: for any function
f ∈ R→ R, it holds that

∀n ∈ N, f(n) = f(0) + ∆f(0)n+∆2f(0)
n2

2!
+ ∆3f(0)

n3

3!
+ ∆4f(0)

n4

4!
+ · · · (2.44)

In order to show this equation, it is sufficient to prove that for any n∗ ∈ N, the two sides of (2.44)
coincide for every n ∈ {0, . . . , n∗}. Since np = 0 for all n ∈ {0, . . . , p − 1} by definition (2.4) of the
falling powers, the right-hand side of (2.44) coincides for all n ∈ {0, . . . , n∗} with

g(n) = f(0) + ∆f(0)n+∆2f(0)
n2

2!
+ · · ·+∆n∗f(0)

nn∗

n∗!
.

We recognize on the right-hand side Newton’s expression of the interpolating polynomial through
the points

(
0, f(0)

)
, . . . ,

(
n∗, f(n∗)

)
, and so g(n) = f(n) for all n ∈ {0, . . . , n∗}, which concludes the

proof. 4

Remark 2.5. Remarkably, equation (2.43) holds in fact for any n ∈ R>0. However, showing
this more general statement is beyond the scope of this course.

� Exercise 2.8. Prove Theorem 2.7.

� Exercise 2.9. Show that the matrix G in (2.30) is positive definite if the basis func-
tions ϕ0, . . . , ϕm are linearly independent.

� Exercise 2.10. Write a Julia code for interpolating the following function using a polynomial
of degree 20 over the interval [−1, 1].

f(x) = tanh
(
x+ 1/2

ε

)
+ tanh

(x
ε

)
+ tanh

(
x− 1/2

ε

)
, ε = .01.

50

Chapter 2. Interpolation and approximation

Use equidistant and then Chebyshev nodes, and compare the two approaches in terms of accuracy.
Plot the function f together with the approximating polynomials.

� Exercise 2.11. Write from scratch a function to obtain the polynomial interpolating the
data points

(x0, u0), . . . , (xn, un).

Your function should return the values taken by the interpolating polynomial when evaluated at
the points X0, . . . , Xm. You may use the following code to test your function

import Plots
function interp(X, x, u)

Your code comes here
end

n, m = 10, 100
f(t) = cos(2π * t)
x = LinRange(0, 1, n)
X = LinRange(0, 1, m)
u = f.(x)
U = interp(X, x, u)
Plots.plot(X, f.(X), label="Original function")
Plots.plot!(X, U, label="Interpolation")
Plots.scatter!(x, u, label="Data")

� Exercise 2.12. We wish to use interpolation to approximate the following parametric func-
tion, called an epitrochoid:

x(θ) = (R+ r) cos θ + d cos
(
R+ r

r
θ

)
(2.45)

y(θ) = (R+ r) sin θ − d sin
(
R+ r

r
θ

)
, (2.46)

with R = 5, r = 2 and d = 3, and for θ ∈ [0, 4π]. Write a Julia program to interpolate x(θ)
and y(θ) using 40 equidistant points. Use the BigFloat format in order to reduce the impact
of round-off errors. After constructing the polynomial interpolations x̂(θ) and ŷ(θ), plot the
parametric curve θ 7→

(
x̂(θ), ŷ(θ)

)
. Your plot should look similar to Figure 2.6.

� Exercise 2.13 (Solving the Laplace equation using a spectral method). The classical Laplace
equation with homogeneous Dirichlet boundary conditions in dimension 1 reads

Find u ∈ C2
(
[0, 1]

)
such that

{
− u′′(x) = f(x) ∀x ∈ (0, 1),

u(0) = u(1) = 0.
(2.47)

Our goal in this exercise is to approximate the exact solution u(x) using interpolation. Specifi-
cally, we propose to proceed in two steps:

• Interpolate the right-hand side using a polynomial with equidistant nodes. That is, find a

51

Chapter 2. Interpolation and approximation

Figure 2.6: Solution for Exercise 2.12.

polynomial f̂ ∈ P(n) such that

∀i ∈ {0, . . . , n}, f̂(xi) = f(xi), xi =
i

n
.

• Solve (2.47) with f̂ instead of f . Since f̂ is a polynomial, this can be achieved analytically.

Implement this program in the case where

f(x) = exp
(
sin(2πx)

)
cos(2πx)2 − exp

(
sin(2πx)

)
sin(2πx),

and compare for various values of n the approximate solution you obtain with the exact solution
to (2.47), which is given by u(x) = (2π)−2 exp

((
sin(2πx)

)
− 1
)

in this case.

� Exercise 2.14 (Modeling the vapor pressure of mercury). The dataset loaded through the
following Julia commands contains data on the vapor pressure of mercury as a function of the
temperature.

import RDatasets
data = RDatasets.dataset("datasets", "pressure")

Find a low-dimensional mathematical model of the form

p(T) = exp
(
α0 + α1T + α2T

2 + α3T
3
)

(2.48)

for the pressure as a function of the temperature. Plot the approximation together with the data.
An example solution is given in Figure 2.7.

� Exercise 2.15. Let u : [0, 2π]→ R and

xk =

(
2kπ

2n+ 1

)
, k = 0, . . . , 2n. (2.49)

52

Chapter 2. Interpolation and approximation

Figure 2.7: Solution for Exercise 2.14.

We wish to interpolate u at these nodes using complex exponentials:

û =
n∑

k=−n

akeikx.

Write a function

function fourier_interpolate(u, x, X)
Your code comes here ...

end

which takes three arguments:

• u is the function to interpolate;

• x are the interpolation nodes, given by (2.49) in the test code below; you can assume that
this array contains an odd number of elements.

• X is a one-dimensional array of values on the x axis.

The function should return a one-dimensional array containing the values that û takes when
evaluated at the points contained in X. You can use the following code to test your function:

import Plots
n, m = 5, 1000
x = 2π/(2n+1) * (0:2n)
X = 2π/m * (0:m)

u(x) = sign(x - π)
u(x) = exp(sin(x) + cos(5x))
u(x) = x^2 * (x - 2π)^2 / π^4

@time U = fourier_interpolate(u, x, X)
Plots.plot(X, u.(X), label="u(x)", legend=:bottomright)

53

Chapter 2. Interpolation and approximation

Plots.plot!(X, U, label="û(x)")
Plots.scatter!(x, u.(x), label="Interpolation points")
Plots.xlims!(0, 2π)

An example of the output plot is illustrated in Figure 2.8.

Figure 2.8: Example solution for Exercise 2.15.

2.4 Discussion and bibliography

A comprehensive study of approximation theory would require to cover the L∞ setting as well
as other functional settings. A pillar of L∞ approximation theorem is Chebyshev’s equioscil-
lation theorem, which we alluded to in Remark 2.1. An excellent introductory reference on
approximation theory is [8] (in French). See also [10, Chapter 10] and the references therein.

54

Chapter 3

Numerical integration

3.1 The closed Newton–Cotes method . 56

3.2 Composite methods with equidistant nodes 57

3.3 Richardson extrapolation and Romberg’s method 63

3.4 Methods with non-equidistant nodes 67

3.5 Introduction to probabilistic integration methods 71

3.6 Exercises . 73

3.7 Discussion and bibliography . 79

Introduction

Integrals are ubiquitous in science and mathematics. In this chapter, we are concerned with the
problem of calculating numerically integrals of the form

I =

∫
Ω
u(x)dx, (3.1)

Perhaps somewhat surprisingly, the numerical calculation of such integrals when n � 1 is still
a very active area of research today. In this chapter, however, we will focus for simplicity on
the one-dimensional setting where Ω = [a, b] ⊂ R. We assume throughout this chapter that the
function u is Riemann-integrable. Then, by definition,

I = lim
h→0

n−1∑
i=0

u(ti)(zi+1 − zi),

where a = z0 < · · · < zn = b is a partition of the interval [a, b] such that the maximum spacing
between successive x values is equal to h, and with ti ∈ [xi, xi+1] for all i ∈ {0, . . . , n− 1}.

All the numerical integration formulas that we present in this chapter are based on a deter-

55

Chapter 3. Numerical integration

ministic approximation of the form

Î =

n∑
i=0

wiu(xi), (3.2)

where x0 < . . . < xn are the integration points and w0, . . . , wn are the integration weights. In
many cases, integration formulas contain a small parameter that can be refined to improve the
accuracy of the approximation. In methods based on equidistant interpolation nodes, for exam-
ple, this parameter encodes the distance between nodes and is typically denoted by h. We shall
often use the notation Îh to emphasize the dependence of the approximation on h. The differ-
ence Eh = I − Îh is called the integration error or discretization error. The degree of precision,
defined hereafter, is an important measure of the quality of quadrature rule.

Definition 3.1. The degree of precision of an integration method is the smallest integer
number d such that the integration error is zero for all u ∈ P(d), i.e. for all the polynomials
of degree less than or equal to d.

We observe that, without loss of generality, we can assume that the integration interval is
equal to [−1, 1]. Indeed, using the change of variable

ζ : [−1, 1]→ [a, b];

y 7→ b+ a

2
+

(b− a)
2

y, (3.3)

we have ∫ b

a
u(x)dx =

∫ 1

−1
u
(
ζ(y)

)
ζ ′(y)dy =

b− a
2

∫ 1

−1
u ◦ ζ(y)dy, (3.4)

and the right-hand side is the integral of u ◦ ζ over the interval [−1, 1].

3.1 The closed Newton–Cotes method

Given a set of equidistant points −1 = x0 < · · · < xn = 1, a natural method for approximating
the integral (3.1) of a function u : [−1, 1]→ R is to first construct the interpolating polynomial û
at the nodes, and then calculate the exact integral of this polynomial. By construction, this
method is exact for polynomials of degree up to n, and so the degree of precision is equal to at
least n. Let ϕ0, . . . , ϕn denote the Lagrange polynomials associated with the integration nodes.
Then we have

I ≈
∫ 1

−1
û(x)dx =

∫ 1

−1

n∑
i=0

u(xi)ϕi(x)dx =

n∑
i=0

u(xi)

∫ 1

−1
ϕi(x)dx︸ ︷︷ ︸
wi

.

The weights are independent of the function u, and so they can be calculated a priori. The class
of integration methods obtained using this approach are known as Newton–Cotes methods. We
present a few particular cases:

56

Chapter 3. Numerical integration

• n = 1, d = 1 (trapezoidal rule):∫ 1

−1
u(x) dx ≈ u(−1) + u(1). (3.5)

• n = 2, d = 3 (Simpson’s rule):∫ 1

−1
u(x) dx ≈ 1

3
u(−1) + 4

3
u(0) +

1

3
u(1). (3.6)

• n = 3, d = 3 (Simpson’s 3
8 rule):∫ 1

−1
u(x) dx ≈ 1

4
u(−1) + 3

4
u(−1/3) + 3

4
u(1/3) +

1

4
u(1).

• n = 4, d = 5 (Boole’s rule):∫ 1

−1
u(x) dx ≈ 7

45
u(−1) + 32

45
u

(
−1

2

)
+

12

45
u (0) +

32

45
u

(
1

2

)
+

7

45
u(1).

Remark 3.1. Note that, although it is based on a quadratic polynomial interpolation, Simp-
son’s rule (3.6) has a degree of precision equal to 3. This is because any integration rule
with nodes and weights symmetric around x = 0 is exact for odd functions, in particular x3.
Likewise, the degree of precision of Boole’s rule is equal to 5.

In principle, this approach could be employed in order to construct integration rules of
arbitrary high degree of precision. In practice, however, the weights become more and more
imbalanced as the number of interpolation points increases, with some of them becoming neg-
ative. As a result, roundoff errors become increasingly detrimental to accuracy. In addition, in
cases where the interpolating polynomial does not converge to u, for example if u is Runge’s
function, the approximate integral may not converge to the correct value in the limit as n→∞,
even in exact arithmetic!

The integration rules presented in this section, which are based on equidistant nodes that
include the endpoints of the integration interval, are called closed Newton–Cotes methods. A
similar approach can be employed in order to construct to integration rules based on equidistant
nodes that do not include the endpoints; these are called open Newton–Cotes methods.

3.2 Composite methods with equidistant nodes

A natural alternative to the approach presented in Section 3.1 is to construct an integration rule
using piecewise polynomial interpolation, which we studied in Section 2.1.7. After partitioning
the integration interval in a number of subintervals, the integral can be approximated by using
one of the rules presented in Section 3.1 within each subinterval.

57

Chapter 3. Numerical integration

Composite trapezoidal rule. Let us illustrate the composite approach with an example. To
this end, we introduce a partition a = x0 < · · · < xn = b of the interval [a, b] and assume that
the nodes are equidistant with xi+1 − xi = h. Using (3.4) with a = xi and b = xi+1, we first
generalize (3.5) to an interval [xi, xi+1] as follows:∫ xi+1

xi

u(x)dx =
h

2

∫ 1

−1
u ◦ ζ(y)dy ≈ h

2

(
u ◦ ζ(−1) + u ◦ ζ(1)

)
=
h

2

(
u(xi) + u(xi+1)

)
,

where ≈ in this equation indicates approximation using the trapezoidal rule. Applying this
approximation to each subinterval of the partition, we obtain the composite trapezoidal rule:

∫ b

a
u(x)dx =

n−1∑
i=0

∫ xi+1

xi

u(x)dx ≈ h

2

n−1∑
i=0

(
u(xi) + u(xi+1)

)
=
h

2

(
u(x0) + 2u(x1) + 2u(x2) + · · ·+ 2u(xn−2) + 2u(xn−1) + u(xn)

)
. (3.7)

Like the trapezoidal rule (3.5), the composite trapezoidal rule (3.7) has a degree of precision
equal to 1. However, the integration error of the method depends on the parameter h, which
represents the width of each subinterval: for very small h, equation (3.7) is expected to provide
a good approximation of the integral. An error estimate can be obtained directly from the
formula in Theorem 2.3 for the interpolation error, provided that we assume that u ∈ C2[a, b].

Theorem 3.1 (Integration error for the composite trapezoidal rule). Let Îh denote the ap-
proximate integral calculated using (3.7). Then

∣∣I − Îh∣∣ 6 b− a
12

C2h
2, C2 := sup

ξ∈[a,b]

∣∣u′′(ξ)∣∣. (3.8)

Proof. Denoting by ûh the piecewise linear interpolation of u, we have∫ xi+1

xi

u(x)− û(x)dx =
1

2

∫ xi+1

xi

u′′
(
ξ(x)

)
(x− xi)(x− xi+1)dx.

Since (x− xi)(x− xi+1) is nonpositive over the interval [xi, xi+1], we deduce that∣∣∣∣∫ xi+1

xi

u(x)− û(x)dx
∣∣∣∣ 6 1

2

(
sup

ξ∈[a,b]

∣∣u′′(ξ)∣∣)∫ xi+1

xi

(x− xi)(xi+1 − x)dx = C2
h3

12
.

Summing the contributions of all the intervals, we obtain

∣∣I − Îh∣∣ 6 n−1∑
i=0

∣∣∣∣∫ xi+1

xi

u(x)− û(x)dx
∣∣∣∣ 6 n× C2

h3

12
=
b− a
12

C2h
2,

which concludes the proof.

The integration error therefore scales as O(h2). (Strictly speaking, we have shown only that
the integration error admits an upper bound that scales at O(h2), but it turns out that the
dependence on h of this bound is optimal).

58

Chapter 3. Numerical integration

Example 3.1 (Integration error for the composite trapezoidal rule). Let us approximate the
integral of x2 over [0, 1] via the trapezoidal rule. In other words, let us calculate the right-hand
side of ∫ 1

0
x2 dx ≈ h

2

(
x20 + 2x21 + . . .+ 2x2n−1 + x2n

)
,

which we shall denote Îh hereafter. Using xi = ih, and xn = 1, we obtain

Îh =
h

2

(
2h2

n−1∑
i=1

i2 + 1

)
=
h

2

(
h2

3
(n− 1)n(2n− 1) + 1

)
=
h

2

(
h2

3
(2n3 − 3n2 + n) + 1

)
.

Now, observing that n = 1/h yields

Îh =
h

2

(
h2

3
(2h−3 − 3h−2 + h−1) + 1

)
=
h

2

(
2

3
h−1 − 1 +

h

3
+ 1

)
=

1

3
+
h2

6
,

which is exactly the error shown by Theorem 3.1.

Composite Simpson rule. The composite Simpson rule is derived in Exercise 3.2. Given an
odd number n+ 1 of equidistant points a = x0 < x1 < · · · < xn = b, this rule is given by

Îh =
h

3

(
u(x0)+4u(x1)+2u(x2)+4u(x3)+2u(x4)+ · · ·+2u(xn−2)+4u(xn−1)+u(xn)

)
. (3.9)

This approximation is obtained by integrating the piecewise quadratic interpolant over a par-
tition of the integration interval into n/2 subintervals of equal width. Obtaining an optimal
error estimate, in terms of the dependence on h, for this integration formula is slightly more
involved.

Theorem 3.2 (Integration error for the composite Simpson rule). Let Îh denote the approx-
imate integral calculated using (3.9). Then

∣∣I − Îh∣∣ 6 (b− a)C4h
4

180
, C4 := sup

ξ∈[a,b]

∣∣∣u(4)(ξ)∣∣∣. (3.10)

Proof. For a given subinterval [x2i, x2i+2], let us denote by û2 the quadratic interpolating poly-
nomial at x2i, x2i+1, x2i+2, and by û3(•;α) the cubic interpolating polynomial relative to the
nodes x2i, x2i+1, x2i+2, α, for some α ∈ [x2i, x2i+1] that does not coincide with the integration
nodes. We have∫ x2i+2

x2i

u(x)− û2(x)dx =

∫ x2i+2

x2i

u(x)− û3(x;α)dx+

∫ x2i+2

x2i

û3(x;α)− û2(x)dx. (3.11)

The second term on the right-hand side is zero, because the integrand is a cubic polynomial
with zeros at x2i, x2i+1 and x2i+2, and because∫ x2i+2

x2i

(x− x2i)(x− x2i+1)(x− x2i+2) = 0.

59

Chapter 3. Numerical integration

By Theorem 2.3, the first term in (3.11) is bounded from above as follows:∣∣∣∣∫ x2i+2

x2i

u(x)− û3(x;α)dx
∣∣∣∣ 6 ∫ x2i+2

x2i

∣∣∣∣∣u(4)
(
ξ(x)

)
24

(x− x2i)(x− x2i+1)(x− x2i+2)(x− α)

∣∣∣∣∣ dx

6
C4

24

∫ x2i+2

x2i

∣∣(x− x2i)(x− x2i+1)(x− x2i+2)(x− α)
∣∣dx.

This inequality is valid for any α ∈ A := [x2i, x2i+2]\{x2i, x2i+1, x2i+2}. Denoting by h(α) the
integral on the right-hand side, we observe that

lim
α→x2i+1

h(α) =

∫ x2i+2

x2i

(x− x2i)(x− x2i+1)
2(x2i+2 − x)dx =

4

15
h5.

Therefore, we conclude that∣∣∣∣∫ x2i+2

x2i

u(x)− û2(x)dx
∣∣∣∣ 6 inf

α∈A

∣∣∣∣∫ x2i+2

x2i

u(x)− û3(x;α)dx
∣∣∣∣ 6 C4

90
h5.

Summing the contributions of all the subintervals, we finally obtain

|I − Îh| 6
n

2
× C4h

5

90
= (b− a)C4h

4

180
, (3.12)

which concludes the proof.

Remark 3.2. The cancellation of the second term in (3.11) also follows from the fact that the
degree of precision of the Simpson rule (3.6) is equal to 3, and so∫ x2i+2

x2i

û3(x)− û2(x)dx =
1

3
(û3 − û2)(x2i) +

4

3
(û3 − û2)(x2i+1) +

1

3
(û3 − û2)(x2i+2) = 0,

where we used the short-hand notation û3(x) = û3(x;α).

General composite quadrature rules. In view of (3.4), any quadrature rule with N + 1 inte-
gration points of the form ∫ 1

−1
u(x)dx ≈

N∑
j=0

wju(xj) (3.13)

admits a composite version for an arbitrary integration interval [a, b] obtained by applying the
rule locally in M equally-sized subintervals:

∫ b

a
u(x)dx ≈ h

2

M−1∑
i=0

N∑
j=0

wju

(
a+ ih+

h

2
+
xjh

2

)
, h :=

b− a
M

. (3.14)

Clearly, the single-interval rule (3.13) and the composite rule (3.14) have the same degree of
precision. To conclude this section, we prove a relation between this degree of precision of a
rule and the convergence rate with respect to h of the composite rule (3.14).

60

Chapter 3. Numerical integration

Theorem 3.3. Suppose that the degree of precision of the single-interval rule (3.13) is equal
to d. Then for any u ∈ C(d+1)[a, b], there is c > 0 such that

∀M > 1,
∣∣∣I[u]− Îh[u]∣∣∣ 6 chd+1, c :=

Cd+1(b− a)
(d+ 1)!

(
1 +

1

2

J∑
i=0

|wj |

)
. (3.15)

Here I[u] and Îh[u] denote respectively the left-hand side and the right-hand side of (3.14),
and Cd+1 is defined in (3.17).

Proof. Fix i ∈ {0, . . .M−1}, and let pi denote the Taylor expansion of degree d of the function u
around zi := a+ ih:

pi(x) = u(zi) + u′(zi)(x− zi) + . . .+
u(d)(zi)

d!
(x− zi)d. (3.16)

By the mean-value form of the remainder, it is simple to prove that

∀x ∈ [zi, zi+1],
∣∣u(x)− pi(x)∣∣ = Cd+1

(d+ 1)!
hd+1, Cd+1 = sup

x∈[a,b]

∣∣∣u(d+1)(x)
∣∣∣. (3.17)

Let us define the local contributions to the total integral as follows:

I(i)[u] :=

∫ zi+1

zi

u(x)dx, Î
(i)
h [u] =

h

2

N∑
i=0

wiu

(
zi +

h

2
+
xih

2

)
,

so that I[u] =
∑M−1

i=1 I(i)[u] and Îh[u] =
∑M−1

i=1 Î
(i)
h [u]. Since p is a polynomial of degree at

most d, it follows that∣∣∣I(i)[u]− Î(i)h [u]
∣∣∣ = ∣∣∣I(i)[u]− I(i)[p] + Î

(i)
h [p]− Î(i)h [u]

∣∣∣
6
∣∣∣I(i)[u]− I(i)[p]∣∣∣+∣∣∣Î(i)h [u]− Î(i)h [p]

∣∣∣= ∣∣∣I(i)[u− p]∣∣∣+∣∣∣Î(i)h [u− p]
∣∣∣,

where we used the triangle inequality and linearity in the second line. Thus, using (3.17) we
deduce that

∣∣∣I(i)[u]− Î(i)h [u]
∣∣∣ 6 Cd+1

(d+ 1)!
hd+1

∫ zi+1

zi

1dx+
h

2

Cd+1

(d+ 1)!
hd+1

J∑
i=0

|wj |

=
Cd+1

(d+ 1)!
hd+2

(
1 +

1

2

J∑
i=0

|wj |

)
.

Summing the contributions of the local errors, we obtain

∣∣∣I[u]− Îh[u]∣∣∣ 6 M−1∑
i=0

∣∣∣I(i)[u]− Î(i)h [u]
∣∣∣ 6M

Cd+1

(d+ 1)!
hd+2

(
1 +

1

2

J∑
i=0

|wj |

)
,

which leads to the result since Mh = b− a.

61

Chapter 3. Numerical integration

Remark 3.3. A few comments are in order.

• The constant c in (3.15) is not sharp in general, but the power of h is optimal.

• This result may be viewed as a generalization of Theorems 3.1 and 3.2, albeit with a
worse constant prefactor.

• Instead of the polynomial pi in (3.16), we could have used any polynomial approximation
of u such that (3.17) is satisfied, with possibly a different prefactor but the same power
of h on the right-hand side. A natural choice, for example, would have been to define pi
by interpolation through (possibly a subset or superset of) the local integration points.

• Theorem 3.3 further motivates why the degree of precision of an integration rule is an
interesting metric.

Estimating the error a posteriori. In practice, it is useful to be able to estimate the integration
error so that, if the error is deemed too large, a better approximation of the integral can be
calculated by using a smaller value for the step size h. Calculating the exact error I − Îh is
impossible in general, because this would require to know the exact value of the integral, but it is
possible to calculate a rough approximation of the error based on two numerical approximations
of the integral, as we illustrate formally hereafter for the composite Simpson rule.

Suppose that Î2h and Îh are two approximations of the integral, calculated using the compos-
ite Simpson rule with step size 2h and h, respectively. If we assume that the error proportionally
to O(h4) as (3.12) suggests, then it holds approximately that

I − Îh ≈
1

24
(I − Î2h). (3.18)

This implies that

I − Î2h = (I − Îh) + (Ih − Î2h) ≈
1

16
(I − Î2h) + (Îh − Î2h).

Rearranging this equation gives an approximation of the error for Î2h:

I − Î2h ≈
16

15
(Îh − Î2h).

Using (3.18), we can then derive an error estimate for Îh:

|I − Îh| ≈
1

15
|Îh − Î2h|. (3.19)

The right-hand side can be calculated numerically, because it does not depend on the exact
value of the integral. In practice, the two sides of (3.19) are often very close for small h. In the
code example below, we approximate the integral

I =

∫ π
2

0
cos(x)dx = 1 (3.20)

62

Chapter 3. Numerical integration

for different step sizes and compare the exact error with the approximate error obtained us-
ing (3.19). The results obtained are summarized in Table 3.1, which shows a good match
between the two quantities.

Table 3.1: Comparison between the exact integration error and the approximate integration
error calculated using (3.19).

h Exact error |I − Îh| Approximate error 1
15 |Îh − Î2h|

2−4 5.166847063531321× 10−7 5.185892840930961× 10−7

2−5 3.226500089326123× 10−8 3.229464703065806× 10−8

2−6 2.0161285974040766× 10−9 2.016591486390477× 10−9

2−7 1.2600120946615334× 10−10 1.260084925291949× 10−10

Composite Simpson's rule
function composite_simpson(u, a, b, n)

Integration nodes
x = LinRange(a, b, n + 1)
Evaluation of u at the nodes
ux = u.(x)
Step size
h = x[2] - x[1]
Approximation of the integral
return (h/3) * sum([ux[1]; ux[end]; 4ux[2:2:end-1]; 2ux[3:2:end-2]])

end

Function to integrate
u(x) = cos(x)
Integration bounds
a, b = 0, π/2
Exact integral
I = 1.0
Number of subintervals
ns = [8; 16; 32; 64; 128]
Approximate integrals
Î = composite_simpson.(u, a, b, ns)
Calculate exact and approximate errors
for i in 2:length(ns)

println("Exact error: $(I - Î[i]), ",
"Approx error: $((Î[i] - Î[i-1])/15)")

end

3.3 Richardson extrapolation and Romberg’s method

In the previous section, we showed how the integration error could be approximated based on
two approximations of the integral with different step sizes. The aim of this section is to show
that, by cleverly combining two approximations Îh and Î2h of an integral, an approximation
even better than Îh can be constructed.

63

Chapter 3. Numerical integration

This approach is based on Richardson’s extrapolation, which is a general method for ac-
celerating the convergence of sequences, with applications beyond numerical integration. The
idea is the following: assume that J(h) is an approximation with step size h of some unknown
quantity J∗ = limh→0 J(h), and that we have access to evaluations of J at h, h/2, h/4, h/8
If J extends to a smooth function over [0,H], then by Taylor expansion it holds that

J(η) = J(0) + J ′(0)η + J ′′(0)
η2

2
+ J (3)(0)

η3

3!
+ · · ·+ J (k)(0)

ηk

k!
+O(ηk+1).

Elimination of the linear error term. Let us assume that J ′(0) 6= 0, so that the leading order
term after the constant J(0) scales as η. Then we have

J(h) = J(0) + J ′(0)h+O(h2)

J(h/2) = J(0) + J ′(0)
h

2
+O(h2).

We now ask the following question: can we combine linearly J(h) and J(h/2) in order to
construct an approximation J1(h/2) of J(0) with an error scaling as O(h2)? Employing the
ansatz J1(h/2) = αJ(h) + βJ(h/2), we calculate

J1(h/2) = (α+ β)J(0) + J ′(0)h

(
α+

1− α
2

)
+O(h2). (3.21)

Since we want this expression to approximate J(0) for small h, we need to impose that α+β = 1.
Then, in order for the term multiplying h to cancel out, we require that

α+
1− α
2

= 0 ⇔ α = −1.

This yields the formula
J1(h/2) = 2J(h/2)− J(h). (3.22)

Notice that, in the case where J is a linear function, J1(h/2) is exactly equal to J(0). This
reveals a geometric interpretation of (3.22): the approximation J1(h/2) is simply the y intercept
of the straight line passing through the points

(
h/2, J(h/2)

)
and

(
h, J(h)

)
.

Elimination of the quadratic error term. If we had tracked the coefficient of h2 in the previous
paragraph, we would have obtained instead of (3.21) the following equation:

J1(h/2) = J(0)− J (2)(0)
h2

4
+O(h3).

Provided that we have access also to J(h/4), we can also calculate

J1(h/4) = 2J(h/4)− J(h/2) = J(0)− J (3)(0)
h2

16
+O(h3).

At this point, it is natural to wonder whether we can combine J1(h/2) and J1(h/4) in order to
produce an even better approximation of J(0). Applying the same reasoning as in the previous

64

Chapter 3. Numerical integration

section leads us to introduce

J2(h/4) =
4J1(h/4)− J1(h/2)

4− 1
= J(0) +O(h3).

This is an exact approximation of J(0) if J is a quadratic polynomial, indicating that J2(h/4)
is simply the y intercept of the quadratic polynomial interpolating the function J through the
three points

(
h/4, J(h/4)

)
,
(
h/2, J(h/2)

)
and

(
h, J(h)

)
.

Elimination of higher order terms. The procedure above can be repeated in order to elimi-
nate terms of higher and higher orders. The following schematic illustrates, for example, the
calculation of an approximation J3(h/8) = J(0) +O(h4).

J(h)

J(h/2) J1(h/2)

J(h/4) J1(h/4) J2(h/4)

J(h/8) J1(h/8) J2(h/8) J3(h/8)

O(h) O(h2) O(h3) O(h4).

Here, the last row indicates the scaling of the error with respect to the parameter h in the limit
as h→ 0. The linear combination in order to calculate Ji(h/2i) is always of the form

Ji(h/2
i) =

2iJi−1(h/2
i)− Ji−1(h/2

i−1)

2i − 1
, J0 = J.

In practice we calculate the values taken by J, J1, J2, . . . at specific values of h, but these are
in fact functions of h. In Figure 3.1, we plot these functions when J(h) = 1 + sin(h). It
appears clearly from the figure that, for sufficiently small h, J3(h) provides the most precise
approximation of J(0) = 1. Constructing the functions in Julia can be achieved in just a few
lines of code.

J(h) = 1 + sin(h)
J_1(h) = 2J(h) - J(2h)
J_2(h) = (4J_1(h) - J_1(2h))/3
J_3(h) = (8J_2(h) - J_2(2h))/7

Generalization. Sometimes, it is known a priori that the Taylor development of the function J
around zero contains only even powers of h. In this case, the Richardson extrapolation proce-
dure can be slightly modified in order to produce approximations with errors scaling as O(h4),

65

Chapter 3. Numerical integration

Figure 3.1: Illustration of the functions J1, J2 and J3 constructed by Richardson extrapolation.

then O(h6), then O(h8), etc. This procedure is illustrated below:

J(h)

J(h/2) J1(h/2)

J(h/4) J1(h/4) J2(h/4)

J(h/8) J1(h/8) J2(h/8) J3(h/8)

O(h2) O(h4) O(h6) O(h8).

This time, the linear combinations required for populating this table are given by

Ji(h/2
i) =

22iJi−1(h/2
i)− Ji−1(h/2

i−1)

22i − 1
. (3.23)

Application to integration: Romberg’s method Romberg’s integration method consists of
applying Richardson’s extrapolation to the function

J(h) = Îh = u(x0) + 2u(x1) + 2u(x2) + · · ·+ 2u(xn−1) + 2u(xn), h ∈
{
b− a
n

: n ∈ N
}
.

where a = x0 < x1 < · · · < xn = b are equidistant nodes. The right-hand side of this equation
is simply the composite trapezoidal rule with step size h. It is possible to show that J(h) may
be expanded as follows:

∀k ∈ N, J(h) = I + α1h
2 + α2h

4 + · · ·+ αkh
2k +O(h2k+2). (3.24)

This is the content of the following result.

Lemma 3.4. Let J(h) denote the approximation of the integral I[u] by the composite trapezium
rule, and assume that u ∈ C∞[a, b]. Then J(h) may be expanded as in (3.24).

66

Chapter 3. Numerical integration

Proof. Using the same notation as in Theorem 3.3, we introduce

I(i)[u] =

∫ xi+1

xi

u(x)dx, Î
(i)
h [u] =

h

2

(
u(xi) + u(xi+1)

)
, i = 0, . . . , n− 1.

Fix i ∈ {0, . . . , n − 1} and let pi denote the Taylor expansion of u around xi+ 1
2
:= xi +

h
2 , of

degree 2k + 1:

pi(x) = u
(
xi+ 1

2

)
+ u′

(
xi+ 1

2

)(
x− xi+ 1

2

)
+ · · ·+

u(2k+1)
(
xi+ 1

2

)
(2k + 1)!

(
x− xi+ 1

2

)2k+1
.

From the mean-value form of the remainder, it is clear that

I(i)[u] = I(i)[pi] +O(h2k+3), Î
(i)
h [u] = Î

(i)
h [pi] +O(h2k+3).

Substituting pi and noting that odd powers cancel when integrating, we have that

I(i)[pi] = u
(
xi+ 1

2

)
h+ ω2h

3 + ω4h
5 + · · ·+ ω2kh

2k+1,

Î
(i)
h [pi] = u

(
xi+ 1

2

)
h+ η2h

3 + η4h
5 + · · ·+ η2kh

2k+1,

for appropriate coefficients. Thus we obtain that

I[u]− Îh[u] =
n∑

i=0

I(i)[pi]− I(i)h [pi]

= (ω2 − η2)h2 + (ω2 − η2)h4 + . . .+ (ω2k − η2k)h2k +O(h2k+2),

which concludes the proof.

Richardson’s extrapolation (3.23) can therefore be employed in order to compute approx-
imations of the integral with increasing accuracy. The convergence of Romberg’s method for
calculating the integral (3.20) is illustrated in Figure 3.2.

3.4 Methods with non-equidistant nodes

The Newton–Cotes method relies on equidistant integration nodes, and the only degrees of
freedom are the integration weights. If the nodes are not fixed, then additional degrees of
freedom are available, and these can be leveraged in order to construct a better integration
formula. The total number of degrees of freedom for a general integration rule of the form (3.2)
is 2n + 2 which, in principle, should enable to construct an integration rule with a degree of
precision equal to 2n+ 1.

A necessary condition for an integration rule of the form (3.2) to have a degree of precision
equal to 2n + 1 is that it integrates exactly all the monomials of degree 0 to 2n + 1. This
condition is also sufficient because, assuming that it is satisfied, we have by linearity of the

67

Chapter 3. Numerical integration

Figure 3.2: Convergence of Romberg’s method. The straight lines correspond to the monomial
functions f(h) = Cih

i, with i = 2, 4, 6, 8 and for appropriate constants Ci. We observe a good
agreement between the observed and theoretical convergence rates.

functionals I and Î that

Î
(
α0 + α1x+ · · ·+ α2n+1x

2n+1
)
= α0Î(1) + α1Î(x) + · · ·+ α2n+1Î

(
x2n+1

)
= α0I(1) + α1I(x) + · · ·+ α2n+1I

(
x2n+1

)
= I

(
α0 + α1x+ · · ·+ α2n+1x

2n+1
)
,

Here I(u) and Î(u) denote respectively the exact integral of u and its approximate integral
using (3.2). In order to find the nodes and weights of the integration rule, we can therefore
solve the following nonlinear system of 2n+ 2 equations with 2n+ 2 unknowns:

n∑
i=0

wix
d
i =

∫ 1

−1
xd dx, d = 0, . . . , 2n+ 1. (3.25)

The quadrature rule thus obtained is called the Gauss–Legendre quadrature.

Example 3.2. Let us derive the Gauss–Legendre quadrature with n+1 = 2 nodes. The system
of equations that we need to solve in this case is the following:

w0 + w1 = 2, w0x0 + w1x1 = 0, w0x
2
0 + w1x

2
1 =

2

3
, w0x

3
0 + w1x

3
1 = 0.

The solution to these equations is given by

−x0 = x1 =

√
3

3
, w0 = w1 = 1.

68

Chapter 3. Numerical integration

Connection with orthogonal polynomials. Let (Ln)n∈N denote the Legendre polynomials, i.e.
the orthogonal polynomials with for the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)dx.

The nodes and weights of the Gauss–Legendre quadrature rules can be obtained constructively
from Legendre polynomials, as shown in Section 2.2.4. We shall now demonstrate this connection
in much more direct manner. Specifically, we prove that the integration nodes are given by the
roots of a Legendre polynomial.

Theorem 3.5. For every n ∈ N, there exists a unique solution to the system of equa-
tions (3.25). The nodes (xi)i∈{0,...,n} are the roots of Ln+1 and the weights are given by

wi =

∫ 1

−1
`i(x)dx, i ∈ {1, . . . , n}, (3.26)

where `i is the Lagrange polynomial

(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)
(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

.

In addition, the weights are all positive.

Proof. We show first that the solution to (3.25) exists, then that it is unique, and finally that
the weights are positive.

Existence. We begin by showing that, if (xi)i∈{0,...n} are the roots of Ln+1 and the weights are
defined from (3.26), then the equations (3.25) are satisfied. To this end, it is sufficient to show
that for all p ∈ P(2n+ 1), ∫ 1

−1
p(x)dx =

n∑
i=0

wip(xi). (3.27)

Take p ∈ P(2n+ 1) and let q ∈ P(n) and r ∈ P(n) be the polynomials such that

p(x) = q(x)Ln+1(x) + r(x).

The quotient q and the remainder r can be obtained by Euclidean division of p by Ln+1.
Since Ln+1 is orthogonal to any polynomial in P(n), in particular q, and the nodes (xi)i∈{0,...n}

are the roots of Ln+1, it holds that∫ 1

−1
p(x)dx−

n∑
i=0

wip(xi) =

∫ 1

−1
r(x)dx−

n∑
i=0

wir(xi). (3.28)

Given that r ∈ P(n), the remainder r must coincides with its polynomial interpolation at the
points x0, . . . xm. Therefore,

r = r(x0)`0 + · · ·+ r(xn)`n,

69

Chapter 3. Numerical integration

and so ∫ 1

−1
r(x)dx =

n∑
i=0

r(xi)

∫ 1

−1
`i(x)dx =

n∑
i=0

r(xi)wi,

where we used (3.26) in the last equality. Consequently, the right-hand side of (3.28) is zero,
and since p was arbitrary this implies that (3.27) is satisfied.

Uniqueness. Next, we show that the nodes are necessarily the roots of Ln+1. To this end,
assume that x0, . . . , xn and weights w0, . . . , wn are such that the equations (3.25) are satisfied,
and let

q(x) = (x− x0) . . . (x− xn).

Our goal is to show that q(x) coincides with Ln+1 up to a constant factor. In order to show
this, it is sufficient to prove that q(x) is orthogonal to xd for all d = 0, . . . , n, because the
only polynomial in P(n+ 1) that satisfies these orthogonality relations is the Legendre polyno-
mial Ln+1, or a multiple thereof. For the values of d considered, the polynomial q(x)xd belongs
to P(2n + 1). Given that the integration rule with nodes x0, . . . , xn and weights w0, . . . , wn is
exact for all the elements of P(2n+ 1) by assumption, we deduce that

∀d ∈ {0, . . . , n},
∫ 1

−1
q(x)xd dx =

n∑
i=0

wiq(xi)x
d
i = 0.

Finally, we show that the weights are necessarily given by (3.26). Since the integration rule
must be exact for any Lagrange polynomial `j , we have

∫ 1

−1
`j(x)dx =

n∑
i=0

wi`j(xi) = wj ,

which concludes the proof of uniqueness.

Positivity of the weights. Since the integration rule is exact for all the polynomials in P(2n+1)

and `j(x)
2 ∈ P(2n+ 1), we deduce that

∫ −1

−1

∣∣`j(x)∣∣2 dx =

n∑
i=0

wi

∣∣`j(xi)∣∣2 = wj .

The left-hand side is positive, and so wj must also be positive.

Since the integration weights are all positive, the Gauss–Legendre quadrature rules are
less susceptible to roundoff errors than the Newton–Cotes methods. In addition, we have the
following result.

Theorem 3.6. Assume that u ∈ C([−1, 1]), and let În(u) denote the approximation of I(u)
using the Gauss–Legendre quadrature. Then În(u)→ I(u) in the limit as n→∞.

Proof. The positivity of the weights is crucial for the proof. By the Weierstrass approximation

70

Chapter 3. Numerical integration

theorem, for all ε > 0 there exists polynomial p such that

E := max
x∈[−1,1]

∣∣∣p(x)− u(x)∣∣∣ 6 ε.

Since the degree of precision of the Gauss–Legendre quadrature with n + 1 integration nodes
is 2n+ 1, there exists N sufficiently large such that În(p) = I(p) for all n > N . Thus

∀n > N,
∣∣∣În(u)− I(u)∣∣∣ 6 ∣∣∣În(u)− În(p)∣∣∣+ ∣∣∣În(p)− I(p)∣∣∣+ ∣∣∣I(p)− I(u)∣∣∣

=
∣∣∣În(u)− În(p)∣∣∣+ ∣∣∣I(p)− I(u)∣∣∣

6
n∑

i=0

|wi|E +

∫ 1

−1
E dx = 2ε+ 2ε = 4ε.

Indeed, all the weights are positive and the Gauss–Legendre quadrature rule is exact for the
constant function u(x) = 1, which implies that the weights add up to 2. Since ε > 0 was
arbitrary, this concludes the proof.

Computation of the integration nodes. We proved that the integration nodes are given by
the roots of the Legendre polynomials. In practice, calculating these roots can be achieved
by calculating the eigenvalues of a tridiagonal matrix, see Section 2.2.4. This is known as the
Golub–Welsch algorithm.

Generalization to higher dimensions. Gauss–Legendre integration is ubiquitous in numerical
methods for partial differential equations, in particular the finite element method. Its general-
ization to higher dimensions is immediate: for a function u : [−1, 1]× [−1, 1]→ R, we have∫ 1

0

∫ 1

0
u(x, y)dydx ≈

n∑
i=0

n∑
j=0

wiwju(xi, yi).

The degree of precision of this integration rule is the same as that of the corresponding one-
dimensional rule, and this approach can be generalized to any dimension d. The associated
computational cost, however, scales as nd, and so it is not a good idea to use a deterministic
method of this type in the high dimensional setting. The explosion of the computational cost
as the dimension increases is known as the curse of dimensionality.

3.5 Introduction to probabilistic integration methods

So far in this chapter, we covered only deterministic integration formulas. Much of the research
around the calculation of high-dimensional integrals today is concerned with probabilistic inte-
gration methods using probabilistic approaches. These methods are based on the connection
between integrals and expectations. To illustrate the simplest probabilistic approach, called the
Monte Carlo method, we consider the problem of approximating the integral

I =

∫ 1

0
u(x)dx.

71

Chapter 3. Numerical integration

This integral may be expressed as the expectation E
[
u(X)

]
, where E is the expectation operator

and X ∼ U(0, 1) is a uniformly distributed random variable over the interval [0, 1]. Therefore,
in practice, the integral I may be approximated by generating a large number of independent
samples X1, X2, . . . drawn from the distribution U(0, 1) and averaging f(Xi) over all of these
samples:

ÎN =
1

N

N∑
n=1

u(Xn).

The quantity ÎN , where the subscript N denotes the number of samples employed, is itself a
random variable; it is called an estimator of the exact integral I. In Julia, the calculation of
the integral using the Monte Carlo method can be achieved with the following code.

N = 1000
u(x) = x^2
X = rand(N)
Î = (1/N) * sum(u.(X))

Since the expectation operator is linear, we calculate that

E[ÎN] =
1

N

N∑
n=1

E
[
u(Xn)

]
=

1

N

N∑
n=1

∫ 1

0
u(x)dx =

1

N

N∑
n=1

I = I.

The estimator ÎN is therefore said to be unbiased, because the bias E[ÎN] − I is zero. Now
assume that the function u is square integrable over the interval [0, 1] and let

σ2 := V
[
u(X)

]
:= E

[(
u(X)− E

[
u(X)

])2]
=

∫ 1

0
|u(x)− I|2 dx,

where V[X] denotes the variance of the random variable X. We can calculate explicitly the
variance of the estimator ÎN :

V[ÎN] = E

(1

N

N∑
n=1

u(Xn)− I

)2
 = E

[
1

N2

N∑
n=1

N∑
m=1

(
u(Xn)− I

)(
u(Xm)− I

)]
.

Since the samples X1, X2, . . . are independent, it holds that

E
[(
u(Xn)− I

)(
u(Xm)− I

)]
= δnmσ

2,

where δmn is the Kronecker delta. Consequently, we deduce that

V[ÎN] =
1

N2

N∑
n=1

N∑
m=1

E
[(
u(Xn)− I

)(
u(Xm)− I

)]
=

1

N2

N∑
n=1

N∑
m=1

δmnσ
2 =

σ2

N
.

Therefore, the variance of ÎN decreases as 1/N when the number of samples N increases,
indicating that the estimator becomes increasingly accurate. To state this more precisely, we
will use Chebyshev’s inequality.

72

Chapter 3. Numerical integration

Theorem 3.7 (Chebyshev’s inequality). Let Z be a random variable with mean m and
variance s2. Then for any real k > 0,

P
[
|Z −m| > ks

]
6

1

k2
.

Let ε > 0. Employing Chebyshev’s inequality with k = ε/

√
V[ÎN], we obtain

P
[
|ÎN − I| > ε

]
6

V[ÎN]

ε2
=

σ2

Nε2
. (3.29)

Consequently, for any ε > 0, the probability that the integration error
∣∣ÎN − I∣∣ is greater than

or equal to ε tends to zero in the limit as N → ∞. In probabilistic jargon, we say that ÎN
converges in probability to I. Equation (3.29) can also be employed in order to construct a
confidence interval for the exact integral, as we demonstrate in the following paragraph.

Construction of a (1−α) confidence interval. By definition, a (1−α) confidence interval for I
is an interval [z1, z2], the endpoints of which being random variables, such that the probability
that I ∈ [z1, z2] is greater than or equal to 1 − α. To construct such an interval, we begin by
finding ε such that the right-hand side of (3.29) is equal to α, which gives ε =

√
σ2/Nα. For

this value of ε, we have
P
[
|ÎN − I| > ε

]
6 α.

Since |ÎN − I| > ε if and only if I /∈ (ÎN − ε, ÎN + ε), we conclude that

P
[
I ∈

(
ÎN − ε, ÎN + ε

)]
> 1− α.

We have thus shown that (
ÎN −

√
σ2

Nα
, ÎN +

√
σ2

Nα

)
is a (1− α) confidence interval for I.

3.6 Exercises

� Exercise 3.1. Derive the Simpson’s integration rule (3.6).

� Exercise 3.2. Derive the composite Simpson integration rule (3.9).

� Exercise 3.3. Consider the integration rule∫ 1

0
u(x)dx ≈ w1u(0) + w2u(1) + w3u

′(0).

Find w1, w2 and w3 so that this integration rule has the highest possible degree of precision.

73

Chapter 3. Numerical integration

� Exercise 3.4. Consider the integration rule∫ 1

−1
u(x)dx ≈ w1u(x1) + w2u

′(x1).

Find w1, w2 and x1 so that this integration rule has the highest possible degree of precision.

� Exercise 3.5. What is the degree of precision of the following quadrature rule?∫ 1

−1
u(x)dx ≈ 2

3

(
2u

(
−1

2

)
− u(0) + 2u

(
1

2

))
.

� Exercise 3.6. The Gauss–Hermite quadrature rule with n+1 nodes is an approximation of
the form ∫ ∞

−∞
u(x) e−

x2

2 dx ≈
n∑

i=0

wiu(xi),

such that the rule is exact for all polynomials of degree less than or equal to 2n + 1. Find the
Gauss–Hermite rule with two nodes.

� Exercise 3.7. Use Romberg’s method to construct an integration rule with an error term
scaling as O(h4). Is there a link between the method you obtained and another integration rule
seen in class?

� Exercise 3.8 (Improving the error bound for the composite trapezoidal rule). The notation
used in this exercise is the same as in Section 3.2. In particular, Îh denotes the approximate
integral obtained by using the composite trapezoidal rule (3.7), and ûh is the corresponding
piecewise linear interpolant.

A version of the mean value theorem states that, if g : [a, b]→ R is a non-negative integrable
function and f : [a, b]→ R is continuous, then there exists ξ ∈ (a, b) such that∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx. (3.30)

• Using (3.30), show that, for all i ∈ {0, . . . , n− 1}, there exists ξi ∈ (xi, xi+1) such that∫ xi+1

xi

u(x)− ûh(x)dx = −u′′(ξi)
h3

12
.

• Prove, by using the intermediate value theorem, that if f : [a, b] → R is a continuous
function, then for any set ξ0, . . . , ξn−1 of points within the interval (a, b), there exists
c ∈ (a, b) such that

1

n

n−1∑
i=0

f(ξi) = f(c).

• Combining the previous items, conclude that there exists ξ ∈ (a, b) such that

I − Îh = −u′′(ξ)(b− a)h
2

12
,

74

Chapter 3. Numerical integration

which is a more precise expression of the error than that obtained in (3.8).

Remark 3.4. One may convince oneself of (3.30) by rewriting this equation as∫ b
a f(x)g(x)dx∫ b

a g(x)dx
= f(ξ).

The left-hand side is the average of f(x) with respect to the probability measure with density
given by

x 7→ g(x)∫ b
a g(x)dx

.

� Exercise 3.9 (From the final exam of Spring 2022). Construct an integration rule of the
form ∫ 1

−1
u(x)dx ≈ w1u

(
−1

2

)
+ w2u(0) + w3u

(
1

2

)
with a degree of precision equal to at least 2. What is the degree of precision of the rule
constructed?

Solution. The Lagrange polynomials associated with −1/2, 0 and 1/2 are respectively

p1(x) = 2x

(
x− 1

2

)
,

p2(x) = −4
(
x+

1

2

)(
x− 1

2

)
,

p3(x) = 2

(
x+

1

2

)
x.

We deduce that

w1 =

∫ 1

−1

p1(x) =
4

3
, w2 =

∫ 1

−1

p2(x) = −
2

3
, w3 =

∫ 1

−1

p3(x) =
4

3
.

By construction, the degree of precision is at least 2. However, the integration rule is exact also when
u(x) = x3. Since the rule is not exact for u(x) = x4, we conclude that the degree of precision is 3. 4

� Exercise 3.10 (From the final exam of Spring 2022). The Gauss–Laguerre quadrature rule
with n nodes is an approximation of the form∫ ∞

0
u(x) e−x dx ≈

n∑
i=1

wiu(xi),

such that the rule is exact when u is a polynomial of degree less than or equal to 2n− 1.

• Find the Gauss–Laguerre rule with one node (n = 1).

• Find the Gauss–Laguerre quadrature rule with two nodes (n = 2). You may find it useful
to first calculate the Laguerre polynomial of degree 2.

75

Chapter 3. Numerical integration

Solution. Below are the derivations of the Gauss–Laguerre rules with 1 and 2 nodes.

Gauss–Laguerre rule with 1 node. We are looking for w1 and x1 such that

∀(a, b) ∈ R2,

∫ ∞

0

(a+ bx) e−x dx = w1(a+ bx1).

The left-hand side is equal to

a

∫ ∞

0

e−x dx+ b

∫ ∞

0

xe−x dx = a+ b

∫ ∞

0

xe−x dx.

Using integration by parts, we find the value of the remaining integral on the right-hand side:∫ ∞

0

xe−x =

∫ ∞

0

−(xe−x)′ + e−x dx

= −(xe−x)
∣∣∣
x=∞

+ (xe−x)
∣∣∣
x=0

+

∫ ∞

0

e−x dx

= 0 + 0 + 1.

(To be fully rigorous, we would need to write the first term on the second line as a limit.) Therefore,
we obtain

a+ b = w1(a+ bx1),

which implies that w1 = x1 = 1.

Gauss–Laguerre rule with 2 nodes. The integration nodes are given by the roots of the Laguerre
polynomials, which are the orthogonal polynomials for the inner product

〈f, g〉 :=
∫ ∞

0

f(x)g(x) e−x dx.

The first polynomial is `0(x) = 1. It is simple to check that the only linear monic polynomial orthogonal
to `0 is given by `1(x) = x− 1. Next, by integration by parts we calculate that∫ ∞

0

x2 e−x dx =

∫ ∞

0

−(x2e−x)′ + 2xe−x dx = 2.

and, similarly, ∫ ∞

0

x3 e−x dx =

∫ ∞

0

−(x3e−x)′ + 3x2e−x dx = 6.

Consider the ansatz `2(x) = x2 + a`1(x) + b. In order for `2 to be orthogonal to `0 and `1, it is
necessary that

0 =

∫ ∞

0

`2(x) `0(x) e−x dx = 2 + b,

0 =

∫ ∞

0

`2(x) `1(x) e−x dx = 4 + a

∫ ∞

0

`1(x)`1(x) dx = 4 + a.

Therefore, we conclude that a = −4 and b = −2, which gives

`2(x) = x2 − 4x+ 2.

76

Chapter 3. Numerical integration

The roots are given by 2 ±
√
2, so we have x1 = 2 −

√
2 and x2 = 2 +

√
2. It remains to find the

weights. To this end, we need only two additional equations; it is sufficient to require that, for any
(a, b) ∈ R2,

a+ b =

∫ ∞

0

(a+ bx) e−x dx = w1(a+ bx1) + w2(a+ bx2)

= a(w1 + w2) + 2b(w1 + w2) +
√
2b(w2 − w1).

Letting a = 1 and b = 0, we obtain w1 + w2 = 1. Then, letting a = 0 and b = 1, we deduce

1 = 2 +
√
2(w2 − w1) ⇔ w2 − w1 = −

√
2

2
.

Therefore
w1 =

2 +
√
2

4
, w2 =

2−
√
2

4
,

which concludes the exercise. 4

� Exercise 3.11 (Calculating the volume of hyperballs). Let Bd denote the d-dimensional
unit ball for the Euclidean norm:

Bd =
{
x ∈ Rd : ‖x‖ 6 1

}
.

The volume of Bd is defined as the integral of the characteristic function over Bd:

vol(Bd) =

∫
R
· · ·
∫

R︸ ︷︷ ︸
d times

χ(x)dx1 . . . dxd, χ(x) :=

1 if x ∈ Bd

0 otherwise.

Complete the following tasks:

• Write a function

function hyperball_volume(dim, n)
Your code comes here
return vol, σ

end

that calculates the volume of the unit ball Bd with d = dim using a Monte Carlo approach
with n samples drawn from an appropriate distribution. Your function should return an
estimation of the volume together with the standard deviation of the estimator (which you
should estimate from the samples).

• Using the function hyperball_volume, plot the volumes for d going from 1 to 15, together
with a 99% confidence interval. See Figure 3.3 for an example solution with n = 107.

You are allowed to use your knowledge of the fact that vol(B2) = π and vol(B3) = 4π/3, but do
not use the general formula for the volume of Bd.

� Exercise 3.12. Complete the following tasks:

77

Chapter 3. Numerical integration

Figure 3.3: Example solution for Exercise 3.11.

• Write a function legendre(n) which returns the Legendre polynomial of degree n. To this
end, you may use the Polynomials library and Rodrigues’ formula:

Ln(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
.

• Write a function get_nodes_and_weights(n) which returns the nodes and weights of the
Gauss–Legendre quadrature with n nodes. In order to construct Lagrange polynomials,
you may find it useful to use the fromroots functions.

• Write a function composite_gauss_legendre(u, a, b, n, N), which returns an ap-
proximation of the integral ∫ b

a
u(x)dx

obtained by partitioning the integration interval [a, b] into N cells, and applying the Gauss–
Legendre quadrature within each cell.

• Take u(x) = cos(x), a = −1 and b = 1. Illustrate on the same plot the error for the
values n ∈ {1, 2, 3} and N varying from 1 to 40. For each value of n, estimate the order
of convergence with respect to N , i.e. find α(n) such that

|În,N − I| ∝ CN−α,

where I denotes the exact value of the Integral and În,N denotes its approximation.

78

Chapter 3. Numerical integration

3.7 Discussion and bibliography

The presentation of part of the material follows that in [7], and some exercises come from [10,
Chapter 9]. The main advantage of probabilistic integration approaches is that they generalize
naturally to high-dimensional and infinite-dimensional settings.

79

Chapter 4

Solution of linear systems of equation

4.1 Conditioning . 81

4.2 Direct solution method . 85

4.2.1 LU decomposition . 86

4.2.2 Backward and forward substitution 90

4.2.3 Gaussian elimination with pivoting � 91

4.2.4 Direct method for Hermitian positive definite matrices 94

4.2.5 Direct methods for banded matrices 95

4.3 Iterative methods for linear systems 97

4.3.1 Basic iterative methods . 98

4.3.2 The conjugate gradient method . 106

4.4 Exercises . 117

4.5 Discussion and bibliography . 126

Introduction

This chapter is devoted to the numerical solution of linear problems of the following form:

Find x ∈ Cn such that Ax = b, A ∈ Cn×n, b ∈ Cn. (4.1)

Systems of this type appear in a variety of applications. They naturally arise in the context
of linear partial differential equations, which we use as main motivating example. Partial
differential equations govern a wide range of physical phenomena including heat propagation,
gravity, and electromagnetism, to mention just a few. Linear systems in this context often
have a particular structure: the matrix A is generally very sparse, which means that most of
the entries are equal to 0, and it is often Hermitian and positive definite, provided that these
properties are satisfied by the underlying operator.

There are two main approaches for solving linear systems:

80

Chapter 4. Solution of linear systems of equation

• Direct methods enable to calculate the exact solution to systems of linear equations, up to
round-off errors, in a finite number of steps. Although this is an attractive property, direct
methods are usually too computationally costly for large systems: The cost of inverting a
general n× n matrix, measured in number of floating operations, scales as n3!

• Iterative methods, on the other hand, enable to progressively calculate increasingly accu-
rate approximations of the solution. Iterations may be stopped once the the residual is
sufficiently small. These methods are often preferable when the dimension n of the linear
system is very large.

This chapter is organized as follows.

• In Section 4.1, we introduce the concept of conditioning. The condition number of a matrix
provides information on the sensitivity of the solution to perturbations of the right-hand
side b or matrix A. It is useful, for example, in order to determine the potential impact
of round-off errors.

• In Section 4.2, we present the direct method for solving systems of linear equations. We
study in particular the LU decomposition for an invertible matrix, as well as its variant
for symmetric positive definite matrices, which is called the Cholesky decomposition.

• In Section 4.3, we present iterative methods for solving linear systems. We focus, in
particular, on basic iterative methods based on a splitting of the matrix A and on the
conjugate gradient method.

4.1 Conditioning

Before studying the properties of numerical methods for solving linear system, it is crucial
to understand the impact of round-off errors on the solution, which impose a bound on the
accuracy we can hope to achieve. We begin with a motivating example.

Example 4.1. Suppose that we wish to solve the following equation

Ax :=

(
1 1

1 1− 10−12

)(
x1

x2

)
=

(
0

10−12

)
=: b.

The exact solution is given by (1 −1)T . In Julia, this equation can be solved as follows:

A = [1 1; 1 (1-1e-12)]
b = [0; 1e-12]
x = A\b

The solution returned by the program is the following:

1.0000221222095027
-1.0000221222095027

81

Chapter 4. Solution of linear systems of equation

The relative error on the solution is of the order of 10−5, which is about 12 orders of magnitude
larger than the machine epsilon for the Float64 type. In order to understand this, note that
the final error on x arises from three sources:

• First, the machine representation b of the right-hand side is only an approximation of
the true right-hand side b.

• Similarly, the machine representation A of the matrix is only an approximation of the
true matrix A.

• Finally, the operation A\b itself leads to additional round-off errors, as the computer
implementation of the backslash operator is based on elementary arithmetic operations.
Understanding the magnitude of the error introduced at this step is delicate, and we
shall not address this question.

It follows from the first two items that, when writing A\b, we are in fact asking the computer
for a solution x+∆x to a perturbed equation

(A +∆A)(x+∆x) = b+∆b,

where ∆A and ∆b represent the rounding errors on the matrix and right-hand side, respec-
tively. Understanding the impact of the perturbations ∆b and ∆A is the goal of this section.
We shall prove, in particular, that the magnitude of the error ∆x is related to the perturba-
tions ∆b and ∆A through a quantity known as the condition number of the matrix A.

In general, the condition number for a given problem measures the sensitivity of the solution
to the input data. In order to define this concept precisely, we consider a general problem of
the form F (x, d) = 0, with unknown x and data d. The linear system (4.1) can be recast in
this form, with the input data equal to b or A or both. We denote the solution corresponding
to perturbed input data d +∆d by x +∆x. The absolute and relative condition numbers are
defined as follows.

Definition 4.1 (Condition number for the problem F (x, d) = 0). The absolute and relative
condition numbers with respect to perturbations of d are defined as

Kabs(d) = lim
ε→0

(
sup

‖∆d‖6ε

‖∆x‖
‖∆d‖

)
, K(d) = lim

ε→0

(
sup

‖∆d‖6ε

‖∆x‖/‖x‖
‖∆d‖/‖d‖

)
.

The short notation K is reserved for the relative condition number, which is often more useful
in applications.

In the rest of this section, we obtain an upper bound on the relative condition number for
the linear system (4.1) with respect to perturbations first of b, and then of A. We use the
notation ‖•‖ to denote both a vector norm on Cn and the induced operator norm on matrices.

82

Chapter 4. Solution of linear systems of equation

Proposition 4.1 (Perturbation of the right-hand side). Let x + ∆x denote the solution to
the perturbed equation A(x+∆x) = b+∆b. Then it holds that

‖∆x‖
‖x‖

6 ‖A‖‖A−1‖ ‖∆b‖
‖b‖

, (4.2)

Proof. It holds by definition of ∆x that A∆x = ∆b. Therefore, we have

‖∆x‖ = ‖A−1∆b‖ 6 ‖A−1‖‖∆b‖ = ‖Ax‖
‖b‖

‖A−1‖‖∆b‖ 6 ‖A‖‖x‖
‖b‖

‖A−1‖‖∆b‖. (4.3)

Here we employed (A.11), proved in Appendix A, in the first and last inequalities. Rearranging
the inequality (4.3), we obtain (4.2).

Proposition 4.1 implies that the relative condition number of (4.1) with respect to perturbations
of the right-hand side is bounded from above by ‖A‖‖A−1‖. Exercise 4.1 shows that there are
values of x and ∆b for which the inequality (4.2) is an equality, indicating that the inequality
is sharp.

Studying the impact of perturbations of the matrix A is slightly more difficult, because this
time the variation ∆x of the solution does not depend linearly on the perturbation of the data.
Before stating and proving the main result, we show an ancillary lemma.

Lemma 4.2. Let B ∈ Cn×n be such that ‖B‖ < 1 in some submultiplicative matrix norm ‖•‖.
Then I− B is invertible and

‖(I− B)−1‖ 6 1

1− ‖B‖ , (4.4)

where I ∈ Cn×n is the identity matrix.

Proof. It holds for any matrix B ∈ Cn×n that

I− Bn+1 = (I− B)(I + B + · · ·+ Bn). (4.5)

Since ‖B‖ < 1 in a submultiplicative matrix norm, both sides of the equation are convergent in
the limit as n → ∞. The left-hand side converges to the identity matrix I, and the right-hand
side converges as n→∞ because {S0,S1, . . . } with

Sn := I + B + · · ·+ Bn

is a Cauchy sequence in the vector space of matrices endowed with the norm for which ‖B‖ < 1.
Indeed, by the triangle inequality and the submultiplicative property of the norm, it holds that

‖Sn+m − Sn‖ = ‖Bn+1 + · · ·+ Bn+m‖

6 ‖Bn+1‖+ · · ·+ ‖Bn+m‖ 6 ‖B‖n+1 + · · ·+ ‖B‖n+m

6
‖B‖n+1

1− ‖B‖ −−−→n→∞
0,

83

Chapter 4. Solution of linear systems of equation

where we employed the formula for a geometric series in the last inequality. Equating the limits
of both sides of (4.5), we obtain

I = (I− B)
∞∑
i=0

Bi.

This implies that (I− B) is invertible with inverse given by a so-called Neumann series

(I− B)−1 =
∞∑
i=0

Bi.

Applying the triangle inequality repeatedly, and then using the submultiplicative property of
the norm, we obtain

∀n ∈ N,

∥∥∥∥∥
n∑

i=0

Bi

∥∥∥∥∥ 6
n∑

i=0

‖Bi‖ 6
n∑

i=0

‖B‖i = 1

1− ‖B‖ .

where we used the summation formula for geometric series in the last equality. Letting n→∞
in this equation and using the continuity of the norm enables to conclude the proof.

Proposition 4.3 (Perturbation of the matrix). Let x+∆x denote the solution to the perturbed
equation (A +∆A)(x+∆x) = b. If A is invertible and ‖∆A‖ < ‖A−1‖−1, then

‖∆x‖
‖x‖

6 ‖A‖‖A−1‖‖∆A‖
‖A‖

(
1

1− ‖A−1∆A‖

)
. (4.6)

Proof. Left-multiplying both sides of the perturbed equation with A−1, we obtain

(
I + A−1∆A

)
(x+∆x) = x ⇔

(
I + A−1∆A

)
∆x = −A−1∆Ax. (4.7)

Since ‖A−1∆A‖ 6 ‖A−1‖‖∆A‖ < 1 by assumption, we deduce from Lemma 4.2 that the matrix
on the left-hand side is invertible with a norm bounded as in (4.4). Consequently, using in
addition the assumed submultiplicative property of the norm, we obtain that

‖∆x‖ = ‖(I + A−1∆A)−1A−1∆Ax‖ 6 ‖A−1∆A‖
1− ‖A−1∆A‖‖x‖.

which enables to conclude the proof.

Using Proposition 4.3, we deduce that the relative condition number of (4.1) with respect to
perturbations of the matrix A is also bounded from above by ‖A‖‖A−1‖, because the term
between brackets on the right-hand side of (4.6) converges to 1 as ‖∆A‖ → 0.

Propositions 4.1 and 4.3 show that the condition number of the linear system (4.1), with
respect to perturbations of either b or A, depends only on A. This motivates the following
definition of the condition number of a matrix.

Definition 4.2 (Condition number of a matrix). The condition number of a matrix A asso-

84

Chapter 4. Solution of linear systems of equation

ciated with a vector norm ‖•‖ is defined as

κ(A) = ‖A‖‖A−1‖.

The condition number for the p-norm, defined in Definition A.4, is denoted by κp(A).

Note that the condition number κ(A) associated with an induced norm, i.e. a matrix norm
induced by a vector norm, is at least one. Indeed, since the identity matrix has induced norm 1,
it holds that

1 = ‖I‖ = ‖AA−1‖ 6 ‖A‖‖A−1‖.

Since the 2-norm of an invertible matrix A ∈ Cn×n coincides with the spectral radius ρ(ATA),
the condition number κ2 corresponding to the 2-norm is equal to

κ2(A) =

√
λmax(ATA)
λmin(ATA) ,

where λmax(ATA) and λmin(ATA) are the maximal and minimal (both real and positive) eigen-
values of the matrix ATA.

Example 4.2 (Perturbation of the matrix). Consider the following linear system with per-
turbed matrix

(A +∆A)
(
x1

x2

)
=

(
0

0.01

)
, A =

(
1 0

0 0.01

)
, ∆A =

(
0 0

0 ε

)
,

where 0 < ε � 0.01. Here the eigenvalues of A are given by λ1 = 1 and λ2 = 0.01. The
solution when ε = 0 is given by (0, 1)T , and the solution to the perturbed equation is(

x1 +∆x1

x2 +∆x2

)
=

(
0
1

1+100ε

)
.

Consequently, we deduce that, in the 2-norm,

‖∆x‖
‖x‖

=

∣∣∣∣ 100ε

1 + 100ε

∣∣∣∣ ≈ 100ε = 100
‖∆A‖
‖A‖ .

In this case, the relative impact of perturbations of the matrix is close to κ2(A) = 100.

4.2 Direct solution method

In this section, we present the direct method for solving linear systems of the form (4.1) with a
general invertible matrix A ∈ Cn×n. The direct method can be decomposed into three steps:

• First calculate the so-called LU decomposition of A, i.e. find an upper triangular matrix U
and a unit lower triangular matrix L such that A = LU. A unit lower triangular matrix is
a lower triangular matrix with only ones on the diagonal.

85

Chapter 4. Solution of linear systems of equation

• Then solve Ly = b using a method called forward substitution.

• Finally, solve Ux = y using a method called backward substitution.

By construction, the solution x thus obtained is a solution to (4.1). Indeed, we have that

Ax = LUx = Ly = b.

4.2.1 LU decomposition

In this section, we first discuss the existence and uniqueness of the LU factorization of a matrix.
We then describe a numerical algorithm for calculating the factors L and U, based on Gaussian
elimination.

Existence and uniqueness of the decomposition

We present a necessary and sufficient condition for the existence of a unique LU decomposition
of a matrix. To this end, we define the principal submatrix of order i of a matrix A ∈ Cn×n as
the matrix Ai = A[1 : i, 1 : i], in Julia notation.

Proposition 4.4. The LU factorization of a matrix A ∈ Cn×n, with L unit lower triangular
and U upper triangular, exists and is unique if and only if the principal submatrices of A of
all orders are nonsingular.

Proof. We prove only the “if” direction; see [10, Theorem 3.4] for the “only if” implication.
The statement is clear if n = 1. Reasoning by induction, we assume that the result is

proved up to n − 1. Since the matrix An−1 and all its principal submatrices are nonsingular
by assumption, it holds that An−1 = Ln−1Un−1 for a unit lower triangular matrix Ln−1 and an
upper triangular matrix Un−1. These two matrices are nonsingular, for if either of them were
singular then the product An−1 = Ln−1Un−1 would be singular as well. Let us decompose A as
follows:

A =

(
An−1 c

dT ann

)
.

Let ` and u denote the solutions to Ln−1u = c and UT
n−1` = d. These solutions exist and are

unique, because the matrices Ln−1 and Un−1 are nonsingular. Letting unn = ann− (`Tu)−1, we
check that A factorizes as(

An−1 c

dT ann

)
=

(
Ln−1 0n−1

`T 1

)(
Un−1 u

0Tn−1 unn

)
.

This completes the proof of the existence of the decomposition. The uniqueness of the factors
follows from the uniqueness of `, u and unn.

Proposition 4.4 raises the following question: are there classes of matrices whose principal
matrices are all nonsingular? The answer is positive, and we mention, as an important example,
the class of positive definite matrices. Proving this is the aim of Exercise 4.4.

86

Chapter 4. Solution of linear systems of equation

Gaussian elimination algorithm for computing L and U

So far we have presented a condition under which the LU decomposition of a matrix exists and
is unique, but not a practical method for calculating the matrices L and U. We describe in this
section an algorithm, known as Gaussian elimination, for calculating the LU decomposition of
a matrix. We begin by introducing the concept of Gaussian transformation.

Definition 4.3. A Gaussian transformation is a matrix of the form Mk = I−c(k)eTk , where ek

is the column vector with entry at index k equal to 1 and all the other entries equal to zero,
and c(k) is a column vector of the following form:

c(k) =
(
0 0 . . . 0 c

(k)
k+1 c

(k)
k+2 . . . c

(k)
n

)T
.

The action of a Gaussian transformation Mk left-multiplying a matrix A ∈ Cn×n is to replace
the rows from index k+1 to index n by a linear combination involving themselves and the k-th
row. To see this, let us denote by (r(i))16i6n the rows of a matrix T ∈ Cn×n. Then, we have

MkT =
(
I− c(k)eTk

)
T =

1

1
. . .

1

−c(k)k+1 1
... . . .

−c(k)n 1

r(1)

r(2)

...
r(k)

r(k+1)

...
r(n)

=

r(1)

r(2)

...
r(k)

r(k+1) − c(k)k+1r
(k)

...
r(n) − c(k)n r(k)

We show in Exercise 4.2 that the inverse of a Gaussian transformation matrix is given by

(I− c(k)eTk)
−1 = I + c(k)eTk . (4.8)

The idea of the Gaussian elimination algorithm is to successively left-multiply A with Gaussian
transformation matrices M1, then M2, etc. appropriately chosen in such a way that the ma-
trix A(k), obtained after k iterations, is upper triangular up to column k. That is to say, the
Gaussian transformations are constructed so that all the entries in columns 1 to k under the
diagonal of the matrix A(k) are equal to zero. The resulting matrix A(n−1) after n− 1 iterations
is then upper triangular and satisfies

A(n−1) = Mn−1 . . .M1A.

Rearranging this equation, we deduce that

A = (M−1
1 . . .M−1

n−1)A
(n−1).

The first factor is lower triangular by (4.8) and Exercise 4.3. The product in the definition of
the matrix L admits a simple explicit expression.

87

Chapter 4. Solution of linear systems of equation

Lemma 4.5. It holds that

M−1
1 · · ·M

−1
n−1 = (I + c(1)eT1) · · · (I + c(n−1)eTn−1) = I +

n−1∑
i=1

c(i)eTi .

Proof. Notice that, for i < j,

c(i)eTi c
(j)eTj = c(i)(eTi c

(j))eTj = c(i)0eTj = 0.

The statement then follows easily by expanding the product.

A corollary of Lemma 4.5 is that all the diagonal entries of the lower triangular matrix L are
equal to 1; the matrix L is unit lower triangular. The full expression of the matrix L given the
Gaussian transformations is

L = I +
(
c(1) . . . c(n−1) 0n

)
=

1

c
(1)
2 1

c
(1)
3 c

(2)
3 1

c
(1)
4 c

(2)
4 c

(3)
4 1

...
...

... . . .
c
(1)
n c

(2)
n c

(3)
n . . . c

(n−1)
n 1

(4.9)

Therefore, the Gaussian elimination algorithms, if all the steps are well-defined, correctly gives
the LU factorization of the matrix A. Of course, the success of the strategy outlined above
for the calculation of the LU factorization hinges on the existence of an appropriate Gaussian
transformation at each iteration. It is not difficult to show that, if the (k + 1)-th diagonal
entry of the matrix A(k) is nonzero for all k ∈ {1, . . . , n− 2}, then the Gaussian transformation
matrices exist and are uniquely defined.

Lemma 4.6. Assume that A(k) is upper triangular up to column k included, with k 6

n − 2. If a(k)k+1,k+1 > 0, then there is a unique Gaussian transformation matrix Mk+1 such
that Mk+1A(k) is upper triangular up to column k + 1. This transformation matrix is given
by I− c(k+1)eTk+1, where

c(k+1) =

(
0 0 . . . 0

a
(k)
k+2,k+1

a
(k)
k+1,k+1

a
(k)
k+3,k+1

a
(k)
k+1,k+1

. . .
a
(k)
n,k+1

a
(k)
k+1,k+1

)T

.

Proof. We perform the multiplication explicitly. Denoting denote by (r(i))16i6n the rows of

88

Chapter 4. Solution of linear systems of equation

A(k), we have

Mk+1A(k) =

1

1
. . .

1

−c(k+1)
k+2 1
... . . .

−c(k+1)
n 1

r(1)

r(2)

...
r(k+1)

r(k+2)

...
r(n)

=

r(1)

r(2)

...
r(k+1)

r(k+2) − c(k+1)
k+2 r(k+1)

...
r(n) − c(k+1)

n r(k+1)

.

We need to show that the matrix on the right-hand side is upper triangular up to column k+1

included. This is clear by definition of c(k+1) and from the fact that A(k) is upper triangular up
to column k by assumption.

The diagonal elements a(k)k+1,k+1, where k ∈ {0, . . . , n − 2}, are called the pivots. We now
prove that, if an invertible matrix A admits an LU factorization, then the pivots are necessarily
nonzero and the Gaussian elimination algorithm is successful.

Proposition 4.7 (Gaussian elimination works �). If A is invertible and admits an LU factor-
ization, then the Gaussian elimination algorithm is well-defined and successfully terminates.

Proof. We denote by c(1), . . . , c(n−1), the columns of the matrix L− I. Then the matrices given
by Mk = I− c(k)eTk , for k ∈ {1, . . . , n− 1}, are Gaussian transformations and it holds that

L = M−1
1 · · ·M

−1
n−1

in view of Lemma 4.5. Since A = LU by assumption, the result of the product

Mn−1 · · ·M1A = U

is upper triangular. Let us use the notation A(k) = Mk · · ·M1A. Our goal is to show that the
matrices M1, . . . ,Mn−1 are the same as those obtained by the Gaussian elimination algorithm.

Of all the Gaussian transformations M1, . . . ,Mn−1, only M1 acts on the second row of the
matrix it multiplies. Therefore, the entry (2, 1) of U coincides with the entry (2, 1) of A(1),
which implies that a(1)2,1 = 0. Then notice that a(k)3,1 = a

(1)
3,1 for all k > 1, because the entry

(3, 1) of the matrix M2A(1) is given by a
(1)
3,1 − c

(2)
3 a

(1)
2,1 = a

(1)
3,1, and all the other transformation

matrices M3, . . . ,Mn−1 leave the third row invariant. Consequently, it holds that a(1)3,1 = u3,1 = 0.
Continuing in this manner, we deduce that A(1) is upper triangular in the first column and that,
since A is invertible by assumption, the first pivot a11 is nonzero. Since this pivot is nonzero,
the matrix M1 is uniquely defined by Lemma 4.6.

The reasoning can then be repeated with other columns, in order to deduce that A(k) is
upper triangular up to column k and that all the pivots a(k−1)

kk are nonzero. Therefore, all the
Gaussian transformation matrices are uniquely defined given Lemma 4.6.

89

Chapter 4. Solution of linear systems of equation

Computer implementation

The Gaussian elimination procedure is summarized as follows.
A(0) ← A, L← I
for i ∈ {1, . . . , n− 1} do

Construct Mi as in Lemma 4.6.
A(i) ← MiA(i−1), L← LM−1

i

end for
U← A(n−1).
In practice, it is not necessary to explicitly create the Gaussian transformation matrices,

or to perform full matrix multiplications. A more realistic version of the algorithm in Julia is
given below. The code exploits the relation (4.9) between L and the parameters of the Gaussian
transformations.

1 # A is an invertible matrix of size n x n
2 L = [i == j ? 1.0 : 0.0 for i in 1:n, j in 1:n]
3 U = copy(A)
4 for i in 1:n-1
5 for r in i+1:n
6 U[i, i] == 0 && error("Pivotal entry is zero!")
7 ratio = U[r, i] / U[i, i]
8 L[r, i] = ratio
9 U[r, i:end] -= U[i, i:end] * ratio

10 end

11 end

12 # L is unit lower triangular and U is upper triangular

Computational cost

The computational cost of the algorithm, measured as the number of floating point operations
(flops) required, is dominated by the Gaussian transformations, in line 9 in the above code.
All the other operations amount to a computational cost scaling as O(n2), which is negligible
compared to the cost of the LU factorization when n is large. This factorization requires

- and *︷︸︸︷
2×

n−1∑
i=1︸︷︷︸

for i in 1:n-1

for r in i+1:n︷ ︸︸ ︷
(n− i) (n− i+ 1)︸ ︷︷ ︸

indices [i:end]

flops = 2

3
n3 +O(n2) flops.

4.2.2 Backward and forward substitution

Once the LU factorization has been completed, the solution to the linear system can be obtained
by first using forward, and then backward substitution, which are just bespoke methods for
solving linear systems with lower and upper triangular matrices, respectively. Let us consider
the case of a lower triangular system:

Ly = b

90

Chapter 4. Solution of linear systems of equation

Notice that the unknown y1 may be obtained from the first equation of the system. Then,
since y1 is known, the value of y2 can be obtained from the second equation, etc. A simple
implementation of this algorithm is as follows:

L is unit lower triangular
y = copy(b)
for i in 2:n

for j in 1:i-1
y[i] -= L[i, j] * y[j]

end

end

4.2.3 Gaussian elimination with pivoting �

The Gaussian elimination algorithm that we presented in Section 4.2.1 relies on the existence
of an LU factorization. In practice, this assumption may not be satisfied, and in this case a
modified algorithm, called Gaussian elimination with pivoting, is required.

In fact, pivoting is useful even if the usual LU decomposition of A exists, as it enables to
reduce the condition number of the matrices matrices L and U. There are two types of pivoting:
partial pivoting, where only the rows are rearranged through a permutation at each iteration,
and complete pivoting, where both the rows and the columns are rearranged at each iteration.

Showing rigorously why pivoting is useful is beyond the scope of this course. In this section,
we only present the partial pivoting method. Its influence on the condition number of the
factors L and U is studied empirically in Exercise 4.6. It is useful at this point to introduce the
concept of a row permutation matrix.

Row permutation matrix

Definition 4.4. Let σ : {1, . . . , n} → {1, . . . , n} be a permutation, i.e. a bijection on the
set {1, . . . , n}. The row permutation matrix associated with σ is the matrix with entries

pij =

1 if i = σ(j),

0 otherwise.

When a row permutation P left-multiplies a matrix B ∈ Cn×n, row i of matrix B is moved to
row index σ(i) in the resulting matrix, for all i ∈ {1, . . . , n}. A permutation matrix has a single
entry equal to 1 per row and per column, and its inverse coincides with its transpose: P−1 = PT .

Partial pivoting

Gaussian elimination with partial pivoting applies for any invertible matrix A, and it outputs 3
matrices: a row permutation P, a unit triangular matrix L, and an upper triangular matrix U.
These are related by the relation

PA = LU.

91

Chapter 4. Solution of linear systems of equation

This is sometimes called a PLU decomposition of the matrix A. It is not unique in general but,
unlike the usual LU decomposition, it always exists provided that A is invertible. We take this
for granted in this course.

The idea of partial pivoting is to rearrange the rows at each iteration of the Gaussian
elimination procedure in such a manner that the pivotal entry is as large as possible in absolute
value. One step of the procedure reads

A(k+1) = Mk+1Pk+1A(k). (4.10)

Here Pk+1 is a simple row permutation matrix which, when acting on A(k), interchanges row k+1

and row `, for some index ` > k+1. The row index ` is selected in such a way that the absolute
value of the pivotal entry, in position (k + 1, k + 1) of the product Pk+1A(k), is maximum. The
matrix Mk+1 is then the unique Gaussian transformation matrix ensuring that A(k+1) is upper
triangular up to column k+1, obtained as in Lemma 4.6. The resulting matrix A(n−1) after n−1
steps of the form (4.10) is upper triangular and satisfies

A(n−1) = Mn−1Pn−1 · · ·M1P1A ⇔ A = (Mn−1Pn−1 · · ·M1P1)
−1A(n−1).

The first factor in the decomposition of A is not necessarily lower triangular. However, using
the notation M = Mn−1Pn−1 · · ·M1P1 and P = Pn−1 · · ·P1, we have

PA = PM−1U = (PM−1)U =: LU. (4.11)

Lemma 4.8 below shows that, as the notation L suggests, the matrix L = (PM−1) on the right-
hand side is indeed lower triangular. Before stating and proving the lemma, we note that P is
a row permutation matrix, and so the solution to the linear system Ax = b can be obtained by
solving LUx = PTb by forward and backward substitution. Since P is a very sparse matrix, the
right-hand side PTb can be calculated very efficiently.

Lemma 4.8. The matrix L = PM−1 is unit lower triangular with all entries bounded in
absolute value from above by 1. It admits the expression

L = I + (Pn−1 · · ·P2c
(1))eT1 + (Pn−1 · · ·P3c

(2))eT2 + · · ·+ (Pn−1c
(n−2))eTn−2 + c(n−1)eTn−1.

Proof. Let M(k) = MkPk · · ·M1P1 and P(k) = Pk · · ·P1. It is sufficient to show that

P(k)
(
M(k)

)−1
= I + (Pk · · ·P2c

(1))eT1 + (Pk · · ·P3c
(2))eT2 + · · ·+ (Pkc

(k−1))eTk−1 + c(k)eTk (4.12)

for all k ∈ {1, . . . , n− 1}. The statement is clear for k = 1, and we assume by induction that it

92

Chapter 4. Solution of linear systems of equation

is true up to k − 1. Then notice that

P(k)
(
M(k)

)−1
= Pk

(
P(k−1)

(
M(k−1)

)−1
)

P−1
k M−1

k

= Pk

(
I + (Pk−1 · · ·P2c

(1))eT1 + · · ·+ (Pk−1c
(k−2))eTk−2 + c(k−1)eTk−1

)
P−1
k M−1

k

=
(

I + (PkPk−1 · · ·P2c
(1))eT1 + · · ·+ (PkPk−1c

(k−2))eTk−2 + (Pkc
(k−1))eTk−1

)
M−1

k .

In the last equality, we used that eTi P−1
k = (Pkei)

T = eTi for all i ∈ {1, . . . , k − 1}, because the
row permutation Pk does not affect rows 1 to k − 1. Using the expression M−1

k = I + c(k)eTk ,
expanding the product and noting that eTj c

(k) = 0 if j 6 k, we obtain (4.12). The statement
that the entries are bounded in absolute value from above by 1 follows from the choice of the
pivot at each iteration.

The expression of L in Lemma 4.8 suggests the iterative procedure given in Algorithm 2 for
performing the LU factorization with partial pivoting. A Julia implementation of this algorithm
is presented in Listing 1.

Algorithm 2 LU decomposition with partial pivoting

Assign A(0) ← A and P← I
for i ∈ {1, . . . , n− 1} do

Find the row index k > i such that A(i−1)
k,i is maximum in absolute value.

Interchange the rows i and k of matrices A(i−1) and P, and of vectors c(1), . . . , c(i−1).
Construct Mi with corresponding column vector c(i) as in Lemma 4.6.
Assign A(i) ← MiA(i−1)

end for
Assign U← A(n−1).
Assign L← I +

(
c(1) . . . c(n−1) 0n

)
.

Auxiliary function
function swap_rows!(i, j, matrices...)

for M in matrices
M_row_i = M[i, :]
M[i, :] = M[j, :]
M[j, :] = M_row_i

end

end

n = size(A)[1]
L, U = zeros(n, 0), copy(A)
P = [i == j ? 1.0 : 0.0 for i in 1:n, j in 1:n]
for i in 1:n-1

Pivoting
index_row_pivot = i - 1 + argmax(abs.(U[i:end, i]))
swap_rows!(i, index_row_pivot, U, L, P)

Usual Gaussian transformation
c = [zeros(i-1); 1.0; zeros(n-i)]
for r in i+1:n

93

Chapter 4. Solution of linear systems of equation

ratio = U[r, i] / U[i, i]
c[r] = ratio
U[r, i:end] -= U[i, i:end] * ratio

end

L = [L c]
end

L = [L [zeros(n-1); 1.0]]
It holds that P*A = L*U

Listing 1: LU factorization with partial pivoting.

Remark 4.1. It is possible to show that, if the matrix A is column diagonally dominant in the
sense that

∀j ∈ {1, . . . , n}, |ajj | >
n∑

i=1,i 6=j

|aij |,

then pivoting does not have an effect: at each iteration, the best pivot is already on the
diagonal.

4.2.4 Direct method for Hermitian positive definite matrices

The LU factorization with partial pivoting applies to any matrix A ∈ Cn×n that is invertible.
If A is Hermitian positive definite, however, it is possible to compute a factorization into lower
and upper triangular matrices at half the computational cost, using the so-called Cholesky
decomposition.

Lemma 4.9 (Cholesky decomposition). If A is Hermitian positive definite, then there exists
a lower-triangular matrix C ∈ Cn×n such that

A = CC∗. (4.13)

Equation (4.13) is called the Cholesky factorization of A. The matrix C is unique if we require
that all its diagonal entries are positive.

Proof. Since A is positive definite, its LU decomposition exists and is unique by Propositions 4.4
and 4.7. Let D denote the diagonal matrix with the same diagonal as that of U. Then

A = LD(D−1U).

Note that the matrix D−1U is unit upper triangular. Since A is Hermitian, we have

A = A∗ = (D−1U)∗(LD)∗.

The first and second factors on the right-hand side are respectively unit lower triangular and
upper triangular, and so we deduce, by uniqueness of the LU decomposition, that L = (D−1U)∗

and U = (LD)∗. But then
A = LU = LDL∗ = (L

√
D)(
√

DL)∗.

94

Chapter 4. Solution of linear systems of equation

Here
√

D denotes the diagonal matrix whose diagonal entries are obtained by taking the square
root of those of D, which are necessarily real and positive because A is positive definite. This
implies the existence of a Cholesky factorization with C = L

√
D.

Calculation of the Choleski factor

The matrix C can be calculated from (4.13). For example, developing the matrix product gives
that a1,1 = c21,1 and so c1,1 =

√
a1,1. It is then possible to calculate c2,1 from the equation a2,1 =

c2,1c1,1, and so on. Implementing the Cholesky factorization is the goal of Exercise 4.7.

4.2.5 Direct methods for banded matrices

In applications related to partial differential equations, the matrix A ∈ Cn×n very often has a
bandwidth which is small in comparison with n.

Definition 4.5. The bandwidth of a matrix A ∈ Cn×n is the smallest number k ∈ N such
that aij = 0 for all (i, j) ∈ {1, . . . , n}2 with |i− j| > k.

It is not difficult to show that, if A is a matrix with bandwidth k, then so are L and U in the
absence of pivoting. This can be proved by equaling the entries of the product LU with those
of the matrix A. We emphasize, however, that the sparsity structure within the band of A may
be destroyed in L and U; this phenomenon is called fill-in.

Reducing the bandwidth: the Cuthill–McKee algorithm �

The computational cost of calculating the LU or Cholesky decomposition of a matrix with
bandwidth k scales as O(nk2), which is much better than the general scaling O(n3) if k � n.
In applications, the bandwidth k is often related to the matrix size n. For example, if A
arises from the discretization of the Laplacian operator, then k = O(

√
n) provided that a good

ordering of the vertices is employed. In this case, the computational cost scales as O(n2).
Since a narrow band is associated with a lower computational cost of the LU decomposition,

it is natural to wonder whether the bandwidth of a matrix A can be reduced. A possible strategy
to this end is to use permutations. More precisely, is it possible to identify a row permutation
matrix P such that PAPT has minimal bandwidth? Given such a matrix, the solution to the
linear system (4.1) can be obtained by first solving (PAPT)y = Pb, and then letting x = PTy.

The Cuthill–McKee algorithm is a heuristic method for finding a good, but sometimes not
optimal, permutation matrix P in the particular case where A is a Hermitian matrix. It is based
on the fact that, to a Hermitian matrix A, we can associate a unique undirected graph whose
adjacency matrix A∗ has the same sparsity structure as that of A, i.e. zeros in the same places.
For any row permutation matrix Pσ with corresponding permutation σ : {1, . . . , n} → {1, . . . , n}
(see Definition 4.4), the matrices PσAPT

σ and PσA∗PT
σ also have the same sparsity structure.

Therefore, minimizing the bandwidth of PσAPT
σ is equivalent to minimizing the bandwidth

of PσA∗PT
σ . The key insight for understanding the Cuthill–McKee method is that PσA∗PT

σ

is the adjacency matrix of the graph obtained by renumbering the nodes according to the

95

Chapter 4. Solution of linear systems of equation

permutation σ, i.e. by changing the number of the nodes from i to σ(i). Consider, for example,
the following graph and renumbering:

1

2

34

5

6

7 8

→
1

2

46

8

7

5 3

The associated adjacency matrices are given by:

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

→

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

We assume that the nodes are all self-connected, although this is not depicted, and so the
diagonal entries of the adjacency matrices are equal to 1. This renumbering corresponds to the
permutation (

i : 1 2 3 4 5 6 7 8

σ(i) : 1 2 4 6 8 7 5 3

)
,

and we may verify that the adjacency matrix of the renumbered graph can be obtained from
the associated row permutation matrix:

PA∗PT =

1

1

1

1

1

1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1

1

In this example, renumbering the nodes of the graph enables a significant reduction of the

bandwidth, from 7 to 2. The Cuthill–McKee algorithm, which was employed to calculate the

96

Chapter 4. Solution of linear systems of equation

permutation, is an iterative method that produces an ordered n-tuple R containing the nodes in
the new order; in other words, it returns

(
σ−1(1), . . . , σ−1(n)

)
. The first step of the algorithm

is to find the node i with the lowest degree, i.e. with the smallest number of connections to other
nodes, and to initialize R = (i). Then the following steps are repeated until R contains all the
nodes of the graph:

• Define Ai as the set containing all the nodes which are adjacent to a node in R but not
themselves in R;

• Sort the nodes in Ai according to the following rules: a node i ∈ Ai comes before j ∈ Ai if i
is connected to a node in R that comes before all the nodes in R to which j is connected.
As a tiebreak, precedence is given to the node with highest degree.

• Append the nodes in Ai to R, in the order determined in the previous item.

1 1

2

3
1

2
4

5 3
1

2
46

7
5 3

1

2
46

8

7
5 3

Figure 4.1: Illustration of the Cuthill–McKee algorithm. The new numbering of the nodes
is illustrated. The first node was chosen randomly since all the nodes have the same degree.
In this example, the ordered tuple R evolves as follows: (1) → (1, 2, 8) → (1, 2, 8, 3, 7) →
(1, 2, 8, 3, 7, 4, 6)→ (1, 2, 8, 3, 7, 4, 6, 5).

The steps of the algorithm for the example above are depicted in Figure 4.1. Another
example, taken from the original paper by Cuthill and McKeen [1], is presented in Figure 4.2.

Figure 4.2: Example from the original Cuthill–McKee paper [1].

4.3 Iterative methods for linear systems

Iterative methods enjoy more flexibility than direct methods, because they can be stopped at
any point if the residual is deemed sufficiently small. This generally enables to obtain a good
solution at a computational cost that is significantly lower than that of direct methods. In this
section, we present and study two classes of iterative methods: basic iterative methods based
on a splitting of the matrix A, and the so-called Krylov subspace methods.

97

Chapter 4. Solution of linear systems of equation

4.3.1 Basic iterative methods

The basic iterative methods are particular cases of a general splitting method. Given a splitting
of the matrix of the linear system as A = M − N, for a nonsingular matrix M ∈ Cn×n and a
matrix N ∈ Cn×n, together with an initial guess x(0) of the solution, one step of this general
method reads

Mx(k+1) = Nx(k) + b. (4.14)

For any choice of splitting, the exact solution x∗ to the linear system is a fixed point of this
iteration, in the sense that if x(0) = x∗, then x(k) = x∗ for all k > 0. Equation (4.14) is
a linear system with matrix M, unknown x(k+1), and right-hand side Nx(k) + b. There is a
compromise between the cost of a single step and the speed of convergence of the method.
In the extreme case where M = A and N = 0, the method converges to the exact solution
in one step, but performing this step amounts to solving the initial problem. In practice, in
order for the method to be useful, the linear system (4.14) should be relatively simple to solve.
Concretely, this means that the matrix M should be diagonal, triangular, block diagonal, or
block triangular. The error e(k) and residual r(k) at iteration k are defined as follows:

e(k) = x(k) − x∗, r(k) = Ax(k) − b.

Convergence of the splitting method

Before presenting concrete examples of splitting methods, we obtain a necessary and sufficient
condition for the convergence of (4.14) for any initial guess x(0).

Proposition 4.10 (Convergence). The splitting method (4.14) converges for any initial x(0)

if and only if ρ(M−1N) < 1. In addition, for any ε > 0 there exists K > 0 such that

∀k > K, ‖e(k)‖ 6
(
ρ(M−1N) + ε

)k‖e(0)‖. (4.15)

Proof. Let x∗ denote the solution to the linear system. Since Mx∗ − Nx∗ = b, we have

M(x(k+1) − x∗) = N(x(k) − x∗).

Using the assumption that M is nonsingular, we obtain that the error satisfies the equation

e(k+1) = (M−1N)e(k).

Applying this equality repeatedly, we deduce that

e(k) = (M−1N)e(k−1) = · · · = (M−1N)ke(0). (4.16)

Proof that ρ(M−1N) < 1 is necessary for convergence. We prove the equivalent claim that
if ρ(M−1N) > 1, then there exists x(0) such that the method is not convergent. Indeed, assume
that x(0) = x∗ + v(0), where v(0) is the eigenvector of M−1N associated with the eigenvalue of
largest modulus. Then e(0) = v(0) and the right-hand side of (4.16) does not converge to 0 in

98

Chapter 4. Solution of linear systems of equation

the limit as k → 0, because

‖(M−1N)ke(0)‖ = ρ(M−1N)k‖v(0)‖ > ‖v(0)‖.

Thus, the condition ρ(M−1N) < 1 is necessary to ensure convergence for all initial guess x(0).

Proof that ρ(M−1N) < 1 is sufficient for convergence. In order to show that the condition
is also sufficient, note that by (4.16)

∀k > 0, ‖e(k)‖ 6 ‖(M−1N)k‖‖e(0)‖.

By Gelfand’s formula, proved in Proposition A.10 of Appendix A, it holds that

lim
k→∞
‖(M−1N)k‖

1
k = ρ(M−1N). (4.17)

Therefore, we deduce that if ρ(M−1N) < 1, then ‖(M−1N)k‖ → 0 and so e(k) → 0. In addition,
it follows from (4.17) that for all ε > 0 there is K ∈ N such that

∀k > K, ‖(M−1N)k‖
1
k 6 ρ(M−1N) + ε.

Rearranging this inequality gives (4.15).

At this point, it is natural to wonder whether there exist sufficient conditions on the matrix A
such that the inequality ρ(M−1N) < 1 is satisfied, which is best achieved on a case by case
basis. In the next sections, we present four instances of splitting methods. For each of them, we
obtain a sufficient condition for convergence. We are particularly interested in the case where
the matrix A is Hermitian and positive definite, which often arises in applications, and in the
case where A is strictly row or column diagonally dominant. We recall that a matrix A is said
to be row or column diagonally dominant if, respectively,

|aii| >
∑
j 6=i

|aij | ∀i or |ajj | >
∑
i 6=j

|aij | ∀j.

Richardson’s method

Arguably the simplest splitting of the matrix A is given by A = 1
ω I −

(
1
ω I − A

)
, for some

parameter ω ∈ R, which leads to Richardson’s method:

x(k+1) = x(k) + ω(b− Ax(k)). (4.18)

In this case the spectral radius which enters in the asymptotic rate of convergence is given by

ρ(M−1N) = ρ

(
ω

(
1

ω
I− A

))
= ρ
(
I− ωA

)

99

Chapter 4. Solution of linear systems of equation

The eigenvalues of the matrix I− ωA are given by 1− ωλi, where (λi)16i6L are the eigenvalues
of A. Therefore, the spectral radius is given by

ρ(M−1N) = max
16i6L

|1− ωλi|.

If the eigenvalues of the matrix A do not either (i) all have a positive real part or (ii) all have
a negative real part, then

∀ω ∈ R, max
16i6L

|1− ωλi| > 1.

In other words, by Proposition 4.10, there is for any choice of ω ∈ R some x(0) such that
Richardson’s method is non-convergent. Therefore, in order for convergence to hold for all x(0),
it is necessary that the eigenvalues of A either all have a negative real part, or all have a positive
real part. We focus in the next paragraph on the latter case and we also assume, for simplicity,
that A is Hermitian.

Case of symmetric positive definite A. If the matrix A is Hermitian and positive definite, the
eigenvalues of A are all real and positive, and it is possible to explicitly calculate the optimal
value of ω for convergence. In order for convergence to be as fast as possible, the spectral radius
of M−1N should be as small as possible, in view of Proposition 4.10. Denoting by λmin and λmax

the minimum and maximum eigenvalues of A, it is not difficult to show that

ρ(M−1N) = max
16i6L

|1− ωλi| = max
{
|1− ωλmin|, |1− ωλmax|

}
. (4.19)

The right-hand side is minimized 1−ωλmin = ωλmax−1, in which case the two arguments of the
maximum in (4.19) are equal. From this we deduce the optimal value of ω and the associated
spectral radius:

ωopt =
2

λmax + λmin
, ρopt = 1− 2λmin

λmax + λmin
=
λmax − λmin
λmax + λmin

=
κ2(A)− 1

κ2(A) + 1
.

We observe that the smaller the condition number of the matrix A, the better the asymptotic
rate of convergence.

Remark 4.2 (Link to optimization). In the case where A ∈ Rn×n is symmetric and posi-
tive definite, the Richardson update (4.18) may be viewed as a step of the steepest descent
algorithm, which we study carefully in Chapter 8, for the function f(x) = 1

2x
TAx− bTx:

x(k+1) = x(k) − ω∇f(x(k)). (4.20)

The gradient of this function is ∇f(x) = Ax − b, and its Hessian matrix is A. Since the
Hessian matrix is positive definite, the function is convex and attains its global minimum
when ∇f is zero, i.e. when Ax = b.

100

Chapter 4. Solution of linear systems of equation

Jacobi’s method

In Jacobi’s method, the matrix M in the splitting is the diagonal matrix D with the same entries
as those of A on the diagonal. We denote by L and U the lower and upper triangular parts of A,
without the diagonal. One step of the method reads

Dx(k+1) = (D− A)x(k) + b = −(L + U)x(k) + b (4.21)

Since the matrix D on the left-hand side is diagonal, this linear system with unknown x(k+1) is
very simple to solve. The equation (4.21) can be rewritten as

a11x
(k+1)
1 + a12x

(k)
2 + · · ·+ a1nx

(k)
n = b1

a21x
(k)
1 + a22x

(k+1)
2 + · · ·+ a2nx

(k)
n = b2

...

an1x
(k)
1 + an2x

(k)
2 + · · ·+ annx

(k+1)
n = bn.

The updates for each of the entries of x(k+1) are independent, and so the Jacobi method lends
itself well to parallel implementation. The computational cost of one iteration, measured in
number of floating point operations required, scales as O(n2) if A is a full matrix, or O(nk)
if A is a sparse matrix with k nonzero elements per row on average. It is simple to prove the
convergence of Jacobi’s method is the case where A is diagonally dominant.

Proposition 4.11. Assume that A is strictly (row or column) diagonally dominant. Then it
holds that ρ(M−1N) < 1 for the Jacobi splitting.

Proof. Assume that λ is an eigenvalue of M−1N and v is the associated unit eigenvector. Then

M−1Nv = λv ⇔ Nv = λMv ⇔ (N− λM)v = 0.

In the case of Jacobi’s splitting, this is equivalent to

−(L + λD + U)v = 0.

If |λ| > 1, then the matrix on the left-hand side of this equation is diagonally dominant and
thus invertible (see Exercise 4.9). Therefore v = 0, but this is a contradiction because v is
vector of unit norm. Consequently, all the eigenvalues are bounded from above strictly by 1 in
modulus.

Gauss–Seidel’s method

In Gauss Seidel’s method, the matrix M in the splitting is the lower triangular part of A,
including the diagonal. One step of the method then reads

(L + D)x(k+1) = −Ux(k) + b (4.22)

101

Chapter 4. Solution of linear systems of equation

The system is solved by forward substitution. The equation (4.22) can be rewritten equivalently
as

a11x
(k+1)
1 + a12x

(k)
2 + a13x

(k)
3 + · · ·+ a1nx

(k)
n = b1

a21x
(k+1)
1 + a22x

(k+1)
2 + a23x

(k)
3 + · · ·+ a2nx

(k)
n = b2

a32x
(k+1)
1 + a32x

(k+1)
2 + a33x

(k+1)
3 + · · ·+ a3nx

(k)
n = b3

...

an1x
(k+1)
1 + an2x

(k+1)
2 + an3x

(k+1)
3 + · · ·+ annx

(k+1)
n = bn.

Given x(k), the first entry of x(k+1) is obtained from the first equation. Then the value of the
second entry is obtained from the second equation, etc. Unlike Jacobi’s method, the Gauss–
Seidel method is sequential and the entries of x(k+1) cannot be updated in parallel.

It is possible to prove the convergence of the Gauss–Seidel method in particular cases. For
example, the method converges if A is strictly diagonally dominant. Proving this, using an
approach similar to that in the proof of Proposition 4.11, is the goal of Exercise 4.18. It is also
possible to prove convergence when A is Hermitian and positive definite. We show this in the
next section for the relaxation method, which generalizes the Gauss–Seidel method.

Relaxation method

The relaxation method generalizes the Gauss–Seidel method. It corresponds to the splitting

A =

(
D
ω

+ L
)
−
(
1− ω
ω

D− U
)
. (4.23)

When ω = 1, this is simply the Gauss–Seidel splitting. The idea of the relaxation method is
that, by letting ω be a parameter that can differ from 1, faster convergence can be achieved.
This intuition will be verified later. The equation (4.14) for this splitting can be rewritten
equivalently as

a11
(
x
(k+1)
1 − x(k)1

)
= −ω

(
a11x

(k)
1 + a12x

(k)
2 + · · ·+ a1nx

(k)
n − b1

)
a22
(
x
(k+1)
2 − x(k)2

)
= −ω

(
a21x

(k+1)
1 + a22x

(k)
2 + · · ·+ a2nx

(k)
n − b2

)
...

ann
(
x(k+1)
n − x(k)n

)
= −ω

(
an1x

(k+1)
1 + an2x

(k+1)
2 + · · ·+ annx

(k)
n − bn

)
.

The coefficient on the right-hand side is larger than in the Gauss–Seidel method if ω > 1, and
smaller if ω < 1. These regimes are called over-relaxation and under-relaxation, respectively.

To conclude this section, we establish a sufficient condition for the convergence of the re-
laxation method, and also of the Gauss–Seidel method as a particular case when ω = 1, when
the matrix A is Hermitian and positive definite. To this end, we begin by showing the following
preparatory result, which concerns a general splitting A = M− N.

Proposition 4.12. Let A be Hermitian and positive definite. If the Hermitian matrix M∗+N

102

Chapter 4. Solution of linear systems of equation

is positive definite, then ρ(M−1N) < 1.

Proof. First, notice that M∗ + N is indeed Hermitian because

(M∗ + N)∗ = M + N∗ = A + N + N∗.

We will show that ‖M−1N‖A < 1, where ‖•‖A is the matrix norm induced by the following norm
on vectors:

‖x‖A :=
√
x∗Ax.

Showing that this indeed defines a vector norm is the goal of Exercise 4.11. Since N = M− A,
it holds that ‖M−1N‖A = ‖I−M−1A‖A, and so

‖M−1N‖A = sup
{
‖x−M−1Ax‖A : ‖x‖A 6 1

}
.

Take x ∈ Cn with ‖x‖A 6 1 and let y = M−1Ax. We calculate

‖x−M−1Ax‖2A = x∗Ax− y∗Ax− x∗Ay + y∗Ay

= x∗Ax− y∗MM−1Ax− (M−1Ax)∗M∗y + y∗Ay

= x∗Ax− y∗My − y∗M∗y + y∗(M− N)y

= x∗Ax− y∗(M∗ + N)y 6 1− y∗(M∗ + N)y < 1,

where we used in the last inequality the assumption that M∗ + N is positive definite. This
inequality holds true for all x ∈ Cn with ‖x‖A = 1, and so we conclude that ‖M−1N‖A < 1,
which implies that ρ(M−1N) < 1.

As a corollary, we obtain a sufficient condition for the convergence of the relaxation method.

Corollary 4.13. Assume that A is Hermitian and positive definite. Then the relaxation
method converges if ω ∈ (0, 2).

Proof. For the relaxation method, we have

M + N∗ =

(
D
ω

+ L
)
+

(
1− ω
ω

D− U
)∗

.

Since A is Hermitian, it holds that D∗ = D and U∗ = L. Therefore,

M + N∗ =
2− ω
ω

D.

The diagonal elements of D are all positive, because A is positive definite. (Indeed, if there
was an index i such that dii 6 0, then it would hold that eTi Aei = dii 6 0, contradicting the
assumption that A is positive definite.) We deduce that M + N∗ is positive definite if and only
if ω ∈ (0, 2). We can then conclude the proof by using Proposition 4.12.

Note that Corollary 4.13 implies as a particular case the convergence of the Gauss–Seidel method
when A is Hermitian and positive definite. The condition ω ∈ (0, 2) is in fact necessary for the

103

Chapter 4. Solution of linear systems of equation

convergence of the relaxation method, not only in the case of a Hermitian positive definite
matrix A but in general.

Proposition 4.14 (Necessary condition for the convergence of the relaxation method). Let
A ∈ Cn×n be an invertible matrix, and let A = Mω −Nω denote the splitting of the relaxation
method with parameter ω. It holds that

∀ω 6= 0, ρ(M−1
ω Nω) > |ω − 1|.

Proof. We recall the following facts:

• the determinant of a product of matrices is equal to the product of the determinants.

• the determinant of a triangular matrix is equal to the product of its diagonal entries;

• the determinant of a matrix is equal to the product of its eigenvalues, to the power of
their algebraic multiplicity. This can be shown from the previous two items, by passing
to the Jordan normal form.

Therefore, we have that

det(M−1
ω Nω) = det(Mω)

−1 det(Nω) =
det
(
1−ω
ω D− U

)
det
(D
ω + L

) = (1− ω)n.

Since the determinant on the left-hand side is the product of the eigenvalues of M−1
ω Nω, it is

bounded from above in modulus by ρ(M−1
ω Nω)

n, and so we deduce ρ(M−1
ω Nω)

n > |1−ω|n. The
statement then follows by taking the n-th root.

Comparison between Jacobi and Gauss–Seidel for tridiagonal matrices �

For tridiagonal matrices, the convergence rate of the Jacobi and Gauss–Seidel methods satisfy
an explicit relation, which we prove in this section. We denote the Jacobi and Gauss–Seidel
splittings by MJ −NJ and MG −NG , respectively, and use the following notation for the entries
of the matrix A:

a1 b1

c1
.
. bn−1

cn−1 an

 .

Before presenting and proving the result, notice that for any µ 6= 0 it holds that

µ

µ2

. . .
µn

A

µ−1

µ−2

. . .
µ−n

 =

a1 µ−1b1

µc1
.
. µ−1bn−1

µcn−1 an

 . (4.24)

104

Chapter 4. Solution of linear systems of equation

Proposition 4.15. Assume that A is tridiagonal with nonzero diagonal elements, so that
both MJ = D and MG = L + D are invertible. Then

ρ(M−1
G NG) = ρ(M−1

J NJ)
2

Proof. If λ is an eigenvalue of M−1
G NG with associated unit eigenvector v, then

M−1
G NGv = λv ⇔ NGv = λMGv ⇔ (NG − λMG)v = 0.

For fixed λ, there exists a nontrivial solution v to the last equation if and only if

pG(λ) := det(NG − λMG) = det(−λL− λD− U) = 0.

Likewise, λ is an eigenvalue of M−1
J NJ if and only if

pJ (λ) := det(NJ − λMJ) = det(−L− λD− U) = 0.

Now notice that, for λ 6= 0,

pG(λ
2) = det

(
−λ2L− λ2D− U

)
= λn det

(
−λL− λD− λ−1U

)
.

Applying (4.24) with µ = λ 6= 0, we deduce

pG(λ
2) = λn det

(
−L− λD− U

)
= λnpJ (λ)

It is clear that this relation is true also if λ = 0. Consequently, it holds that if λ is an eigenvalue
of the matrix M−1

J NJ then λ2 is an eigenvalue of M−1
G NG . Conversely, if λ is a nonzero eigenvalue

of M−1
G NG , then the two square roots of λ are eigenvalues of M−1

J NJ .

If a matrix A is tridiagonal and Toeplitz, i.e. if it is of the form
a b

c
.
. b

c a

 ,

then it is possible to prove that the eigenvalues of A are given by

λk = a+ 2
√
bc cos

(
kπ

n+ 1

)
, k = 1, . . . , n. (4.25)

In this case, the spectral radius of M−1
J NJ can be determined explicitly.

Monitoring the convergence

In practice, we have access to the residual r(k) = Ax(k) − b at each iteration, but not to the
error e(k) = x(k) −x∗, as calculating the latter would require to know the exact solution of the

105

Chapter 4. Solution of linear systems of equation

problem. Nevertheless, the two are related by the equation

r(k) = Ae(k) ⇔ e(k) = A−1r(k).

Therefore, it holds that ‖e(k)‖ 6 ‖A−1‖‖r(k)‖. Likewise, the relative error satisfies

‖e(k)‖
‖x∗‖

=
‖A−1r(k)‖
‖A−1b‖

,

and since ‖b‖ = ‖AA−1b‖ 6 ‖A‖‖A−1b‖, we deduce

‖e(k)‖
‖x∗‖

6 κ(A)‖r
(k)‖
‖b‖

.

The fraction on the right-hand side is the relative residual. If the system is well conditioned,
that is if κ(A) is close to one, then controlling the relative residual enables a good control of
the relative error.

Stopping criterion

In practice, several criteria can be employed in order to decide when to stop iterating. Given a
small number ε (unrelated to the machine epsilon in Chapter 1), the following alternatives are
available:

• Stop when ‖r(k)‖ 6 ε. The downside of this approach is that it is not scaling invariant:
when used for solving the following rescaled system

kAx = kb, k 6= 1,

a splitting method with rescaled initial guess kx(0) will require a number of iterations
that depends on k: fewer if k � 1 and more if k � 1. In practice, controlling the relative
residual and the relative error is often preferable.

• Stop when ‖r(k)‖/‖r(0)‖ 6 ε. This criterion is scaling invariant, but the number of
iterations is dependent on the quality of the initial guess x(0).

• Stop when ‖r(k)‖/‖b‖. This criterion is generally the best, because it is both scaling
invariant and the quality of the final iterate is independent of that of the initial guess.

4.3.2 The conjugate gradient method

As already mentioned in Remark 4.2, when the matrix A ∈ Cn×n in the linear system Ax = b

is symmetric and positive definite, the system can be interpreted as a minimization problem for
the function

f(x) =
1

2
xTAx− bTx. (4.26)

106

Chapter 4. Solution of linear systems of equation

The fact that the exact solution x∗ to the linear system is the unique minimizer of this function
appears clearly when rewriting f as follows:

f(x) =
1

2
(x− x∗)

TA(x− x∗)−
1

2
xT
∗ Ax∗. (4.27)

The second term is constant with x, and the first term is strictly positive if x−x∗ 6= 0, because A
is positive definite. We saw that Richardson’s method can be interpreted as a steepest descent
with fixed step size,

x(k+1) = x(k) − ω∇f(x(k)).

In this section, we will present and study other methods for solving the linear system (4.1)
which can be viewed as optimization methods. Since A is symmetric, it is diagonalizable and
the function f can be rewritten as

f(x) =
1

2
(x− x∗)

TQDQT (x− x∗)−
1

2
xT
∗ Ax∗

=
1

2
(QTe)TD(QTe)− 1

2
xT
∗ Ax∗, e = x− x∗.

Therefore, we have that

f(x) =
1

2

n∑
i=1

λiη
2
i −

1

2
xT
∗ Ax∗, η = QT (x− x∗),

where (λi)16i6n are the diagonal entries of D. This shows that f is a paraboloid after a change
of coordinates.

Steepest descent method

The steepest descent method is more general than Richardson’s method in the sense that the
step size changes from iteration to iteration and the method is not restricted to quadratic
functions of the form (4.26). Each iteration is of the form

x(k+1) = x(k) − ωk∇f(x(k)).

It is natural to wonder whether the step size ωk can be fixed in such a way that f(x(k+1))

is as small as possible. For the case of the quadratic function (4.26), this value of ωk can be
calculated explicitly for a general search direction d, and in particular also when d = ∇f(x(k)).
We calculate that

f(x(k+1)) = f
(
x(k) − ωkd

)
=

1

2

(
x(k) − ωkd

)T
A
(
x(k) − ωkd

)
−
(
x(k) − ωkd

)T
b

= f
(
x(k)

)
+
ω2
k

2
dTAd− ωkd

Tr(k). (4.28)

107

Chapter 4. Solution of linear systems of equation

When viewed as a function of the real parameter ωk, the right-hand side is a convex quadratic
function. It is minimized when its derivative is equal to zero, i.e. when

ωkd
TAd− dT (Axk − b) = 0 ⇒ ωk =

dTr(k)

dTAd
. (4.29)

The steepest descent algorithm with step size obtained from this equation is summarized in Al-
gorithm 3 below. By construction, the function value f(x(k)) is nonincreasing with k, which is
equivalent to saying that the error x− x∗ is nonincreasing in the norm x 7→

√
xTAx. In order

to quantify more precisely the decrease of the error in this norm, we introduce the notation

Ek = ‖x− x∗‖2A := (x(k) − x∗)
TA(x(k) − x∗) = (Ax(k) − b)TA−1(Ax(k) − b).

We begin by showing the following auxiliary lemma.

Lemma 4.16 (Kantorovich inequality). Let A ∈ Rn×n be a symmetric and positive definite
matrix, and let λ0 6 . . . 6 λn denote its eigenvalues. Then for all nonzero z ∈ Rn it holds
that

(zTz)2

(zTAz)(zTA−1z)
>

4λ1λn
(λ1 + λn)2

.

Proof. By the AM-GM (arithmetic mean-geometric mean) inequality, it holds for all t > 0 that√
(zTAz)(zTA−1z) =

√
(tzTAz)(t−1zTA−1z) 6

1

2

(
tzTAz + 1

t
zTA−1z

)
=

1

2
zT

(
tA +

1

t
A−1

)
z.

The matrix on the right-hand side is also symmetric and positive definite, with eigenvalues
equal to tλi + (tλi)

−1. Therefore, we deduce

∀t > 0,
√

(zTAz)(zTA−1z) 6
1

2

(
max

i∈{1,...,n}
tλi + (tλi)

−1

)
zTz. (4.30)

The function x 7→ x + x−1 is convex, and so over any closed interval [xmin, xmax] it attains its
maximum either at xmin or at xmax. Consequently, it holds that(

max
i∈{1,...,n}

tλi + (tλi)
−1

)
= max

{
tλ1 +

1

tλ1
, tλn +

1

tλn

}
.

In order to obtain the best possible bound from (4.30), we should let t be such that the maximum
is minimized, which occurs when the two arguments of the maximum are equal:

tλ1 +
1

tλ1
= tλn +

1

tλn
⇒ t =

1√
λ1λn

.

For this value of t, the maximum in (4.30) is equal to√
λ1
λn

+

√
λn
λ1
.

108

Chapter 4. Solution of linear systems of equation

By substituting this expression in (4.30) and rearranging, we obtain the statement.

We are now able to prove the convergence of the steepest descent method.

Theorem 4.17 (Convergence of the steepest descent method). It holds that

Ek+1 6

(
κ2(A)− 1

κ2(A) + 1

)2

Ek.

Proof. Substituting x(k+1) = x(k) − ωkd in the expression for Ek+1, we obtain

Ek+1 = (x(k) − ωkd− x∗)
TA(x(k) − ωkd− x∗)

= Ek − 2ωkd
Tr(k) + ω2

kd
TAd

= Ek −
(dTd)2

dTAd
=

(
1− (dTd)2

(dTAd)(dTA−1d)

)
Ek,

Using the Kantorovich inequality, we have

Ek+1 6

(
1− 4λ1λn

(λ1 + λn)2

)
Ek 6

(
λ1 − λn
λ1 + λn

)2

Ek =

(
κ2(A)− 1

κ2(A) + 1

)2

Ek.

We immediately deduce the statement from this inequality.

Algorithm 3 Steepest descent method
1: Pick ε and initial x
2: r ← Ax− b
3: while ‖r‖ > ε‖b‖ do
4: d← r
5: ω ← dTr/dTAd
6: x← x− ωd
7: r ← Ax− b
8: end while

Remark 4.3. The attentive reader will have noticed that the rate of convergence rate of the
steepest descent method is not apparently better than that of Richardson’s method with
optimal ω; in both cases, some upper bound on the norm of the error is multiplied by

κ2(A)− 1

κ2(A) + 1

at each iteration. For the steepest descent method, this rate of convergence is always guaran-
teed, but for Richardson’s method, this rate of convergence holds only for the optimal value
of ω, which itself depends on the condition number κ2(A) and is computationally expensive
to approximate. Indeed, as we shall see in Chapter 6, the simplest method for calculating
the smallest eigenvalue of a matrix, which is necessary for estimating the condition number,
requires to solve linear systems with matrix A.

109

Chapter 4. Solution of linear systems of equation

Preconditioned steepest descent

We observe from Theorem 4.17 that the convergence of the steepest descent method is faster
when the condition number of the matrix A is low. This naturally leads to the following question:
can we reformulate the minimization of f(x) in (4.26) as another optimization problem which
is of the same form but involves a matrix with a lower condition number, thereby providing
scope for faster convergence? In order to answer this question, we consider a linear change of
coordinates y = T−1x, where T is an invertible matrix, and we define

f̃(y) = f(Ty) = 1

2
yT (TTAT)y − (TTb)Ty. (4.31)

This function is of the same form as f in (4.26), with the matrix Ã := TTAT instead of A
and the vector b̃ := TTb instead of b. Its minimizer is y∗ = T−1x∗. The steepest descent
algorithm can be applied to (4.31) and, from an approximation y(k) of the minimizer y∗, an
approximation x(k) of x∗ is obtained by the change of variable x(k) = Ty(k). This approach
is called preconditioning. By Theorem 4.17, the steepest descent method satisfies the following
error estimate when applied to the function (4.31):

Ek+1 6

(
κ2(TTAT)− 1

κ2(TTAT) + 1

)2

Ek, Ek = (y(k) − y∗)
T Ã(y(k) − y∗),

= (x(k) − x∗)
TA(x(k) − x∗).

Consequently, the convergence is faster than that of the usual steepest descent method if
κ2(TTAT) < κ2(A). The optimal change of coordinates is given by T = C−T , where C is
the factor of the Cholesky factorization of A as CCT . Indeed, in this case

TTAT = C−1CCTC−T = I ⇒ κ2(TTAT) = 1,

and the method converges in a single iteration! However, this iteration amounts to solving the
linear system by direct Cholesky factorization of A. In practice, it is usual to define T from an
approximation of the Cholesky factorization, such as the incomplete Cholesky factorization.

To conclude this section, we demonstrate that the change of variable from x to y need not
be performed explicitly in practice. Indeed, one step of the steepest descent algorithm applied
to function f̃ reads

y(k+1) = y(k) − ω̃k(Ãy(k) − b̃), ω̃k =
(Ãy(k) − b̃)T (Ãy(k) − b̃)

(Ãy(k) − b̃)T Ã(Ãy(k) − b̃)
.

Letting x(k) = Ty(k), this equation can be rewritten as the following iteration:

x(k+1) = x(k) − ω̃kdk, ω̃k =
dT
k r

(k)

dT
k Adk

, dk = TTT (Ax(k) − b).

A comparison with (4.29) shows that the step size ω̃k is such that f(x(k+1)) is minimized. This
reasoning shows that the preconditioned conjugate gradient method amounts to choosing the

110

Chapter 4. Solution of linear systems of equation

direction dk = TTTr(k) at each iteration, instead of just r(k), as is apparent in Algorithm 4. It
is simple to check that −dk is a descent direction for f :

−∇f(x)T
(
TTT (Ax− b)

)
= −

(
TT (Ax− b)

)T (TT (Ax− b)
)
6 0.

Algorithm 4 Preconditioned steepest descent method
1: Pick ε, invertible T and initial x
2: r ← Ax− b
3: while ‖r‖ > ε‖b‖ do
4: d← TTTr
5: ω ← dTr/dTAd
6: x← x− ωd
7: r ← Ax− b
8: end while

Conjugate directions method

Definition 4.6 (Conjugate directions). Let A be a symmetric positive definite matrix. Two
vectors d1 and d2 are called A-orthogonal or conjugate with respect to A if dT

1 Ad2 = 0, i.e.
if they are orthogonal for the inner product 〈x,y〉A = xTAy.

Assume that d0, . . . ,dn−1 are n pairwise A-orthogonal nonzero directions. By Exercise 4.19,
these vectors are linearly independent, and so they form a basis of Rn. Consequently, for any
initial guess x(0), the vector x(0) − x∗, where x∗ is the solution to the linear system Ax = b,
can be decomposed as

x(0) − x∗ = α0d0 + · · ·+ αn−1dn−1.

Taking the 〈•, •〉A inner product of both sides with dk, with k ∈ {0, . . . , n − 1}, we obtain an
expression for the scalar coefficient αk:

αk =
dT
k A(x(0) − x∗)

dT
k Adk

=
dT
k (Ax(0) − b)

dT
k Adk

.

Therefore, calculating the expression of the coefficient does not require to know the exact
solution x∗, but only the residual r(0)! Given conjugate directions, the exact solution can be
obtained as

x∗ = x(0) −
n−1∑
k=0

αkdk, αk =
dT
k r

(0)

dT
k Adk

. (4.32)

If x(0) = 0, then r(0) = −b and this equations gives that

x∗ =

n−1∑
k=0

dT
k b

dT
k Adk

dk =

(
n−1∑
k=0

dkd
T
k

dT
k Adk

)
b,

111

Chapter 4. Solution of linear systems of equation

which implies that that the inverse of A is given by

A−1 =
n−1∑
k=0

dkd
T
k

νk
, νk = dT

k Adk.

The conjugate directions method is illustrated in Algorithm 5. Its implementation is very similar
to that of the steepest descent method, the only difference being that the descent direction at
iteration k is given by dk instead of r(k). In particular, the step size at each iteration is such
that f(x(k+1)) is minimized.

Algorithm 5 Conjugate directions method
1: Assuming d0, . . . ,dn−1 are given.
2: Pick initial x(0)

3: for k in {0, . . . , n− 1} do
4: r(k) = Ax(k) − b
5: ωk = dT

k r
(k)/dT

k Adk

6: x(k+1) = x(k) − ωkdk

7: end for

Let us now establish the connection between the Algorithm 5 and (4.32), which may not
be immediately apparent because (4.32) involves only the initial residual Ax(0) − b, while the
residual at the current iteration r(k) is used in the algorithm.

Proposition 4.18 (Convergence of the conjugate directions method). The vector x(k) ob-
tained after k iterations of the conjugate directions method is given by

x(k) = x(0) −
k−1∑
i=0

αidi, αi =
dT
i r

(0)

dT
i Adi

. (4.33)

In particular, the method converges in at most n iterations.

Proof. Let us denote by y(k) the solution obtained after k steps of Algorithm 5. Our goal is to
show that y(k) coincides with x(k) defined in (4.33). The result is trivial for k = 0. Reasoning
by induction, we assume that it is true up to k. Then performing step k + 1 of the algorithm
gives

y(k+1) = y(k) − ωkdk, ωk =
dT
k r

(k)

dT
k Adk

.

On the other hand, it holds from (4.33) that

x(k+1) = x(k) − αkdk, αk =
dT
k r

(0)

dT
k Adk

.

By the induction hypothesis, it holds that y(k) = x(k), so in order to prove that y(k+1) = x(k+1),
it is sufficient to show that ωk = αk, i.e. that

dT
k r

(k) = dT
k r

(0) ⇔ dT
k (r

(k) − r(0)) = 0 ⇔ dT
k A(x(k) − x(0)) = 0.

112

Chapter 4. Solution of linear systems of equation

The latter equality is obvious from the A-orthonormality of the directions.

Since ωk in Algorithm 5 coincides with the expression in (4.29), the conjugate directions
algorithm satisfies the following “local optimization” property: the iterate x(k+1) minimizes f
on the straight line ω 7→ x(k) − ωdk. In contrast with the steepest descent method, however,
the conjugate directions method also satisfies the following stronger property.

Proposition 4.19 (Optimality of the conjugate directions method). The iterate x(k) is the
minimizer of f over the set x(0) + Bk, where Bk = Span{d0, . . . ,dk−1}.

Proof. By (4.32), it holds that

x∗ = x(0) −
n−1∑
i=0

αidi, αi =
dT
i r

(0)

dT
i Adi

On the other hand, any vector y ∈ x(0) + Bk can be expanded as

y = x(0) − β0d0 − · · · − βk−1dk−1.

Employing these two expressions, the formula for f in (4.27), and the A-orthogonality of the
directions, we obtain

f(y) =
1

2
(y − x∗)

TA(y − x∗)−
1

2
xT
∗ Ax∗

=
1

2

k−1∑
i=0

(βi − αi)
2dT

i Adi +
1

2

n−1∑
i=k

α2
id

T
i Adi −

1

2
xT
∗ Ax∗

This is minimized when βi = αi for all i ∈ {0, . . . , k − 1}, in which case y coincides with the
k-th iterate x(k) of the conjugate directions method in view of Proposition 4.18.

Remark 4.4. Let ‖•‖A denote the norm induced by the inner product 〈•, •〉A. Since

‖x(k) − x∗‖A =
√

2f(x(k)) + xT
∗ Ax∗,

Proposition 4.19 shows that x(k) minimizes the norm ‖x(k) − x∗‖A over x(0) + Bk. This
is not surprising since, by construction, the vector x(k) − x(0) is the orthogonal projection
of x∗ − x(0) onto Bk, for the inner product 〈•, •〉A.

A corollary of (4.19) is that the gradient of f at x(k), i.e. the residual r(k) = Ax(k) − b, is
orthogonal to any vector in {d0, . . . ,dk−1} for the usual Euclidean inner product. This can also
be checked directly from the formula

x(k) − x∗ =

n−1∑
i=k

αidi, αi =
dT
i r

(0)

dT
i Adi

,

113

Chapter 4. Solution of linear systems of equation

which follows directly from Proposition 4.18. Indeed, it holds that

∀j ∈ {0, . . . , k − 1}, dT
j r

(k) = djA(x(k) − x∗) =

n−1∑
i=k

αid
T
j Adi = 0. (4.34)

The conjugate gradient method

In the previous section, we showed that, given n conjugate directions, the solution to the
linear system Ax = b can be obtained in a finite number of iterations using Algorithm 5. The
conjugate gradient method can be viewed as a particular case of the conjugate directions method.
Instead of assuming that the conjugate directions are given, they are constructed iteratively
as part of the algorithm. Given an initial guess x(0), the first direction is the residual r(0),
which coincides with the gradient of f at x(0). The directions employed for the next iterations
are obtained by applying the Gram-Schmidt process to the residuals. More precisely, given
conjugate directions d0, . . . ,dk−1, and letting x(k) denote the k-th iterate of the conjugate
directions method, the direction dk is obtained by

dk = r(k) −
k−1∑
i=0

dT
i Ar(k)

dT
i Adi

di, r(k) = Ax(k) − b. (4.35)

It is simple to check that dk is indeed A-orthogonal to di for i ∈ {0, . . . , k − 1}, and that dk is
nonzero if r(k) is nonzero. To prove the latter claim, we can take the Euclidean inner product
of both sides with r(k) and use Proposition 4.19 to deduce that

dT
k r

(k) = (r(k))Tr(k) > 0. (4.36)

Note also that since the directions are obtained by applying the Gram–Schmidt process to the
residuals, it holds that

∀k ∈ {0, . . . , n− 1}, Bk+1 := Span {d0, . . . ,dk} = Span
{
r(0), . . . , r(k)

}
. (4.37)

The following result characterizes precisely the subspace Bk+1.

Proposition 4.20. Assume that ‖r(k)‖ 6= 0 for all k < m 6 n. Then it holds that

∀k ∈ {0, . . .m}, Span
{
r(0), r(1), . . . , r(k)

}
= Span

{
r(0),Ar(0), . . . ,Akr(0)

}
(4.38)

The subspace on the right-hand side is called a Krylov subspace.

Proof. The result is clear for k = 0. Reasoning by induction, we prove that if the result is true
up to k < m, then it is also true for k + 1. A simple calculation gives that

r(k+1) = A
(
x(k) − ωkdk

)
− b

= r(k) − ωkAdk. (4.39)

114

Chapter 4. Solution of linear systems of equation

From (4.35), we deduce that

r(k+1) = r(k) − ωkA
(
r(k) −

k−1∑
i=0

dT
i Ar(k)

dT
i Adi

di

)
.

By (4.37) and the induction hypothesis, the bracketed expression on the right-hand side belongs
to Bk+1, so the inclusion ⊂ in (4.38) is clear. The inclusion ⊃ then follows from the fact the
dimension of the subspace

Span {d0, . . . ,dk} = Span
{
r(0), . . . , r(k)

}
is equal to k + 1.

It appears from (4.35) that the cost of calculating a new direction grows linearly with the
iteration index. In fact, it turns out that only the last term in the sum is nonzero, and so the
cost of calculating a new direction does not grow with the iteration index k. Indeed, notice that
if i 6 k − 2, then

dT
i Ar(k) = (Adi)

TAr(k) = 0,

because Adi ∈ Bi+2 ⊂ Bk by Proposition 4.20, and r(k) orthogonal to Bk for the Euclidean inner
product by (4.34). This observation leads to Algorithm 6.

Algorithm 6 Conjugate gradient method

1: Pick initial x(0)

2: d0 = r(0) = Ax(0) − b
3: for k in {0, . . . , n− 1} do
4: if ‖r(k)‖ = 0 then
5: Stop
6: end if
7: ωk = dT

k r
(k)/dT

k Adk

8: x(k+1) = x(k) − ωkdk

9: r(k+1) = Ax(k+1) − b
10: βk = dT

k Ar(k+1)/dT
k Adk.

11: dk+1 = r(k+1) − βkdk.
12: end for

Although the conjugate gradient method converges in a finite number of iterations, perform-
ing n iterations for very large systems would require an excessive computational cost, and so it
is sometimes desirable to stop iterating when the residual is sufficiently small. To conclude this
section, we study the convergence of the method.

Theorem 4.21 (Convergence of the conjugate gradient method). The error for the conjugate
gradient method, measured as

Ek := (x(k) − x∗)
TA(x(k) − x∗),

115

Chapter 4. Solution of linear systems of equation

satisfies the following inequality:

∀qk ∈ P(k), Ek+1 6 max
16i6n

(
1 + λiqk(λi)

)2
E0. (4.40)

Here P(k) is the vector space of polynomials of degree less than or equal to k.

Proof. In view of Proposition 4.20, the iterate x(k+1) can be written as

x(k+1) = x(0) +
k∑

i=0

αiAir(0) = x(0) + pk(A)r(0),

where pk is a polynomial of degree k. By Proposition 4.19, pk is in fact the polynomial of
degree k such that f(x(k+1)) is minimized, and thus also Ek+1 by (4.27). Noting that

x(k+1) − x∗ = x(0) − x∗ + pk(A)r(0) = x(0) − x∗ + pk(A)A(x(0) − x∗)

=
(
I + Apk(A)

)
(x(0) − x∗),

we deduce that

∀qk ∈ P(k), Ek+1 6 (x(0) − x∗)
TA
(
I + Aqk(A)

)2
(x(0) − x∗).

In order to exploit this inequality, it is useful to diagonalize A as A = QDQT , for an orthogonal
matrix Q and a diagonal matrix D. Since qk(A) = Qqk(D)QT for all qk ∈ P(k), it holds that

∀qk ∈ P(k), Ek+1 =
(
QT (x(0) − x∗)

)TD
(
I + Dqk(D)

)2(QT (x(0) − x∗)
)

6 max
16i6n

(
1 + λiqk(λi)

)2 (QT (x(0) − x∗)
)TD

(
QT (x(0) − x∗)

)︸ ︷︷ ︸
E0

,

which completes the proof.

A corollary of Theorem 4.21 is that, if A has m 6 n distinct eigenvalues, then the conjugate
gradient method converges in at most m iterations. Indeed, in this case we can take

qm−1(λ) =
1

λ

(
(λ1 − λ) . . . (λm − λ)

λ1 . . . λm
− 1

)
.

It is simple to check that the right-hand side is indeed a polynomial, and that 1+λiqm−1(λi) = 0

for all eigenvalues of A.
In general, finding the polynomial that minimizes the right-hand side of (4.40) is not possible,

because the eigenvalues of A are unknown. However, it is possible to derive from this equation an
error estimate with an explicit dependence on the condition number κ = κ2(A).

Theorem 4.22. It holds that

∀k > 0, Ek 6 4

(√
κ− 1√
κ+ 1

)2k

E0,

116

Chapter 4. Solution of linear systems of equation

Proof. Theorem 4.21 implies that

∀qk ∈ P(k), Ek+1 6 max
λ∈[λ1,λn]

(
1 + λqk(λ)

)2
E0,

where λ1 and λn are the minimum and maximum eigenvalues of A. Notice that{
1 + λqk : qk ∈ P(k)

}
=
{
pk : pk ∈ P(k + 1) and pk(0) = 1

}
Therefore, it follows from Exercise C.7 that the right-hand side is minimized when

1 + λqk(λ) =
Tk+1

(
λn+λ1−2λ
λn−λ1

)
Tk+1

(
λn+λ1
λn−λ1

) , (4.41)

where Tk+1 is the Chebyshev polynomial of degree k+1, see (C.1). We recall that |Tk+1(x)| 6 1

for all x ∈ [−1, 1]. Consequently, by the expression of Chebyshev polynomials given in Exer-
cise C.3, the following inequality holds true for all λ ∈ [λ1, λn]:

∣∣1 + λqk(λ)
∣∣ 6 1

Tk+1

(
λn+λ1
λn−λ1

) = 2

((
r +

√
r2 − 1

)k+1
+
(
r −

√
r2 − 1

)k+1
)−1

,

= 2

((√
κ+ 1√
κ− 1

)k+1

+

(√
κ− 1√
κ+ 1

)k+1
)−1

.

where r = λn+λ1
λn−λ1

. Since the first term in the bracket converges to zero as k → ∞, it is
natural to bound this expression by keeping only the second term, which after simple algebraic
manipulations leads to

∀λ ∈ [λ1, λn],
∣∣1 + λqk(λ)

∣∣ 6 2

(√
κ− 1√
κ+ 1

)k+1

.

From this inequality, the statement of the theorem follows immediately.

4.4 Exercises

� Exercise 4.1. In the simple case where A is symmetric, find values of x, b and ∆b for
which the inequality (4.2) is in fact an equality?

� Exercise 4.2 (Inverse of Gaussian transformation). Prove the formula (4.8).

� Exercise 4.3. Prove that the product of two lower triangular matrices is lower triangular.

� Exercise 4.4. Assume that A ∈ Rn×n is positive definite, i.e. that

∀x ∈ Rn\{0n}, xTAx > 0.

Show that all the principal submatrices of A are nonsingular.

117

Chapter 4. Solution of linear systems of equation

� Exercise 4.5. Implement the backward substitution algorithm for solving Ux = y. What is
the computational cost of the algorithm?

� Exercise 4.6. Compare the condition number of the matrices L and U with and without
partial pivoting. For testing, use a matrix with pseudo-random entries generated as follows

import Random
Set the seed so that the code is deterministic
Random.seed!(0)
n = 1000 # You can change this parameter
A = randn(n, n)

Solution. See the Jupyter notebook for this chapter. 4

� Exercise 4.7. Write a code for calculating the Cholesky factorization of a symmetric positive
definite matrix A by comparing the entries of the product CCT with those of the matrix A. What
is the associated computational cost, and how does it compare with that of the LU factorization?
Extra credit: ... if your code is able to exploit the potential banded structure of the matrix
passed as argument for better efficiency. Specifically, your code will be tested with a matrix is
of the type BandedMatrix defined in the BandedMatrices.jl package, which you will need to
install. The following code can be useful for testing purposes.

import BandedMatrices
import LinearAlgebra

function cholesky(A)
m, n = size(A)
m != n && error("Matrix must be square")
Convert to banded matrix
B = BandedMatrices.BandedMatrix(A)
B.u != B.l && error("Matrix must be symmetric")
--> Your code comes here <--

end

n, u, l = 20000, 2, 2
A = BandedMatrices.brand(n, u, l)
A = A*A'
so that A is symmetric and positive definite (with probability 1).
C = @time cholesky(A)
LinearAlgebra.norm(C*C' - A, Inf)

For information, my code takes about 1 second to run with the parameters given here.

� Exercise 4.8 (Matrix square root). Let A ∈ Rn×n be a symmetric positive definite matrix.
Show that A has a positive definite square root, i.e. that there exists a symmetric matrix B such
that BB = A.

118

Chapter 4. Solution of linear systems of equation

Solution. Since A is symmetric, there exist a diagonal matrix D and an orthogonal matrix Q such that
A = QDQT . Let D1/2 denote the diagonal matrix obtained by applying the square root function to
the entries of D, and notice that D1/2D1/2 = D. Then it holds that

A =
(
QD1/2QT

)(
QD1/2QT

)
.

The matrix A1/2 := QD1/2QT is a square root of the matrix A, in the sense that A1/2A1/2, and it is
positive definite because the diagonal elements of D1/2 are strictly positive. 4

� Exercise 4.9. Show that if A is row or column diagonally dominant, then A is invertible.

� Exercise 4.10. Let T be a nonsingular matrix. Show that

‖A‖T := ‖T−1AT‖2

defines a matrix norm induced by a vector norm.

� Exercise 4.11. Let A ∈ Rn×n be a symmetric positive definite matrix. Show that the
functional

‖•‖A : x 7→
√
xTAx

defines a norm on Rn.

Solution. We need to prove that the three axioms of a norm are satisfied:

• (Positivity) Since A is positive definite, it holds that ‖x‖A > 0 for any x ∈ Rn \ {0}.

• (Homogeneity) It is clear that ‖cx‖A = |c|‖x‖A for any c ∈ R.

• (Triangle inequality) Let A1/2 denote the positive definite square root of A, which exists
by Exercise 4.8. Then

‖x‖A = ‖A1/2x‖2.

The triangle inequality for ‖•‖A then follows from that for ‖•‖2:

‖x+ y‖A = ‖A1/2x+ A1/2y‖2 6 ‖A1/2x‖+ ‖A1/2y‖2 = ‖x‖A + ‖y‖A.

Another option for solving this exercise is to show that

〈x,y〉A := xT Ay

defines an inner product, with induced norm given by ‖•‖A. 4

� Exercise 4.12. Show that the residual satisfies the equation

r(k+1) = NM−1r(k) = (I− AM−1)r(k).

� Exercise 4.13. Show that, if A and B are two square matrices, then ρ(AB) = ρ(BA).

� Exercise 4.14. Is ρ(•) a norm? Prove or disprove.

� Exercise 4.15. Prove that, if A is a diagonal matrix, then

‖A‖1 = ‖A‖2 = ‖A‖∞ = ρ(A).

119

Chapter 4. Solution of linear systems of equation

� Exercise 4.16. Show that, for any matrix norm ‖•‖ induced by a vector norm,

ρ(A) 6 ‖A‖.

� Exercise 4.17. Let ‖•‖ denote the Euclidean vector norm on Rn. We define in Appendix A
the induced matrix norm as

‖A‖ = sup
{
‖Ax‖ : ‖x‖ 6 1

}
.

Show from this definition that, if A is symmetric and positive definite, then

‖A‖ = ‖A‖∗ := sup
{
|xTAx| : ‖x‖ 6 1

}
.

Solution. By the Cauchy–Schwarz inequality and the definition of ‖A‖, it holds that

∀x ∈ Rn with ‖x‖ 6 1, |xT Ax| 6 ‖x‖‖Ax‖ 6 ‖x‖‖A‖‖x‖ 6 ‖A‖.

This shows that ‖A‖∗ 6 ‖A‖. Conversely, letting B denote a matrix square root of A (see Exercise 4.8),
we have

∀x ∈ Rn with ‖x‖ 6 1, ‖Ax‖ =
√
xT AT Ax =

√
(Bx)T BB(Bx) =

√
(Bx)T A(Bx)

= ‖Bx‖
√
yT Ay, y =

Bx
‖Bx‖ .

It holds that ‖Bx‖ =
√
xT Ax 6

√
‖A‖∗. In addition ‖y‖ = 1, so the expression inside the square root

is bounded from above by ‖A‖∗, which enables to conclude the proof. 4

� Exercise 4.18. Prove that, if the matrix A is strictly diagonally dominant (by rows or
columns), then the Gauss–Seidel method converges, i.e. ρ(M−1N) < 1. You can use the same
approach as in the proof of Proposition 4.11.

� Exercise 4.19. Let A ∈ Rn×n denote a symmetric positive definite matrix, and assume that
the vectors d1, . . . ,dn are pairwise A-orthogonal directions. Show that d1, . . . ,dn are linearly
independent.

� Exercise 4.20 (Steepest descent algorithm). Consider the linear system

Ax :=

(
3 1

1 3

)(
x1

x2

)
=

(
1

1

)
=: b. (4.42)

• Show that A is positive definite.

• Draw the contour lines of the function

f(x) =
1

2
xTAx− bTx.

• Plot the contour lines of f in Julia using the function contourf from the package Plots.

• Using Theorem 4.17, estimate the number K of iterations of the steepest descent algorithm
required in order to guarantee that EK 6 10−8, when starting from the vector x(0) = (2 3)T .

120

Chapter 4. Solution of linear systems of equation

• Implement the steepest descent method for finding the solution to (4.42), and plot the
iterates as linked dots over the filled contour of f .

• Plot the error Ek as a function of the iteration index, using a linear scale for the x axis
and a logarithmic scale for the y axis.

� Exercise 4.21. Compute the number of floating point operations required for performing
one iteration of the conjugate gradient method, assuming that the matrix A contains α � n

nonzero elements per row.

� Exercise 4.22 (Solving the Poisson equation over a rectangle). We consider in this exercise
Poisson’s equation in the domain Ω = (0, 2) × (0, 1), equipped with homogeneous Dirichlet
boundary conditions:

−4f(x, y) = b(x, y), x ∈ Ω,

f(x) = 0, x ∈ ∂Ω.

The right-hand side is
b(x, y) = sin(4πx) + sin(2πy).

A number of methods can be employed in order to discretize this partial differential equation.
After discretization, a finite-dimensional linear system of the form Ax = b is obtained. A
Julia function for calculating the matrix A and the vector b using the finite difference method
is given to you on the course website, as well as a function to plot the solution. The goal of
this exercise is to solve the linear system using the conjugate gradient method. Use the same
stopping criterion as in Exercise 4.25.

� Exercise 4.23. Show that if A ∈ Rn×n is nonsingular, then the solution to the equation
Ax = b belongs to the Krylov subspace

Kn(A, b) = Span
{
b,Ab,A2b, . . . ,An−1b

}
.

� Exercise 4.24. Write a function lu(A) for calculating the LU decomposition of a square
matrix A ∈ Rn×n, with L unit lower triangular and U upper triangular, not by Gaussian
elimination but by comparing the entries of the product LU with those of A. To this end, one
option is to compare the entries one by one in the order (1, 1), (1, 2), …, (1, n), (2, 1), (2, 2), …,
i.e. row by row starting from the top. For example,

• Comparing the entry (1, k) with k ∈ {1, . . . , n} gives

`11u1k = a1k.

Since `11 = 1 as L is unit lower triangular, this implies that u1k = a1k.

• Comparing the entry (2, 1) gives
`21u11 = a21

and so `21 = a21/u11.

121

Chapter 4. Solution of linear systems of equation

• Comparing the entry (2, k) with k ∈ {2, . . . , n} gives

`21u1k + `22u2k = a2k.

Given the previous items, the only unknown in this equation is u2k.

• Comparing the entry (3, 1) gives
`31u11 = a31,

and so `31 = a31/u11.

• Comparing the entry (3, 2) gives

`31u12 + `32u22 = a32,

Given the previous items, the only unknown in this equation is `32.

• Comparing the entry (3, k) with k ∈ {3, . . . , n} gives

`31u1k + `32u2k + `33u3k = a3k,

Given the previous items, the only unknown in this equation is u3k.

Notice that a pattern seems to be emerging: when going through the entries row by row starting
from the top left corner of the matrix, comparing the entry (i, j) provides an equation for `ij
if j < i, and an equation for uij if j > i. Do not use any external package for this exercise.
Extra credit: ... if your code is able to exploit the potential banded structure of the matrix
passed as argument for better efficiency. Specifically, your code will be tested with a matrix
created as follows

b, n = 5, 10000
A = [abs(i-j) <= b ? rand() : 0.0 for i in 1:n, j in 1:n]

� Exercise 4.25. Implement an iterative method based on a splitting for finding a solution to
the following linear system on Rn.

1

h2

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

x1

x2

x3
...

xn−1

xn

=

1

1

1
...
1

1

, h =

1

n+ 1
.

Plot the norm of the residual as a function of the iteration index. Use as stopping criterion the
condition

‖r(k)‖ 6 ε‖b‖, ε = 10−8.

As initial guess, use a vector of zeros. The code will be tested with n = 500. Do not use any
library (except for plotting), and do not use the backslash operator.

122

Chapter 4. Solution of linear systems of equation

� Exercise 4.26. Find a formula for the optimal value of ω in the relaxation method given n,
for the linear system in Exercise 4.25. The proof of Proposition 4.15, as well as the for-
mula (4.25) for the eigenvalues of a tridiagonal matrix, are useful to this end.

Solution. Corollary 4.13 and Proposition 4.14 imply that a sufficient and necessary condition for
convergence, when A is Hermitian and positive definite, is that ω ∈ (0, 2). Let Mω = 1

ωD + L and
Nω = 1−ω

ω D− U. A nonzero scalar λ ∈ C is an eigenvalue of M−1
ω Nω if and only if

det(M−1
ω Nω − λI) = 0 ⇔ det(M−1

ω)det(Nω − λMω) = 0 ⇔ det(λMω − Nω) = 0.

Substituting the expressions of Mω and Nω, we obtain that this condition can be equivalently rewritten
as

det
(
λL +

(
λ+ ω − 1

ω

)
D + U

)
= 0 ⇔ det

(√
λL +

(
λ+ ω − 1

ω

)
D +
√
λU
)

= 0

where we used (4.24) for the last equivalence. The equality of the determinants in these two equations
is valid for

√
λ denoting either of the two complex square roots of λ. This condition is equivalent to

det
(

L +

(
λ+ ω − 1√

λω

)
D + U

)
= 0.

We recognize from the proof of Proposition 4.15 that this condition is equivalent to

λ+ ω − 1√
λω

∈ spectrum(M−1
J NJ).

In other words, for any (λ, µ) ∈ C2 such that

(λ+ ω − 1)2

λω2
= µ2, (4.43)

it holds that µ ∈ spectrum(M−1
J NJ) if and only if λ ∈ spectrum(M−1

ω Nω). By (4.25), the eigenvalues
of M−1

J NJ are real and given by

µj = cos
(

jπ

n+ 1

)
, 1 6 j 6 n. (4.44)

Rearranging (4.43), we find

λ2 + λ
(
2(ω − 1)− ω2µ2

)
+ (ω − 1)2 = 0.

For given ω ∈ (0, 2) and µ ∈ R, this is a quadratic equation for λ with solutions

λ± =

(
ω2µ2

2
+ 1− ω

)
± ωµ

√
ω2µ2

4
+ 1− ω,

Since the first bracket is positive when the argument of the square root is positive, it is clear that

max
{
|λ−|, |λ+|

}
=

∣∣∣∣∣ω2µ2

2
+ 1− ω + ω|µ|

√
ω2µ2

4
+ 1− ω

∣∣∣∣∣ .

123

Chapter 4. Solution of linear systems of equation

Combining this with (4.44), we deduce that the spectral radius of M−1
ω Nω is given by

ρ(M−1
ω Nω) = max

j∈{1,...,n}

∣∣∣∣∣∣ω
2µ2

j

2
+ 1− ω + ω|µj |

√
ω2µ2

j

4
+ 1− ω

∣∣∣∣∣∣ . (4.45)

We wish to minimize this expression over the interval ω ∈ (0, 2). While this can be achieved by
algebraic manipulations, we content ourselves here with graphical exploration. Figure 4.3 depicts the
amplitude of the modulus in (4.45) for different values of µ. It is apparent that, for given ω, the
modulus increases as µ increases, which suggests that

ρ(M−1
ω Nω) =

∣∣∣∣∣ω2µ2
∗

2
+ 1− ω + ω|µ∗|

√
ω2µ2

∗
4

+ 1− ω

∣∣∣∣∣ , µ∗ = ρ(M−1
J NJ). (4.46)

The figure also suggests that for a given value of µ, the modulus is minimized at the discontinuity of
the first derivative, which occurs when the argument of the square root is zero. We conclude that the
optimal ω satisfies

ω2
optµ

2
∗

4
+ 1− ωopt = 0 ===⇒

ω<2
ωopt = 2

1−
√

1− µ2
∗

µ2
∗

=
2

1 +
√
1− µ2

∗
=

2

1 + sin
(

π
n+1

) .
4

Figure 4.3: Modulus of |λ+| as a function of ω, for different eigenvalues of µ.

� Exercise 4.27 (Midterm 2022). Let A ∈ Rn×n be a symmetric positive definite matrix and
let b ∈ Rn. The steepest descent algorithm for solving Ax = b is given hereafter:

Pick ε > 0 and initial x
r ← Ax− b

while ‖r‖ > ε‖b‖ do
ω ← rTr/rTAr
x← x− ωr
r ← Ax− b

end while

124

Chapter 4. Solution of linear systems of equation

• Why is this method called the steepest descent algorithm?

• How many floating point operations does an iteration of this algorithm require?

• Are the following statements true of false? (2 marks)

1. There exists a unique solution x∗ to the linear system Ax = b.

2. The iterates converge to x∗ in at most n iterations.

3. We consider the following modification of the algorithm:

Pick ε > 0, ω > 0 and initial x
r ← Ax− b

while ‖r‖ > ε‖b‖ do
x← x− ωr
r ← Ax− b

end while

If ω is sufficiently small, then this algorithm converges.

4. Here we no longer assume that A is positive definite. Instead, we consider that

A =

(
−1 0

0 −2

)
.

In this case, the steepest descent algorithm is convergent for any initial x.

� Exercise 4.28 (Final exam Spring 2022). Assume that A ∈ Rn×n is a nonsingular matrix
and that b ∈ Rn. We wish to solve the linear system (4.1) using an iterative method where each
iteration is of the form

Mxk+1 = Nxk + b. (4.47)

Here A = M − N is a splitting of A such that M is nonsingular, and xk ∈ Rn denotes the k-th
iterate of the numerical scheme.

1. Let ek := xk − x∗, where x∗ is the exact solution to (4.1). Prove that

ek+1 = M−1Nek.

2. Let L = ‖M−1N‖∞. Prove that

∀k ∈ N, ‖ek‖∞ 6 Lk‖e0‖∞. (4.48)

3. Is the condition ‖M−1N‖∞ < 1 necessary for convergence when x0 6= x∗?

4. Assume that A is strictly row diagonally dominant, in the sense that

∀i ∈ {1, . . . , n}, |aii| >
n∑

j=1,j 6=i

|aij |.

125

Chapter 4. Solution of linear systems of equation

Show that, in this case, the inequality ‖M−1N‖∞ < 1 holds for the Jacobi method, i.e.
when M contains just the diagonal of A. You may take for granted the following expression
for the ∞-norm of a matrix X ∈ Rn×n:

‖X‖∞ = max
16i6n

n∑
j=1

|xij |.

5. Write down a few iterations of the Jacobi method when

A =

(
1 2

0 1

)
, b

(
1

1

)
, x0 =

(
0

0

)
.

Is the method convergent?

4.5 Discussion and bibliography

In this chapter, we presented direct methods and some of the standard iterative methods for
solving linear systems. We focused particularly on linear systems with a symmetric positive
definite matrix. Section 4.2 is based on [10, 18] and Section 4.3 roughly follows [15, Chapter 2].
The book [11] is a very detailed reference on iterative methods for solving sparse linear systems.
The reference [13] is an excellent introduction to the conjugate gradient method.

126

Chapter 5

Solution of nonlinear systems

5.1 The bisection method . 128

5.2 Fixed point methods . 129

5.3 Convergence of fixed point methods 130

5.4 Examples of fixed point methods . 134

5.4.1 The chord method . 134

5.4.2 The Newton–Raphson method . 135

5.4.3 The secant method � . 139

5.5 A numerical experiment . 142

5.6 Exercises . 144

5.7 Discussion and bibliography . 147

Introduction

This chapter concerns the numerical solution of nonlinear equations of the general form

f(x) = 0, f : Rn → Rn. (5.1)

A solution to this equation is called a zero of the function f . Except in particular cases (for
example linear systems), there does not exist a numerical method for solving (5.1) in a finite
number of operations, so iterative methods are required.

In contrast with the previous chapter, it may not be the case that (5.1) admits one and
only one solution. For example, the equation 1 + x2 = 0 does not have a (real) solution, and
the equation cos(x) = 0 has infinitely many. Therefore, convergence results usually contain
assumptions on the function f that guarantee the existence and uniqueness of a solution in Rn

or a subset of Rn.
For an iterative method generating approximations (xk)k>0 of a root x∗, we define the error

127

Chapter 5. Solution of nonlinear systems

as ek = xk − x∗. If the sequence (xk)k>0 converges to x∗ in the limit as k →∞ and if

lim
k→∞

‖ek+1‖
‖ek‖q

= r, (5.2)

then we say that (xk)k>0 converges with order of convergence q and rate of convergence r. In
addition, we say that the convergence is linear q = 1, and quadratic if q = 2. The convergence
is said to be superlinear if

lim
k→∞

‖ek+1‖
‖ek‖

= 0. (5.3)

In particular, the convergence is superlinear if the order of convergence is q > 1.

Remark 5.1. The notion of order of convergence may be defined also when the limit in (5.2)
does not exist. A more general definition for the order of convergence of a sequence (xk)k>0

converging to x∗ is the following:

q(x0) = inf
{
p ∈ [1,∞) : lim sup

k→∞

‖ek+1‖
‖ek‖p

=∞
}
,

or q(x0) =∞ if the numerator and denominator of the fraction are zero for sufficiently large k.
It is possible to define similarly the order of convergence of an iterative method for an initial
guess in a neighborhood V of x∗:

q = inf
{
p ∈ [1,∞) : sup

x0∈V

(
lim sup
k→∞

‖ek+1‖
‖ek‖p

)
=∞

}
,

where the fraction should be interpreted as 0 if the numerator and denominator are zero. A
more detailed discussion of this subject is beyond the scope of this course.

The rest of chapter is organized as follows:

• In Section 5.1, by way of introduction to the subject of numerical methods for nonlinear
equations, we present and analyze the bisection method.

• In Section 5.2, we present a general method based on a fixed point iteration for solv-
ing (5.1). The convergence of this method is analyzed in Section 5.3.

• In Section 5.4, two concrete examples of fixed point methods are studied: the chord
method and the Newton–Raphson method.

5.1 The bisection method

As an introduction to numerical methods for solving nonlinear equations, we present the bisec-
tion method. This method applies only in the case of a real-valued function f : R → R, and
relies on the knowledge of two points a < b such that f(a) and f(b) have different signs. By
the intermediate value theorem, there necessarily exists x∗ ∈ (a, b) such that f(x∗) = 0. The
idea of the bisection method it to successively divide the interval in two equal parts, and to
retain, based on the sign of f at the midpoint x1/2, the one that necessarily contains a root.

128

Chapter 5. Solution of nonlinear systems

If f(x1/2)f(a) > 0, then f(x1/2)f(b) 6 0 and so there necessarily exists a root of f in the
interval [x1/2, b) by the intermediate value theorem. In contrast, if f(x1/2)f(a) < 0, then there
necessarily is a root in the interval (a, x1/2). The algorithm is presented in Algorithm 7.

Algorithm 7 Bisection method
Assume that f(a)f(b) < 0 with a < b.
Pick ε > 0.
x← a/2 + b/2
while |b− a| > ε do

if f(x)f(a) > 0 then
a← x

else
b← x

end if
x← a/2 + b/2

end while

The following result establishes the convergence of the method.

Proposition 5.1. Assume that f : R → R is a continuous function and f(a)f(b) < 0.
Let [aj , bj] denote the interval obtained after j iterations of the bisection method, and let
xj = (aj + bj)/2 denote the midpoint of the interval, Then there exists a root x∗ of f such
that

|xj − x∗| 6 (b0 − a0)2−(j+1). (5.4)

Proof. By construction, f(aj)f(bj) 6 0 and f(b) 6= 0. Therefore, by the intermediate value
theorem, there exists a root of f in the interval [aj , bj), implying that

|xj − x∗| 6
bj − aj

2
.

Since bj − aj = 2−j(b0 − a0), the statement follows.

Although the limit in (5.2) may not be well-defined (for example, x1 may be a root of f), the
error xj − x∗ is bounded in absolute value by the sequence (ẽj)j>0, where ẽj = (b0 − a0)2−(j+1)

by Proposition 5.1. Since the latter sequence exhibits linear convergence to 0, the convergence
of the bisection method is said to be linear, by a slight abuse of terminology.

5.2 Fixed point methods

Let x∗ denote a zero of the function f . The idea of iterative methods for (5.1) is to construct,
starting from an initial guess x0, a sequence (xk)k=0,1,... approaching x∗. A number of iterative
methods for solving (5.1) are based on an iteration of the form

xk+1 = F (xk), (5.5)

129

Chapter 5. Solution of nonlinear systems

for an appropriate continuous function F . Assume that xk converges to some point x∗ ∈ Rn in
the limit as k →∞. Then, taking the limit k →∞ in (5.5), we find that x∗ satisfies

F (x∗) = x∗.

Such a point x∗ is called a fixed point of the function F . Several definitions of the function F can
be employed in order to ensure that a fixed point of F coincides with a zero of f . One may, for
example, define F (x) = x−α−1f(x), for some nonzero scalar coefficient α. Then F (x∗) = x∗ if
and only if f(x∗) = 0. Later in this chapter, in Section 5.4, we study two instances of numerical
methods which can be recast in the form (5.5). Before this, we study the convergence of the
iteration (5.5) for a general function F .

5.3 Convergence of fixed point methods

Equation (5.5) may be viewed as a discrete-time dynamical system. In order to study the
behavior of the system as k → ∞, it is important to understand the concept of stability of a
fixed point. The concept of stability appears also in the field of ordinary differential equations,
which are continuous-time dynamical systems. Before we define this concept, we introduce the
following notation for the open ball of radius δ around x ∈ Rn:

Bδ(x) :=
{
y ∈ Rn : ‖y − x‖ < δ

}
.

Definition 5.1 (Stability of fixed points). Let (xk)k>0 denote iterates obtained from (5.5)
when starting from an initial vector x0. Then we say that a fixed point x∗ is

• an attractor if there exists a neighborhood V of x∗ such that

∀x0 ∈ V, xk −−−→
k→∞

x∗. (5.6)

The largest neighborhood for which this is true, i.e. the set of values of x0 such that (5.6)
holds true, is called the basin of attraction of x∗.

• stable (in the sense of Lyapunov) if for all ε > 0, there exists δ > 0 such that

∀x0 ∈ Bδ(x∗), ∀k ∈ N, ‖xk − x∗‖ < ε.

• asymptotically stable if it is stable and an attractor.

• exponentially stable if there exists C > 0, α ∈ (0, 1), and δ > 0 such that

∀x0 ∈ Bδ(x∗), ∀k ∈ N, ‖xk − x∗‖ 6 Cαk‖x0 − x∗‖.

130

Chapter 5. Solution of nonlinear systems

• globally exponentially stable if there exists C > 0 and α ∈ (0, 1) such that

∀x0 ∈ Rn, ∀k ∈ N, ‖xk − x∗‖ 6 Cαk‖x0 − x∗‖.

• unstable if it is not stable.

Clearly, global exponential stability implies exponential stability, which itself implies asymp-
totic stability and stability. If x∗ is globally exponentially stable, then x∗ is the unique fixed
point of F ; showing this is the aim of Exercise 5.3. If x∗ is an attractor, then the dynamical
system (5.5) is said to be locally convergent to x∗. The larger the basin of attraction of x∗, the
less careful we need to be when picking the initial guess x0. Global exponential stability of a
fixed point can sometimes be shown provided that F satisfies a strong hypothesis.

Definition 5.2 (Lipschitz continuity). A function F : Rn → Rn is said to be Lipschitz
continuous with constant L if

∀(x,y) ∈ Rn ×Rn, ‖F (y)− F (x)‖ 6 L‖y − x‖.

A function F : Rn → Rn that is Lipschitz continuous with a constant L < 1 is called a contrac-
tion. For such a function, it is possible to prove that (5.5) has a unique globally exponentially
stable fixed point.

Theorem 5.2. Assume that F is a contraction. Then there exists a unique fixed point
of (5.5), and it holds that

∀x0 ∈ Rn, ∀k ∈ N, ‖xk − x∗‖ 6 Lk‖x0 − x∗‖. (5.7)

Proof. Existence and uniqueness of the fixed point follows from the Banach fixed point theorem,
see Theorem A.3, so here we show only global exponential convergence. Since F is a contraction,
it holds that

‖xk − x∗‖ = ‖F (xk−1)− F (x∗)‖ 6 L‖xk−1 − x∗‖ 6 . . . 6 Lk‖x0 − x∗‖, (5.8)

which proves (5.7).

It is possible to prove a weaker, local result under a less restrictive assumptions on the
function F .

Theorem 5.3. Assume that x∗ is a fixed point of (5.5) and that F : Rn → Rn satisfies the
local Lipschitz condition

∀x ∈ Bδ(x∗), ‖F (x)− F (x∗)‖ 6 L‖x− x∗‖, (5.9)

with 0 6 L < 1 and δ > 0. Then x∗ is the unique fixed point of F in Bδ(x∗) and, for
all x0 ∈ Bδ(x∗), it holds that

131

Chapter 5. Solution of nonlinear systems

• All the iterates (xk)k∈N belong to Bδ(x∗).

• The sequence (xk)k∈N converges exponentially to x∗.

Proof. See Exercise 5.4.

It is possible to guarantee that condition (5.9) holds provided that we have sufficiently good
control of the derivatives of the function F . The function F is said to be differentiable at x (in
the sense of Fréchet) if there exists a linear operator DF x : Rn → Rn such that

lim
h→0

‖F (x+ h)− F (x)−DF x(h)‖
‖h‖

= 0. (5.10)

If F is differentiable, then all its first partial derivatives ∂jFi exist and, in addition, it holds
that DF x(h) = JF (x)h where JF (x) is the Jacobian matrix of F at x:

JF (x) =

∂1F1(x) . . . ∂nF1(x)

...
∂1Fn(x) . . . ∂nFn(x)

 .

Proposition 5.4. Let x∗ be a fixed point of (5.5), and assume that there exists δ and a
subordinate matrix norm such that F is differentiable everywhere in Bδ(x∗) and

∀x ∈ Bδ(x∗), ‖JF (x)‖ 6 L < 1.

Then condition (5.9) is satisfied in the associated vector norm, and so the fixed point x∗ is
locally exponentially stable.

Proof. Let x ∈ Bδ(x∗). By the fundamental theorem of calculus and the chain rule, we have

F (x)− F (x∗) =

∫ 1

0

d
dt

(
F
(
x∗ + t(x− x∗)

))
dt =

∫ 1

0
JF
(
x∗ + t(x− x∗)

)
(x− x∗)dt.

Therefore, it holds that

‖F (x)− F (x∗)‖ 6
∫ 1

0

∥∥JF
(
x+ t(x− x∗)

)∥∥dt ‖x− x∗‖ 6
∫ 1

0
Ldt ‖x− x∗‖ = L‖x− x∗‖,

which is the statement.

Remark 5.2. As a student observed during the lecture, in dimension n = 1, Proposition 5.4
can be proved by using the mean value theorem: since F is differentiable in (x∗ − δ, x∗ + δ),
there exists for all x in this interval a ξ = ξ(x) also in this interval such that

F (x)− F (x∗) = F ′(ξ)(x− x∗).

132

Chapter 5. Solution of nonlinear systems

It then follows immediately that

∣∣F (x)− F (x∗)∣∣ = ∣∣F ′(ξ)(x− x∗)
∣∣ 6 L|x− x∗|.

This proof does not carry over to the multi-dimensional setting, however.

In fact, it is possible to prove that a fixed point x∗ is exponentially locally stable under an
even weaker condition, involving only the derivative of F at x∗.

Proposition 5.5. Let x∗ be a fixed point of (5.5) and that F is differentiable at x∗ with

‖JF (x∗)‖ = L < 1,

in a subordinate vector norm. Then the fixed point x∗ is locally exponentially stable.

Proof. In this proof, the vector norm used is that associated with the matrix norm in the
statement of the proposition. By the definition of differentiability (5.10), there exists for all ε > 0

a δ > 0 such that

∀x ∈ Bδ(x∗)\{x∗},
‖F (x)− F (x∗)− JF (x∗)(x− x∗)‖

‖x− x∗‖
6 ε.

By the triangle inequality, this implies that for all x ∈ Bδ(x∗),

‖F (x)− F (x∗)‖ 6 ‖F (x)− F (x∗)− JF (x∗)(x− x∗)‖+ ‖JF (x∗)(x− x∗)‖

6 ε‖x− x∗‖+ ‖JF (x∗)‖‖(x− x∗)‖ = (L+ ε)‖x− x∗‖.

We have thus shown that for all ε > 0, there exists δ > 0 such that condition (5.9) is satisfied
with constant L + ε. By taking ε sufficiently small, we can ensure that L + ε < 1, and so the
fixed point x∗ is locally exponentially stable by Theorem 5.3.

The estimate in Theorem 5.2 suggests that when the fixed point iteration (5.5) converges, the
convergence is linear. While this is usually the case, the convergence is superlinear if JF (x∗) = 0.

Proposition 5.6. Assume that x∗ is a fixed point of (5.5) and that JF (x∗) = 0. Then the
convergence to x∗ is superlinear, in the sense that if xk → x∗ as k →∞, then

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Proof. By Proposition 5.5, there exists δ > 0 such that (xk)k>0 is a sequence converging to x∗

for all x0 ∈ Bδ(x∗). It holds that

‖xk+1 − x∗‖
‖xk − x∗‖

=
‖F (xk)− F (x∗)‖
‖xk − x∗‖

=
‖F (xk)− F (x∗)− JF (x∗)(xk − x∗)‖

‖xk − x∗‖
.

Since xk − x∗ → 0 as k →∞, the right-hand side converges to 0 by (5.10).

133

Chapter 5. Solution of nonlinear systems

Similarly, if there exist δ > 0, C > 0 and q ∈ (1,∞) such that

∀x ∈ Bδ(x∗), ‖F (x)− F (x∗)‖ 6 C‖x− x∗‖q, (5.11)

then assuming that (xk)k>0 converges to x∗, it holds for sufficiently large k that

‖xk+1 − x∗‖
‖xk − x∗‖q

=
‖F (xk)− F (x∗)‖
‖xk − x∗‖q

6 C.

In this case, the order of convergence is at least q.

5.4 Examples of fixed point methods

As we mentioned in Section 5.2, there are several choices for the function F that guarantee the
equivalence F (x) = x⇔ f(x) = 0.

5.4.1 The chord method

In the case where f is a function from R to R, the simplest approach, sometimes called the
chord method, is to define

F (x) = x− α−1f(x).

The fixed point iteration (5.4) in this case admits a simple geometric interpretation: at each
step, the function f is approximated by the affine function x 7→ f(xk)+α(x−xk), and the new
iterate is defined as the zero of this affine function, i.e.

xk+1 = xk − α−1f(xk) = F (xk). (5.12)

This is illustrated in Figure 5.1. By Proposition 5.5, a sufficient condition to ensure local
convergence is that

|F ′(x∗)| = |1− α−1f ′(x∗)| < 1. (5.13)

In order for this condition to hold true, the slope α must be of the same sign as f ′(x∗) and the
inequality |α| > |f ′(x∗)|/2 must be satisfied. If f ′(x∗) = 0, then the sufficient condition (5.13) is
never satisfied; in this case, the convergence must be studied on a case-by-case basis. By Propo-
sition 5.6, the convergence of the chord method is superlinear if α = f ′(x∗). In practice, the
solution x∗ is unknown, and so this choice is not realistic. Nevertheless, the above reasoning
suggests that, by letting the slope α vary from iteration to iteration in such a manner that αk

approaches f ′(x∗) as k → ∞, fast convergence can be obtained. This is precisely what the
Newton–Raphson method aims to achieve; see Section 5.4.2

When f is a function from Rn to Rn, the above approach generalizes to

xk+1 = F (xk), F (x) = x− A−1f(x),

where A is an invertible matrix. The geometric interpretation of the method in this case is the
following: at each step, the function f is approximated by the affine function x 7→ xk+A(x−xk),

134

Chapter 5. Solution of nonlinear systems

x

y
f(x)

Affine approximation

xkxk+1

Figure 5.1: Graphical illustration of an iteration of the chord method.

and the next iterate is given by the unique zero of the latter function. Superlinear convergence
is achieved when A = Jf (x∗). Notice that each iteration requires to calculate y := A−1f(xk),
which is generally achieved by solving the linear system Ay = f(xk).

5.4.2 The Newton–Raphson method

Let us first consider the case of a function from R to R. A necessary condition for the Newton–
Raphson method to apply is that f is differentiable. At each step, the function f is approximated
by the affine function x 7→ f(xk)+f

′(xk)(x−xk) and the unique zero of this function is returned.
In other words, one iteration of the Newton–Raphson method reads

xk+1 = xk − f ′(xk)−1f(xk). (5.14)

For this iteration to be well-defined, it is necessary that f ′(xk) 6= 0. The Newton–Raphson
method may be viewed as a variation on (5.12) where the slope α is adapted as the simulation
progresses. If the method converges and f ′ is continuous, then f ′(xk) → f ′(x∗) in the limit
as k → ∞, which is an indication that superlinear convergence could occur in view of our
discussion in the previous section. Equation (5.14) may be recast as a fixed point iteration of
the form (5.4) with

F (x) = x− f(x)

f ′(x)
.

If x∗ is a simple root of f , that is if f(x∗) = 0 and f ′(x∗) 6= 0, then x∗ is a fixed point of the
function F . If the function f is twice continuously differentiable, then the convergence of the
Newton–Raphson method is superlinear by Proposition 5.6, because then

F ′(x∗) =
f(x∗)f

′′(x∗)

f ′(x∗)2
= 0.

The geometric interpretation of the Newton–Raphson method in dimension 1 is the following:
at each step, the function f is approximated by the affine function x 7→ xk + f ′(xk)(x − xk),

135

Chapter 5. Solution of nonlinear systems

which is the tangent line to f at xk, and the next iterate is given by the unique zero of the latter
function. This is illustrated in Figure 5.2.

x

y
f(x)

Tangent

xkxk+1

Figure 5.2: Graphical illustration of a Newton–Raphson iteration. The code used to create this figure
is based on the answer https://tex.stackexchange.com/a/551205/125558 on LATEX stack exchange.

The Newton–Raphson method may be generalized to nonlinear equations in Rn of the
form (5.1). In this case F (x) = x− Jf (x)−1f(x), and so an iteration of the method reads

xk+1 = xk − Jf (xk)
−1f(xk). (5.15)

In the rest of this section, we show that the iteration (5.15) is well-defined in a small neigh-
borhood of a root of f under appropriate assumptions, and we demonstrate the second order
convergence of the method, first in dimension 1 under simplifying assumption involving the sec-
ond derivative of f , and then in the multi-dimensional setting under more general assumptions.

Convergence in the one-dimensional setting

We assume in this section that (xk)k>0 is generated from the Newton–Raphson method (5.14)
and prove the following result.

Theorem 5.7 (Quadratic convergence of Newton–Raphson). Assume that f ∈ C2(R) and
that the following assumptions are satisfied:

• The first derivative of f is uniformly bounded away from zero:

inf
x∈R
|f ′(x)| = m > 0.

• The second derivative of f is uniformly bounded from above in absolute value:

sup
x∈R
|f ′′(x)| =M <∞.

136

https://tex.stackexchange.com/a/551205/125558

Chapter 5. Solution of nonlinear systems

Then f(x) has a unique root x∗ and it holds for all initial x0 ∈ R that

∀k ∈ N, |xk+1 − x∗| 6
M

2m
|xk − x∗|2. (5.16)

Proof. By assumption, the function f is continuous and either strictly increasing everywhere or
strictly decreasing everywhere. Therefore there exists a unique root x∗ ∈ R of f . In order to
prove (5.16), we note that

xk+1 − x∗ = xk −
f(xk)

f ′(xk)
− x∗ =

1

f ′(xk)

(
f ′(xk)(xk − x∗)− f(xk)

)
. (5.17)

By Taylor’s theorem, there is ξ ∈ R such that

f(x∗) = f(xk) + f ′(xk)(x∗ − xk) +
1

2
f ′′(ξ)(x∗ − xk)2.

Since x∗ is a root of f , the left-hand side of this equation is zero. Combining this equation
with (5.17), we deduce that

xk+1 − x∗ =
f ′′(ξ)(xk − x∗)2

2f ′(xk)
.

Taking absolute values and using the assumptions gives

|xk+1 − x∗| 6
M

2m
(xk − x∗)2,

which concludes the proof.

Remark 5.3. As a corollary of Theorem 5.7, we obtain that the Newton–Raphson method is
convergent if

|xk − x∗| 6
2m

M
.

Convergence in the multi-dimensional setting �

As a first step towards a proof of quadratic convergence for the Newton–Raphson method in
the multi-dimensional setting, we begin by proving the following preparatory lemma, which we
will then employ in the particular case where the matrix-valued function A is equal to Jf .

Lemma 5.8. Let A : Rn → Rn×n denote a matrix-valued function on Rn that is both con-
tinuous and nonsingular at x∗, and let f be a function that is differentiable at x∗ where
f(x∗) = 0. Then the function

G(x) = x− A(x)−1f(x)

is well-defined in a neighborhood Bδ(x∗) of x∗. In addition, G is differentiable at x∗ with

JG(x∗) = I− A(x∗)
−1Jf (x∗). (5.18)

137

Chapter 5. Solution of nonlinear systems

Proof. It holds that

A(x) =
(

A(x∗)−
(
A(x∗)− A(x)

))
= A(x∗)

(
I− A(x∗)

−1
(
A(x∗)− A(x)

))
. (5.19)

Let β = ‖A(x∗)
−1‖ and ε = (2β)−1. By continuity of the matrix-valued function A, there

exists δ > 0 such that
∀x ∈ Bδ(x∗), ‖A(x)− A(x∗)‖ 6 ε.

For x ∈ Bδ(x∗) we have ‖A(x∗)
−1
(
A(x∗)−A(x)

)
‖ 6 ‖A(x∗)

−1‖‖A(x∗)−A(x)‖ 6 βε = 1
2 , and

so Lemma 4.2 implies that the second factor on the right-hand side of (5.19) is invertible with
a norm bounded from above by 2. Therefore, we deduce that A(x) is invertible with

∀x ∈ Bδ(x∗), ‖A(x)−1‖ 6 2‖A(x∗)
−1‖ = 2β, (5.20)

which shows that G is well-defined in Bδ(x∗). In order to prove (5.18), we need to show that

lim
‖h‖→0

‖G(x∗ + h)−G(x∗)−
(
I− A(x∗)

−1Jf (x∗)
)
h‖

‖h‖
= 0

By definition of G, and using the fact that f(x∗) = 0, we obtain that the argument of the norm
in the numerator is equal to

A(x∗)
−1f(x∗)− A(x∗ + h)−1f(x∗ + h) + A(x∗)

−1Jf (x∗)h

=
(
A−1(x∗)− A(x∗ + h)−1

)
Jf (x∗)h︸ ︷︷ ︸

=:v1

−A(x∗ + h)−1
(
f(x∗ + h)− f(x∗)− Jf (x∗)h

)︸ ︷︷ ︸
=:v2

.

Noting that A−1(x∗)−A(x∗ +h)−1 = A(x∗)
−1
(
A(x∗ +h)−A(x∗)

)
A(x∗ +h)−1, we bound the

norm of the first term on the right-hand side as follows:

∀h ∈ Bδ(0), ‖v1‖ 6 2β2‖A(x∗ + h)− A(x∗)‖‖Jf (x∗)‖‖h‖.

Clearly ‖v1‖/‖h‖ → 0 is the limit as h → 0 by continuity of the matrix function A. It also
holds that ‖v2‖/‖h‖ → 0 by differentiability of f at x∗, which concludes the proof.

Using this lemma, we can show the following result on the convergence of the multi-
dimensional Newton–Raphson method.

Theorem 5.9 (Convergence of Newton–Raphson). Let f : Rn → Rn denote a function that
is differentiable in a neighborhood Bδ(x∗) of a point x∗ where f(x∗) = 0. Assume that the
Jacobian matrix Jf (x) is nonsingular and continuous at x∗. Then x∗ is an attractor of the
Newton–Raphson iteration (5.15) and the convergence is superlinear.

In addition, if there is α > 0 such that the Lipschitz condition

∀x ∈ Bδ(x∗), ‖Jf (x)− Jf (x∗)‖ 6 α‖x− x∗‖

138

Chapter 5. Solution of nonlinear systems

is satisfied, there exists d ∈ (0, δ) and C > 0 such that

∀xk ∈ Bd(x∗), ‖xk+1 − x∗‖ 6 C‖xk − x∗‖2.

In other words, the convergence is at least quadratic in Bd(x∗).

Proof. Using Lemma 5.8, we obtain that the Newton–Raphson update

F (x) = x− Jf (x)−1f(x),

is well-defined in a neighborhood Bδ(x∗) of x∗ for sufficiently small δ. In addition, the second
statement in Lemma 5.8 gives that JF (x∗)

−1 = I− JF (x∗)
−1JF (x∗) = 0, which establishes the

superlinear convergence by Proposition 5.6.
In order to show that the convergence is quadratic, we begin by noticing that, since

f(xk) =

∫ t

0

d
dt

f
(
x∗ + t(xk − xx)

)
dt =

∫ t

0
Jf
(
x∗ + t(xk − xx)

)
(xk − x∗)dt,

it holds for all xk ∈ Bδ(x∗) that

‖f(xk)− Jf (x∗)(xk − x∗)‖ =
∥∥∥∥∫ 1

0

(
Jf
(
x∗ + t(xk − x∗)

)
− Jf (x∗)

)
(xk − x∗)dt

∥∥∥∥
6
∫ 1

0

∥∥Jf
(
x∗ + t(xk − x∗)

)
− Jf (x∗)

∥∥ ‖xk − x∗‖dt

6
∫ 1

0
αt‖xk − x∗‖2 dt 6 α

2
‖xk − x∗‖2. (5.21)

Let d ∈ (0, δ) be sufficiently small to ensure that

∀x ∈ Bd(x∗), ‖Jf (x)−1‖ 6 2‖Jf (x∗)
−1‖.

There exists such a d by (5.20). Using the inequality (5.21), we have that for all xk ∈ Bd(x∗),

‖xk+1 − x∗‖ = ‖F (xk)− x∗‖ = ‖xk − x∗ − Jf (xk)
−1f(xk)‖

=
∥∥Jf (xk)

−1
(
f(xk)− Jf (xk)(xk − x∗)

)∥∥ 6
∥∥Jf (xk)

−1
∥∥‖f(xk)− Jf (xk)(xk − x∗)‖

6
∥∥Jf (xk)

−1
∥∥(‖f(xk)− Jf (x∗)(xk − x∗)‖+ ‖Jf (x∗)− Jf (xk)‖‖xk − x∗‖

)
6

3α

2

∥∥Jf (xk)
−1
∥∥‖xk − x∗‖2 6 3α

∥∥Jf (x∗)
−1
∥∥‖xk − x∗‖2,

which concludes the proof.

5.4.3 The secant method �

The Newton–Raphson method exhibits very fast convergence, but it requires the knowledge of
the derivatives of the function f . To conclude this chapter, we describe a root-finding algorithm,
known as the secant method, that enjoys superlinear convergence but does not require the
derivatives of f . This method applies only when f is a function from R to R, and so we drop

139

Chapter 5. Solution of nonlinear systems

the vector notation in the rest of this section.
Unlike the other methods presented so far in Section 5.2, the secant method can not be

recast as a fixed point iteration of the form xk+1 = F (xk). Instead, it is of the more general
form xk+2 = F (xk, xk+1). The geometric intuition behind the method in the following: given
xk and xk+1, the function f is approximated by the unique linear function that passes through(
xk, f(xk)

)
and

(
xk+1, f(xk+1)

)
, and the iterate xk+2 is defined as the root of this linear function.

In other words, f is approximated as follows:

f̃(x) = f(xk) +
f(xk+1)− f(xk)

xk+1 − xk
(x− xk).

Solving f̃(x) = 0 gives the following expression for xk+2:

xk+2 =
f(xk+1)xk − f(xk)xk+1

f(xk+1)− f(xk)
, (5.22)

Showing the convergence of the secant method rigorously under general assumptions is tedious,
so in this course we restrict our attention to the case where f is a quadratic function. Extending
the proof of convergence to a more general smooth function can be achieved by using a quadratic
Taylor approximation of f around the root x∗, which is accurate in a close neighborhood of x∗.

Theorem 5.10 (Convergence of the secant method). Assume that f is a convex quadratic
polynomial with a simple root at x∗ and that the secant method converges: limk→∞ xk = x∗.
Then the order of convergence is given by the golden ratio

ϕ =
1 +
√
5

2
.

More precisely, there exists a positive real number y∞ such that

lim
k→∞

|xk+1 − x∗|
|xk − x∗|ϕ

= y∞. (5.23)

Proof. Equation (5.22) implies that

xk+2 − x∗ =
f(xk+1)(xk − x∗)− f(xk)(xk+1 − x∗)

f(xk+1)− f(xk)
.

By assumption, the function f may be expressed as

f(x) = λ(x− x∗) + µ(x− x∗)2, λ 6= 0.

Substituting this expression in (5.4.3) and letting ek = xk − x∗, we obtain

ek+2 =
µekek+1(ek+1 − ek)

λ(ek+1 − ek) + µ(e2k+1 − e2k)
=

µekek+1

λ+ µ(ek+1 + ek)
.

140

Chapter 5. Solution of nonlinear systems

Rearranging this equation, we have

ek+2

ek+1
=

µek
λ+ µ(ek+1 + ek)

. (5.24)

By assumption, the right-hand side converges to zero, and so the left-hand side must also
converge to zero; the convergence is superlinear.

To conclude the proof, we first reason formally in order to guess the order convergence, and
then give a rigorous proof that our guess is correct. If ek is small, then it holds approximately
by (5.24) that

ek+2

ek+1
≈ µek. (5.25)

Assume that there exists q > 0 such that the equation ek+1 = Ceqk is valid for all k. Then it
holds that ek+2 = Ceqk+1 = C(Ceqk)

q and (5.25) enables to determine q:

C(Ceqk)
q

Ceqk
=
µ

λ
ek ⇒ Cqeq

2−q
k =

µ

λ
ek ⇒ q2 − q − 1 = 0. ⇒ q = ϕ.

Now comes the rigorous justification. Take absolute values in (5.24) to obtain, after rearranging,

|ek+2|
|ek+1|ϕ

=

(
|ek+1|

|ek|
1

ϕ−1

)1−ϕ
µ

|λ+ µ(ek+1 + ek)|
=

(
|ek+1|
|ek|ϕ

)1−ϕ |µ|
|λ+ µ(ek+1 + ek)|

,

where we used that ϕ = 1
ϕ−1 , since ϕ is a root of the equation ϕ2−ϕ−1 = 0. Thus, introducing

the ratio yk = |ek+1|/|ek|ϕ, we have

yk+1 = y1−ϕ
k

|µ|
|λ+ µ(ek+1 + ek)|

.

Taking logarithms in this equation, we deduce

log(yk+1) = (1− ϕ) log(yk) + ck, ck := log
(

|µ|
|λ+ µ(ek+1 + ek)|

)
.

This is a recurrence equation for log(yk), whose explicit solution can be obtained from the
variation-of-constants formula:

log(yk) = (1− ϕ)k−1 log(y1) +
k−1∑
i=1

(1− ϕ)k−1−ici.

Since (ck)k>0 converges to the constant c∞ = log|µ/λ| by the assumption that ek → 0, the se-
quence

(
log(yk)

)
k>0

converges to c∞/ϕ (prove this!). Therefore, by continuity of the exponential
function, it holds that

yk = exp
(
log(yk)

)
−−−→
k→∞

exp
(
c∞
ϕ

)
=
∣∣∣µ
λ

∣∣∣ 1ϕ
and so we deduce (5.23).

141

Chapter 5. Solution of nonlinear systems

5.5 A numerical experiment

To conclude this chapter, we present the results of a numerical experiment. Specifically, we
consider four different fixed point methods for calculating the square root of 2, i.e. for solving
the nonlinear equation

f(x) := x2 − 2 = 0. (5.26)

The unique positive solution to this equation is x∗ =
√
2. The methods we consider are the

following:

• The chord method with large α = 10.

• The chord method with the optimal parameter α, which is such that F ′(x∗) = 0. The
optimum value for α for solving (5.26) is given by α∗ = 2

√
2.

• The Newton–Raphson method, where each iteration is given by

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

x2k − 2

2xk
=

1

2

(
xk +

2

xk

)
=: F (xk),

with
F (x) =

1

2

(
x+

2

x

)
.

Notice that F ′(x∗) = 0 and that F ∈ C2
(
(0,∞)

)
. Therefore, by Taylor’s theorem it holds

for all x ∈ (x∗ − 1, x∗ + 1) that

|F (x)− F (x∗)| =
∣∣F ′′(ξ(x))∣∣ 6 L(x− x∗)2, L := sup

|x−x∗|61
|F ′′(x)|.

We deduce that the convergence is at least quadratic by (5.11).

Remark 5.4. Note that the ancient Babylonian method coincides with the Newton–Raphson
method applied to (5.26).

The following code implements these methods. Note that we use the arbitrary precision BigFloat

format with a precision we manually set to 2000 bits, which enables using a very small ε in the
stopping criterion.

function count_digits(x, y)
xdigits = split(string(x), "")
ydigits = split(string(y), "")
len = min(length(xdigits), length(ydigits))
for i in 1:len

xdigits[i] != ydigits[i] && return i-2
end

end

function my_sqrt(a)

142

Chapter 5. Solution of nonlinear systems

exact = sqrt(a)
f(x) = x*x - a
fp(x) = 2x

Uncomment desired line
F(x) = x - f(x)/10 # Chord method
F(x) = x - f(x)/(2√a) # Chord method with optimal α

F(x) = 1/2 * (x + a/x) # Babylonian / Newton Raphson

r, ε = 1, 1e-200
while abs(f(r)) > ε

r = F(r)
digits = ceil(Int, -log10(abs(r - exact)))
println("Number of correct digits: $digits")

end

end

Sets the precision of BigFloats to 1000 bits
setprecision(2000)
my_sqrt(BigFloat(2))

For each of the methods, the number of correct digits of the approximation as the iterations
progress is illustrated in Table 5.1. Observe that for all the methods except the first one, the
number of correct digits is approximately doubled at each iteration, which is consistent with
quadratic convergence.

Method Chord α = 10 Chord α = 2
√
2 Newton–Raphson

Iterations 1357 8 9
Correct digits i = 1 1 1 1
Correct digits i = 2 1 3 3
Correct digits i = 3 1 6 6
Correct digits i = 4 1 12 12
Correct digits i = 5 1 26 24
Correct digits i = 6 1 53 48
Correct digits i = 7 1 107 97
Correct digits i = 8 1 214 196
Correct digits i = 9 1 n/a 392

Table 5.1: Comparison of different fixed point methods for calculating
√
2. Here i denotes the

iteration index.

143

Chapter 5. Solution of nonlinear systems

5.6 Exercises

� Exercise 5.1. Implement the bisection method for finding the solution(s) to the equation

x = cos(x).

� Exercise 5.2. Find a discrete-time dynamical system over R of the form

xk+1 = F (xk)

for which 0 is an attractor but is not stable.
Hint: Use a function F that is discontinuous.

� Exercise 5.3. Show that if x∗ is a globally exponentially stable fixed point of F , then F

does not have any other fixed point: x∗ is the unique fixed point.

� Exercise 5.4. Prove Theorem 5.3.

� Exercise 5.5. Let x∗ be a fixed point of (5.5). Show that if

ρ
(
JF (x∗)

)
< 1,

then x∗ is locally exponentially stable. It is sufficient by Proposition 5.5 to find a subordinate
matrix norm such that ‖JF (x∗)‖ < 1. In other words, this exercise amounts to showing that for
any matrix A ∈ Rn×n with ρ(A) < 1, there exists a matrix norm such that ‖A‖ < 1.
Hint: One may employ a matrix norm of the form ‖A‖T := ‖T−1AT‖2, which is a subordinate
norm by Exercise 4.10. The Jordan normal form is useful for constructing the matrix T, and
equation (4.24) is also useful.

Solution. Let J = P−1AP denote the Jordan normal form of A, and let

Eε =

ε

ε2

. . .
εn

By Eq. (4.24), the matrix Jε := E−1

ε JEε coincides with J, except that the first superdiagonal is
multiplied by ε. Let D denote the diagonal part of Jε. We have that

‖Jε − D‖2 =
√
λmax(ET

ε Eε).

The matrix ET
ε Eε is diagonal with entries equal to either 0 or ε2, and so ‖Jε−D‖2 < ε. By the triangle

inequality, we have
‖Jε‖ 6 ‖D‖+ ‖Jε − D‖2 6 ρ(A) + ε. (5.27)

Let ‖A‖ε := ‖E−1
ε P−1APEε‖. By (4.10) with T = PEε, this is indeed a subordinate matrix norm.

144

Chapter 5. Solution of nonlinear systems

By (5.27) and the assumption that ρ(A) < 1, it is clear that ‖A‖ε < 1 provided that ε is sufficiently
small. 4

Remark 5.5. A corollary of Exercise 4.10 is that the spectral radius of a matrix A is the
infimum of ‖A‖ over all subordinate matrix norms.

� Exercise 5.6. Calculate x = 3

√
3 + 3

√
3 + 3

√
3 +
√
. . . using the bisection method.

� Exercise 5.7. Solve the equation f(x) = ex− 2 = 0 using a fixed point iteration of the form

xk+1 = F (xk), F (x) = x− α−1f(x).

Using your knowledge of the exact solution x∗ = log 2, write a sufficient condition on α to
guarantee that x∗ is locally exponentially stable. Verify your findings numerically and plot,
using a logarithmic scale for the y axis, the error in absolute value as a function of k.

� Exercise 5.8. Implement the Newton–Raphson method for solving f(x) = ex − 2 = 0, and
plot the error in absolute value as a function of the iteration index k.

� Exercise 5.9. Find the point (x, y) on the parabola y = x2 that is closest to the point (3, 1).

� Exercise 5.10. Consider the linear system{
y = (x− 1)2

x2 + y2 = 4

By drawing these two constraints in the xy plane, find an approximation of the solution(s).
Then calculate the solution(s) using a fixed-point method.

� Exercise 5.11. Find solutions (ψ, λ), with λ > 0, to the following eigenvalue problem:

ψ′′ = −λ2ψ, ψ(0) = 0, ψ′(1) = ψ(1).

� Exercise 5.12. Suppose that we have n data points (xi, yi) of an unknown function y = f(x).
We wish to approximate f by a function of the form

f̃(x) =
a

b+ x

by minimizing the sum of squares
n∑

i=1

|f̃(xi)− yi|2.

Write a system of nonlinear equations that the minimizer (a, b) must satisfy, and solve this
system using the Newton–Raphson method starting from (1, 1). The data is given below:

x = [0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0]
y = [0.6761488864859304; 0.6345697680852508; 0.6396283580587062; 0.6132010027973919;

0.5906142598705267; 0.5718728461471725; 0.5524549902830562; 0.538938885654085;
0.5373495476994958; 0.514904589752926; 0.49243437874655027]

145

Chapter 5. Solution of nonlinear systems

Plot the data points together with the function f̃ over the interval [0, 1]. Your plot should look
like Figure 5.3.

Figure 5.3: Solution to Exercise 5.12.

� Exercise 5.13 (Nonlinear least-squares). Suppose that we are given n data points (xi, yi)

of an unknown function y = f(x). We wish to approximate f by a straight line

f̃(x) = ax+ b

by minimizing the sum of squared Euclidean distances between the data points and the straight
line f̃ . Since the distance between a point (xi, yi) and the straight line is given by

|yi − axi − b|√
1 + a2

,

the objective function to minimize is given by

J(a, b) :=
n∑

i=1

(yi − axi − b)2

1 + a2
.

This is a smooth function of a and b, and so a necessary condition for a pair (a∗, b∗) ∈ R2 to
be a minimizer is that

∇J(a∗, b∗) = 0,

which is a nonlinear equation for the unknowns a∗ and b∗. Solve this equation by using the
Newton–Raphson method initialized at (1, 1), and then plot the data points together with the
function f̃ over the interval [0, 1]. Your plot should look like Figure 5.4. The data is given
hereafter:

x = [0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0]
y = [-0.9187980789440975; -0.6159791344678258; -0.25568734869121856;

-0.14269370171581808; 0.3094396057228459; 0.6318327173549161;
0.8370437988106428; 1.0970402798788812; 1.6057799131867696;
1.869090784869698; 2.075369730726694]

146

Chapter 5. Solution of nonlinear systems

Figure 5.4: Solution to Exercise 5.13.

5.7 Discussion and bibliography

The content of this chapter is largely based on the lecture notes [15]. Several of the exercises are
taken or inspired from [7]. The proof of convergence of the secant method is inspired from the
general proof presented in the short paper [17]. For a detailed treatment of iterative methods
for nonlinear equations, see the book [9].

147

Chapter 6

Numerical computation of eigenvalues

6.1 Numerical methods for eigenvalue problems: general remarks . . . 149

6.2 Simple vector iterations . 149

6.2.1 The power iteration . 150

6.2.2 Inverse iteration . 152

6.2.3 Rayleigh quotient iteration . 153

6.3 Methods based on a subspace iteration 153

6.3.1 Simultaneous iteration . 153

6.3.2 The QR algorithm . 157

6.4 Projection methods . 158

6.4.1 Projection method in a Krylov subspace 160

6.4.2 The Arnoldi iteration . 161

6.4.3 The Lanczos iteration . 163

6.5 Exercises . 163

6.6 Discussion and bibliography . 168

Introduction

Calculating the eigenvalues and eigenvectors of a matrix is a task often encountered in scientific
and engineering applications. Eigenvalue problems naturally arise in quantum physics, solid
mechanics, structural engineering and molecular dynamics, to name just a few applications.
The aim of this chapter is to present an overview of the standard methods for calculating
eigenvalues and eigenvectors numerically. We focus predominantly on the case of a Hermitian
matrix A ∈ Cn×n, which is technically simpler and arises in many applications. The reader is
invited to go through the background material in Appendix A.6 before reading this chapter.
The rest of this chapter is organized as follows

• In Section 6.1, we make general remarks concerning the calculation of eigenvalues.

• In Section 6.2, we present standard methods based on a simple vector iteration.

148

Chapter 6. Numerical computation of eigenvalues

• In Section 6.3, we present a method for calculating several eigenvectors simultaneously,
based on iterating a subspace.

• In Section 6.4, we present method for constructing an approximation of the eigenvectors
in a given subspace of Cn.

6.1 Numerical methods for eigenvalue problems: general remarks

As mentioned in Appendix A.6, a complex number λ ∈ C is an eigenvalue of A ∈ Cn×n if and
only if λ is a root of the characteristic polynomial pA : C→ C of A, which is given by

pA(λ) = det(A− λI).

One may, therefore, calculate the eigenvalues of A by calculating the roots of the polynomial pA
using, for example, one of the methods presented in Chapter 5. While feasible for small matrices,
this approach is not viable for large matrices, because the number of floating point operations
required for calculating calculating the coefficients of the characteristic polynomial scales as the
factorial of n.

In view of the prohibitive computational cost required for calculating the characteristic
polynomial, other methods are required for solving large eigenvalue problems numerically. All
the methods that we study in this chapter are of iterative nature. While some of them are
aimed at calculating all the eigenpairs of the matrix A, other methods enable to calculate only
a small number of eigenpairs at a lower computational cost, which is often desirable. Indeed,
calculating all the eigenvalues of a large matrix is computationally expensive; on a personal
computer, the following Julia code takes well over a second to terminate:

import LinearAlgebra
A = rand(2000, 2000)
LinearAlgebra.eigen(A)

In many applications, the matrix A is sparse, and in this case it is important to use algorithms
for eigenvalue problems that do not destroy the sparsity structure. Note that the eigenvectors
of a sparse matrix are generally not sparse.

To conclude this section, we introduce some notation used throughout this chapter. For a
diagonalizable matrix A, we denote the eigenvalues by λ1, . . . , λn, with |λ1| > |λ2| > . . . > |λn|.
The associated normalized eigenvectors are denoted by v1, . . . ,vn. Therefore, it holds that

V−1AV = D = diag(λ1, . . . , λn), where V =
(
v1 . . . vn

)
.

6.2 Simple vector iterations

In this section, we present simple iterative methods aimed at calculating just one eigenvector
of the matrix A, which we assume to be diagonalizable for simplicity.

149

Chapter 6. Numerical computation of eigenvalues

6.2.1 The power iteration

The power iteration is the simplest method for calculating the eigenpair associated with the
eigenvalue of A with largest modulus. Since the eigenvectors of A span Cn, any vector x0 may
be decomposed as

x0 = α1v1 + · · ·+ αnvn. (6.1)

The idea of the power iteration is to repeatedly left-multiply this vector by the matrix A, in
order to amplify the coefficient of v0 relative to the other ones. Indeed, notice that

Akx0 = λk1α1v1 + · · ·+ λknαnvn.

If λ1 is strictly greater in modulus than the other eigenvalues, and if α1 6= 0, then for large k the
vector Akx0 is approximately aligned, in a sense made precise below, with the eigenvector v1.
In order to avoid overflow errors at the numerical level, the iterates are normalized at each
iteration. The power iteration is presented in Algorithm 8.

Algorithm 8 Power iteration
x← x0

for i ∈ {1, 2, . . . } do
x← Ax
x← x/‖x‖

end for

To precisely quantify the convergence of the power method, we introduce the notion of acute
angle between vectors of Cn.

∠(x,y) = arccos
(

|x∗y|√
x∗x
√
y∗y

)
= arcsin

(
‖(I− Py)x‖
‖x‖

)
, Py :=

yy∗

y∗y
.

This definition generalizes the familiar notion of angle for vectors in R2 or R3, and we note that
the angle function satisfies ∠(eiθ1x, eiθ2y) = ∠(x,y) as well as ∠(x,y) ∈ [0, π/2]. We can then
prove the following convergence result.

Proposition 6.1 (Convergence of the power iteration). Suppose that A is diagonalizable and
that |λ1| > |λ2|. Then, for every initial guess with α1 6= 0, the sequence (xk)k>0 generated by
the power iteration satisfies

lim
k→∞

∠(xk,v1) = 0.

Proof. By construction, it holds that

xk =
λk1α1v1 + · · ·+ λknαnvn

‖λk1α1v1 + · · ·+ λknαnvn‖
= eiθk

v1 +
λk
2α2

λk
1α1

v2 + · · ·+ λk
nα2

λk
1α1

vn∥∥∥v1 +
λk
2α2

λk
1α1

v2 + · · ·+ λk
nαn

λk
1α1

vn

∥∥∥ , (6.2)

150

Chapter 6. Numerical computation of eigenvalues

where
eiθk :=

λk1α1

|λk1α1|
.

It follows from (6.2) that e−iθkxk → v1/‖v1‖ = v1 in the limit as k → ∞, where we employed
the fact that ‖v1‖ = 1. Using the definition of the angle between two vectors in Cn, and the
continuity with respect to either argument of the Cn Euclidean inner product and of the arccos
function, we obtain that

∠(xk,v1) = arccos

(
|v∗

1xk|√
v∗
1v1

√
x∗
kxk

)
= arccos (|v∗

1xk|)

= arccos
(∣∣∣v∗

1

(
e−iθkxk

)∣∣∣) −−−→
k→∞

arccos(1) = 0,

which concludes the proof.

An inspection of the proof also reveals that the dominant term in the error, asymptotically
in the limit as k →∞, is the one with coefficient λk

2α2

λk
1α1

. Therefore, we deduce that

∠(xk,v1) = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
.

The convergence is slow if |λ2/λ1| is close to one, and fast if |λ2| � |λ1|. Once an approximation
of the eigenvector v1 has been calculated, the corresponding eigenvalue λ1 can be estimated
from the Rayleigh quotient:

ρA : Cn
∗ → C : x 7→ x∗Ax

x∗x
. (6.3)

For any eigenvector v of A, the corresponding eigenvalue is equal to ρA(v). In order to study
the error on the eigenvalue λ1 for the power iteration, we assume for simplicity that A is
Hermitian and that the eigenvectors v1, . . . ,vn are orthonormal. Substituting (6.2) in the
Rayleigh quotient (6.3), we obtain

ρA(xk) =
λ1 +

∣∣∣λk
2α2

λk
1α1

∣∣∣2λ2 + · · ·+ ∣∣∣λk
nαn

λk
1α1

∣∣∣2λn
1 +

∣∣∣λk
2α2

λk
1α1

∣∣∣2 + · · ·+ ∣∣∣λk
nαn

λk
1α1

∣∣∣2 .

Therefore, by reducing to a common denominator we deduce

|ρA(xk)− λ1| =

∣∣∣∣∣∣∣
λ1 +

∣∣∣λk
2α2

λk
1α1

∣∣∣2λ2 + · · ·+ ∣∣∣λk
nαn

λk
1α1

∣∣∣2λn
1 +

∣∣∣λk
2α2

λk
1α1

∣∣∣2 + · · ·+ ∣∣∣λk
nαn

λk
1α1

∣∣∣2 − λ1

∣∣∣∣∣∣∣
6

∣∣∣∣λk2α2

λk1α1

∣∣∣∣2|λ2 − λ1|+ · · ·+ ∣∣∣∣λknαn

λk1α1

∣∣∣∣2|λn − λ1| = O
(∣∣∣∣λ2λ1

∣∣∣∣2k
)
.

The convergence of the eigenvalue in the particular case of a Hermitian matrix is faster
than for a general matrix in Cn×n. For general matrices, it is possible to show using a similar
argument that the error is of order O

(
|λ2/λ1|k

)
in the limit as k →∞.

151

Chapter 6. Numerical computation of eigenvalues

Essential convergence. It is useful at this point to introduce the concept of essential conver-
gence. A sequence (xk) in Cn is said to converge essentially to a vector x∞ if there exists a
sequence of complex numbers

(
eiφk

)
of modulus 1 such that the sequence

(
eiφkxk

)
converges

to x∞. For a sequence (xk) of normalized vectors, the essential convergence of (xk) to x∞ is
equivalent to the convergence of ∠(xk,x∞) to 0. Proving this equivalence is the goal of Exer-
cise 6.11. Reformulated in this new terminology, Proposition 6.1 states that the sequence (xk)

obtained from the power iteration converges essentially to v1.

6.2.2 Inverse iteration

The power iteration is simple but enables to calculate only the dominant eigenvalue of the
matrix A, i.e. the eigenvalue of largest modulus. In addition, the convergence of the method is
slow when |λ2| ≈ |λ1|.

The inverse iteration enables a more efficient calculation of not only the dominant eigenvalue
but also the other eigenvalues of A. It is based on applying the power iteration to (A − µI)−1,
where µ ∈ C is a shift. The eigenvalues of (A−µI)−1 are given by (λ1−µ)−1, . . . , (λn−µ)−1, with
associated eigenvectors v1, . . . ,vn. If 0 < |λJ − µ| < |λj − µ| for all j 6= J , then the dominant
eigenvalue of the matrix (A − µI)−1 is (λJ − µ)−1, and so the power iteration applied to this
matrix yields an approximation of the eigenvector vJ . In other words, the inverse iteration
with shift µ enables to calculate an approximation of the eigenvector of A corresponding to the
eigenvalue nearest µ. The inverse iteration is presented in Algorithm 9. In practice, the inverse
matrix (A− µI)−1 need not be calculated, and it is often preferable to solve a linear system at
each iteration.

Algorithm 9 Inverse iteration
x← x0

for i ∈ {1, 2, . . . } do
Solve (A− µI)y = x
x← y/‖y‖

end for
λ← x∗Ax/x∗x
return x, λ

An application of Proposition 6.1 immediately gives the following convergence result for the
inverse iteration.

Proposition 6.2 (Convergence of the inverse iteration). Assume that A ∈ Cn is diagonaliz-
able and that there exist J and K such that

0 < |λJ − µ| < |λK − µ| 6 |λj − µ| ∀j 6= J.

Assume also that αJ 6= 0, where αJ is the coefficient of vJ in the expansion of x0 given
in (6.1). Then the iterates of the inverse iteration satisfy

lim
k→∞

∠(xk,vJ) = 0.

152

Chapter 6. Numerical computation of eigenvalues

More precisely,

∠(xk,vJ) = O

(∣∣∣∣ λJ − µλK − µ

∣∣∣∣k
)
.

Proposition 6.2 states that xk converges essentially to vJ . Notice that the closer µ is to λJ , the
faster the inverse iteration converges. Note also that with µ = 0, the inverse iteration enables
to calculate the eigenvalue of A of smallest modulus.

6.2.3 Rayleigh quotient iteration

Since the inverse iteration is fast when µ is close to an eigenvalue λJ , it is natural to wonder
whether the method can be improved by progressively updating µ as the simulation progresses.
Specifically, an approximation of the eigenvalue associated with the current vector may be
employed in place of µ. This leads to the Rayleigh quotient iteration, presented in Algorithm 10.

Algorithm 10 Inverse iteration
x← x0

for i ∈ {1, 2, . . . } do
µ← x∗Ax/x∗x
Solve (A− µI)y = x
x← y/‖y‖

end for
λ← x∗Ax/x∗x
return x, λ

It is possible to show that, when A is Hermitian, the Rayleigh quotient iteration converges to
an eigenvector for almost every initial guess x0. Furthermore, if convergence to an eigenvector
occurs, then µ converges cubically to the corresponding eigenvalue. See [12] and the references
therein for more details.

6.3 Methods based on a subspace iteration

The subspace iteration resembles the power iteration but it is more general: not just one but
several vectors are updated at each iteration.

6.3.1 Simultaneous iteration

Let X0 =
(
x1 . . . xp

)
denote an initial set of linearly independent vectors. Before we present

the simultaneous iteration, we recall a statement concerning the QR decomposition of a matrix,
which is related to the Gram–Schmidt orthonormalization process. We recall that the Gram–
Schmidt method enables to construct, starting form an ordered set of vectors {x1, . . . ,xp} in Cn,
a new set of vectors {q1, . . . , qp} which are orthonormal and span the same subspace of Cn as
the original vectors.

153

Chapter 6. Numerical computation of eigenvalues

Proposition 6.3 (Reduced QR decomposition). Assume that X ∈ Cn×p has linearly inde-
pendent columns. Then there exist a matrix Q ∈ Cn×p with orthonormal columns and an
upper triangular matrix R ∈ Cp×p such that the following factorization holds:

X = QR. (6.4)

This decomposition is known as a reduced QR decomposition if p < n, or simply QR de-
composition if p = n, in which case X is a square matrix and Q is a unitary matrix. The
decomposition is unique if we require that the diagonal elements of R are real and positive.

Proof. The statement is clear when p = 1. Reasoning by induction, we assume that the result
is true up to p − 1, and prove that it then also holds true for p. We wish to show that
there is a unique matrix Q ∈ Cn×p with orthonormal columns and a unique upper triangular
matrix R ∈ Cp×p with real and positive diagonal elements such that (6.4) is satisfied. To this
end, we decompose the matrices Q and R as follows:

Q =
(

Qp−1 q
)
, R =

(
Rp−1 r

0Tp−1 r

)
. (6.5)

Here Qp−1 ∈ Cn×(p−1) is a matrix with orthonormal columns, R ∈ C(p−1)×(p−1) is an upper
triangular matrix with positive real diagonal elements, q ∈ Cn is a normalized vector orthogonal
to all the columns of Qp−1, r ∈ Cn−1 is a vector and r ∈ R>0 is a scalar. Let us also denote
by Xp−1 ∈ Cn×(p−1) the matrix containing the p−1 first columns of X, and by xp ∈ Cn the p-th
column of X. Substituting (6.5) into (6.4), we then obtain(

Xp−1 xp

)
=
(

Qp−1Rp−1 Qp−1r + qr
)
, (6.6)

By the induction hypothesis, there exist a unique choice of matrices Qp−1 and Rp−1 with the
required structure such that Xp−1 = Qp−1Rp−1. Comparing the last column of both sides
in (6.6), we obtain

xp = Qp−1r + qr. (6.7)

Left-multiplying both sides by Q∗
p−1 and employing the orthogonality between q and the columns

of Qp−1, we deduce that necessarily r = Q∗
p−1xp. It then follows from (6.7) that

q =
1

r

(
xp − Qp−1Q∗

p−1xp

)
, r =

∥∥xp − Qp−1Q∗
p−1xp

∥∥.
It is simple to check that q is indeed orthogonal to the columns of Q, which concludes the proof.
Note that Qp−1Q∗

p−1xp is the orthogonal projection of xp onto the subspace spanned by the
columns of Qp−1.

Note that the columns of the matrix Q of the decomposition coincide with the vectors that
would be obtained by applying the Gram–Schmidt method to the columns of the matrix X. In
fact, the Gram–Schmidt process is one of several methods by which the QR decomposition can
be calculated in practice.

154

Chapter 6. Numerical computation of eigenvalues

Algorithm 11 Simultaneous iteration
X← X0

for k ∈ {1, 2, . . . } do
QkRk = AXk−1 (QR decomposition).
Xk ← Qk.

end for

The simultaneous iteration method is presented in Algorithm 11. Like the normalization in
the power iteration Algorithm 8, the QR decomposition performed at each step in Algorithm 11
enables to avoid overflow errors. Notice that when p = 1, the simultaneous iteration reduces
to the power iteration. We emphasize that the factorization step at each iteration does not
influence the subspace spanned by the columns of X. Therefore, this subspace after k iterations
coincides with that spanned by the columns of the matrix AkX0. In fact, in exact arithmetic, it
would be equivalent to perform the QR decomposition only once as a final step, after the for

loop. Indeed, denoting by QkRk the QR decomposition of AXk−1, we have

Xk = AXk−1R−1
k = A2Xk−2R−1

k−1R
−1
k = · · · = AkX0R−1

1 . . .R−1
k

⇔ Xk(Rk . . .R1) = AkX0.

Since Xk has orthonormal columns and Rk . . .R1 is an upper triangular matrix (see Exercise 4.3)
with real positive elements on the diagonal (check this!), it follows that Xk can be obtained by QR
factorization of AkX0. In order to show the convergence of the simultaneous iteration, we begin
by proving the following preparatory lemma.

Lemma 6.4 (Continuity of the reduced QR decomposition). If QkRk → QR, where Q ∈ Cn×p

has orthonormal columns and R ∈ Cp×p is upper triangular with positive real entries on the
diagonal, then Qk → Q.

Proof. We reason by contradiction and assume there is ε > 0 and a subsequence (Qkn)n>0 such
that ‖Qkn − Q‖ > ε for all n. Since the set of matrices with normalized columns is a compact
subset of Cn×p, there exists a further subsequence (Qknm

)m>0 that converges to a limit Q∞

which also has orthonormal columns and is at least ε away in norm from Q. But then

Rknm
= Q∗

knm
(Qknm

Rknm
) −−−−→

m→∞
Q∗

∞(QR) =: R∞.

Since Rk is upper triangular with positive diagonal elements for all k, clearly R∞ is also upper
triangular with positive diagonal elements. But then Q∞R∞ = QR, and by uniqueness of the
decomposition we deduce that Q = Q∞, which is a contradiction.

Before presenting the convergence theorem, we introduce the following terminology: we say
that Xk ∈ Cn×p converges essentially to a matrix X∞ if each column of Xk converges essentially
to the corresponding column of X∞. We prove the convergence in the Hermitian case for
simplicity. In the general case of A ∈ Cn×n, it cannot be expected that Xk converges essentially
to V, because the columns of Xk are orthogonal but eigenvectors may not be orthogonal. In

155

Chapter 6. Numerical computation of eigenvalues

this case, the columns of Xk converge not to the eigenvectors but to the so-called Schur vectors
of A; see [12] for more information.

Theorem 6.5 (Convergence of the simultaneous iteration �). Assume that A ∈ Cn×n is
Hermitian, that X0 ∈ Cn×p has linearly independent columns, and finally that the subspace
spanned by the column of X0 satisfies

col(X0) ∩ Span{vp+1, . . . ,vn} = ∅. (6.8)

If it holds that
|λ1| > |λ2| > · · · > |λp| > |λp+1| > |λp+2| > . . . > |λn|, (6.9)

then Xk converges essentially to V1 :=
(
v1 . . . vp

)
.

Proof. Let B = V−1X0 ∈ Cn×p, so that X0 = VB, and note that AkX0 = VDkB. We denote
by B1 ∈ Cp×p and B2 ∈ C(n−p)×p the upper p×p and lower (n−p)×p blocks of B, respectively.
The matrix B1 is nonsingular, otherwise the assumption (6.8) would not hold. Indeed, if there
was a nonzero vector z ∈ Cp such that B1z = 0, then

X0z = V
(

B1

B2

)
z =

(
V1 V2

)(0

B2z

)
= V2B2z.

implying that X0z ∈ col(X0) is a linear combination of the vectors in V2 =
(
vp+1 . . .vn

)
,

which contradicts the assumption. We also denote by D1 and D2 the p × p upper-left and
the (n−p)× (n−p) lower-right blocks of D, respectively. From the expression of AkX0, we have

AkX0 =
(

V1 V2

)(Dk
1

Dk
2

)(
B1

B2

)
= V1Dk

1B1 + V2Dk
2B2,

=
(

V1 + V2Dk
2B2B−1

1 D−k
1

)
Dk
1B1. (6.10)

The second term in the bracket on the right-hand side converges to zero in the limit as k →∞
by (6.9). Let Q̃kR̃k denote the reduced QR decomposition of the bracketed term. By Lemma 6.4,
we deduce from Q̃kR̃k → V1 that Q̃k → V1. Rearranging (6.10), we have

AkX0 = Q̃k(R̃kDk
1B1).

Since the matrix between brackets is a p × p square invertible matrix, this equation implies
that col(AkX0) = col(Q̃k). Denoting by QkRk the QR decomposition of AkX0, we therefore
have col(Qk) = col(Q̃k), and so the projectors on these subspaces are equal. We recall that, for
a set of orthonormal vectors y1, . . . ,yp gathered in a matrix Y =

(
y1 . . . yp

)
, the projector

on col(Y) = Span{y1, . . . ,yp} ⊂ Cn is the square n× n matrix

YY∗ = y1y
∗
1 + · · ·+ ypy

∗
p.

Consequently, the equality of the projectors implies QkQ∗
k = Q̃kQ̃k

∗
, and so QkQ∗

k → V1V∗
1. Sim-

156

Chapter 6. Numerical computation of eigenvalues

ilarly, noting that Qk[:,1:i]R[1:i,1:i] is the QR decompostion of the matrix AkX0[:,1:i]
for all i ∈ {1, . . . , p}, we obtain the convergence

∀i ∈ {1, . . . , p}, Qk[:,1:i]Qk[:,1:i]∗ −−−→
k→∞

v1v
∗
1 + · · ·+ viv

∗
i . (6.11)

This is not surprising given that the first k columns of X0 undergo a simultaneous iteration
independent of the other columns.

Next, we establish the essential convergence of Qk to V1. To this end, we denote the columns
of Qk by q

(k)
1 , . . . , q

(k)
p and first show by induction that q

(k)
i q

(k)
i

∗
→ viv

∗
i in the limit k → ∞.

For i = 1 this follows from (6.11). Assume now that q
(k)
• q

(k)
•

∗
→ v•v

∗
• for • up to i− 1. Then

q
(k)
i q

(k)
i

∗
= Qk[:,1:i]Qk[:,1:i]∗ − q

(k)
1 q

(k)
1

∗
− · · · − q

(k)
i−1q

(k)
i−1

∗

−−−→
k→∞

V1[:,1:i]V1[:,1:i]∗ − v1v
∗
1 − · · · − vi−1v

∗
i−1 = viv

∗
i .

It remains to show that the convergence q
(k)
i q

(k)
i

∗
→ viv

∗
i implies the desired essential conver-

gence. Noting that |a| =
√
aa for every a ∈ C, we have

|v∗
i q

(k)
i | =

√
v∗
i q

(k)
i q

(k)
i

∗
vi −−−→

k→∞

√
v∗
iviv∗

ivi = 1,

Finally, observing that

∥∥∥e−iθkq
(k)
i − vi

∥∥∥2 = 2− 2|v∗
i q

(k)
i | −−−→

k→∞
0, eiθk =

v∗
i q

(k)
i

|v∗
i q

(k)
i |

,

we conclude that q
(k)
i converges essentially to vi.

In addition to this convergence result, it is possible to show that the error satisfies

∠
(

col(Xk), col(V1)
)
= O

(∣∣∣∣λp+1

λp

∣∣∣∣k
)
.

Here, the angle between two subspaces A and B of Cn is defined as

∠(A,B) = max
a∈A\{0}

(
min

b∈B\{0}
∠(a, b)

)
.

6.3.2 The QR algorithm

The QR algorithm, which is based on the QR decomposition, is one of the most famous algo-
rithms for calculating all the eigenpairs of a matrix. We first present the algorithm and then
relate it to the simultaneous iteration in Section 6.3.1. The method is presented in Algorithm 12.

Successive iterates of the QR algorithm are related by the equation

Xk = Q−1
k Xk−1Qk = Q∗

kXk−1Qk = · · · = (Q1 . . .Qk)
∗X0(Q1 . . .Qk) (6.12)

157

Chapter 6. Numerical computation of eigenvalues

Algorithm 12 QR algorithm
X0 = A
for i ∈ {1, 2, . . . } do

QkRk = Xk−1 (QR decomposition)
Xk = RkQk

end for

Therefore, all the iterates are related by a unitary similarity transformation, and so they all
have the same eigenvalues as X0 = A. Rearranging (6.12), we have

(Q1 . . .Qk)Xk = A(Q1 . . .Qk),

and so, introducing Q̃k = Q1 . . .Qk and noting that Xk = Qk+1Rk+1 by the algorithm, we deduce

Q̃k+1Rk+1 = AQ̃k.

This reveals that the matrix sequence (Q̃k)k>1 undergoes a simultaneous iteration and so, as-
suming that A is Hermitian with n distinct nonzero eigenvalues, we deduce that Q̃k → V
essentially in the limit as k → ∞, by Theorem 6.5. As a consequence, by (6.12), it holds
that Xk → V∗X0V = D; in other words, the matrix Xk converges to a diagonal matrix with the
eigenvalues of A on the diagonal.

6.4 Projection methods

In this section, we begin by presenting a general method for constructing an approximation of
the eigenvectors of A in a given subspace U of Cn. We then discuss a particular choice for the
subspace U as a Krylov subspace, which is very useful in practice.

Assume that {u1, . . . ,up} is an orthonormal basis of U . Then for any vector v ∈ Cn, the
vector of U that is closest to v in the Euclidean distance is given by the orthogonal projection

PUv := UU∗v = (u1u
∗
1 + · · ·+ upu

∗
p)v.

In practice, the eigenvectors of A are unknown, and so it is impossible to calculate approx-
imations using this formula. The Rayleigh–Ritz method, which we present hereafter, is an
alternative and practical method for constructing approximations of the eigenvectors and eigen-
values. In general, the subspace U does not contain any eigenvector of A, and so the problem

Av = λv, v ∈ U (6.13)

does not admit a solution. Let us denote by U the matrix with columns u1, . . . ,up. Since any
vector v ∈ U is equal to Uz for some vector z ∈ Cp, equation (6.13) is equivalent to the problem

AUz = λUz,

which is a system of n equations with p < n unknowns. The Rayleigh–Ritz method is based on

158

Chapter 6. Numerical computation of eigenvalues

the idea that, in order to obtain a problem with as many unknowns as there are equations, we
can multiply this equation by U∗, which leads to the problem

Bz := (U∗AU)z = λz. (6.14)

This is standard eigenvalue problem for the matrix U∗AU ∈ Cp×p, which is much easier to solve
than the original problem if p� n. Equivalently, equation (6.14) may be formulated as follows:
find v ∈ U such that

u∗(Av − λv), ∀u ∈ U . (6.15)

The solutions to (6.14) and (6.15) are related by the equation v = Uz. Of course, the eigenvalues
of B in problem (6.14), which are called the Ritz values of A relative to U , are in general different
from those of A. Once an eigenvector y of B has been calculated, an approximate eigenvector
of A, called a Ritz vector of A relative to U , is obtained from the equation v̂ = Uy. The
Rayleigh–Ritz algorithm is presented in full in Algorithm 13.

Algorithm 13 Rayleigh–Ritz
Choose U ⊂ Cn

Construct a matrix U whose columns are orthonormal and span U
Find the eigenvalues λ̂i and eigenvectors yi ∈ Cp of B := U∗AU
Calculate the corresponding Ritz vectors v̂i = Uyi ∈ Cn.

It is clear that if vi ∈ U , then λi is an eigenvalue of B in (6.14). In fact, we can show the
following more general statement.

Proposition 6.6. If U is an invariant subspace of A, meaning that AU ⊂ U , then each Ritz
vector of A relative to U is an eigenvector of A.

Proof. Let U ∈ Cn×p and W ∈ Cn×(n−p) be matrices whose columns form orthonormal bases
of U and U⊥, respectively. Here U⊥ denotes the orthogonal complement of U with respect to
the Euclidean inner product. Then, since W∗AU = 0 by assumption, it holds that

Q∗AQ =

(
U∗AU U∗AW
W∗AU W∗AW

)
=

(
U∗AU U∗AW

0 W∗AW

)
, Q =

(
U W

)
.

If (y, λ̂) is an eigenvector of U∗AU, then

Q∗AQ
(
y

0

)
=

(
(U∗AU)y

0

)
= λ̂

(
y

0

)
=: λ̂x,

and so (x, λ̂) is an eigenpair of Q∗AQ. But then (Qx, λ̂) = (Uy, λ̂) is an eigenpair of A, which
proves the statement.

Remark 6.1. Proposition 6.6 can be proved more directly from (6.15) by noting that, if U is
an invariant subspace of A, then this equation implies that Av − λv belongs to both U and

159

Chapter 6. Numerical computation of eigenvalues

its orthogonal complement U⊥, and so this vector is 0.

If U is close to being an invariant subspace of A, then it is expected that the Ritz vectors
and Ritz values of A relative to U will provide good approximations of some of the eigenpairs
of A. Quantifying this approximation is difficult, so we only present without proof the following
error bound. See [11] for more information.

Proposition 6.7. Let A be a full rank Hermitian matrix and U a p-dimensional subspace
of Cn. Then there exists eigenvalues λi1 , . . . , λip of A which satisfy

∀j ∈ {1, . . . , p}, |λij − λ̂j | 6 ‖(I− PU)APU‖2.

In the case where A is Hermitian, it is possible to show that the Ritz values are bounded from
above by the eigenvalues of A. The proof of this result relies on the Courant–Fisher theorem
for characterizing the eigenvalues of a Hermitian matrix, which is recalled in Theorem A.6 in
the appendix.

Proposition 6.8. If A ∈ Cn×n is Hermitian, then

∀i ∈ {1, . . . , p}, λ̂i 6 λi

Proof. By the Courant–Fisher theorem, it holds that

λ̂i = max
S⊂Cp,dim(S)=i

(
min

x∈S\{0}

x∗Bx
x∗x

)
Letting y = Ux and then R = US, we deduce that

λ̂i = max
S⊂Cp,dim(S)=i

(
min

y∈US\{0}

y∗Ay
y∗y

)
= max

R⊂U ,dim(R)=i

(
min

y∈R\{0}

y∗Ay
y∗y

)
6 max

R⊂Cn,dim(R)=i

(
min

y∈R\{0}

y∗Ay
y∗y

)
= λi,

where we used the Courant–Fisher theorem for the matrix A in the last equality.

This projection approach is sometimes combined with a simultaneous subspace iteration: an
approximation Xk of the p first eigenvector is first calculated using Algorithm 11, and then the
matrix Xk is used in place of U in Algorithm 13.

6.4.1 Projection method in a Krylov subspace

The power iteration constructs at iteration k an approximation of v1 in the one-dimensional
subspace spanned by the vector Akx0, and only the previous iteration xk is employed to con-
struct xk+1. One may wonder whether, by employing all the previous iterates rather than only
the previous one, a better approximation of v1 can be constructed. More precisely, instead of
looking for an approximation in the subspace Span{Akx0}, would it be useful to extend the

160

Chapter 6. Numerical computation of eigenvalues

search area to the Krylov subspace

Kk+1(A,x0) := Span
{
x0,Ax0, . . . ,Akx0

}
?

The answer to this question is positive, and the resulting method is often much faster than
the power iteration. This is achieved by employing the Rayleigh–Ritz projection method Al-
gorithm 13 with the choice U = Kk+1(A,x0). Applying this method requires to calculate an
orthonormal basis of the Krylov subspace and to calculate the reduced matrix U∗AU. The
Arnoldi method enables to achieve these two goals simultaneously.

6.4.2 The Arnoldi iteration

This Arnoldi iteration is based on the Gram–Schmidt process and presented in Algorithm 14.
The iteration breaks down if hj+1,j = 0, which indicates that Auj belongs to the Krylov

Algorithm 14 Arnoldi iteration for constructing an orthonormal basis of Kp(A,u1)

Choose u1 with unit norm.
for j ∈ {1, . . . p} do

uj+1 ← Auj

for i ∈ {1, . . . , j} do
hi,j ← u∗

iuj+1

uj+1 ← uj+1 − hi,jui

end for
hj+1,j ← ‖uj+1‖
uj+1 ← uj+1/hj+1,j

end for

subspace Span{u1, . . . ,uj} = Kj(A,u1), implying that Kj+1(A,u1) = Kj(A,u1). In this case,
the subspace Kj(A,u1) is an invariant subspace of A because, by Exercise 6.2, we have

AKj(A,u1) ⊂ Kj+1(A,u1) = Kj(A,u1).

Therefore, applying the Rayleigh–Ritz with U = Span{u1, . . . ,uj} yields exact eigenpairs in
view of Proposition 6.6. If the iteration does not break down then, by construction, the vectors
{u1, . . . ,up} at the end of the algorithm are orthonormal. It is also simple to show by induction
that they form a basis of Kp(A,u1). The scalar coefficients hi,j can be collected in a matrix
square p× p matrix

H =

h1,1 h1,2 h1,3 · · · h1,p

h2,1 h2,2 h2,3 · · · h2,p

0 h3,2 h3,3 · · · h3,p
...
0 · · · 0 hp,p−1 hp,p

.

This matrix contains only zeros under the first subdiagonal; such a matrix is called a Hessenberg
matrix. Inspecting the algorithm, we notice that the j-th column contains the coefficients of

161

Chapter 6. Numerical computation of eigenvalues

the projection of the vector Auj onto the basis {u1, . . . ,up}. In other words,

U∗AU = H, (6.16)

We have thus shown that the Arnoldi algorithm enables to construct both an orthonormal basis
of a Krylov subspace and the associated reduced matrix. In fact, we have the following equation

AU = UH + hp+1,p(vp+1e
∗
p), ep =

0
...
1

 ∈ Cp. (6.17)

The Arnoldi algorithm, coupled with the Rayleigh–Ritz method, has very good convergence
properties in the limit as p → ∞, in particular for eigenvalues with a large modulus. The
following result shows that the residual r = Av̂ − λ̂v associated with a Ritz vector can be
estimated inexpensively. Specifically, the norm of the residual is equal to the last component of
the associated eigenvector of H multiplied by hp+1,p.

Proposition 6.9 (Formula for the residual �). Let yi be an eigenvector of H associated with
the eigenvalues λ̂i, and let v̂i = Uyi denote the corresponding eigenvector. Then

Av̂i − λ̂vi = hp+1,p(yi)pvp+1.

Consequently, it holds that
‖Av̂i − λ̂vi‖ = |hp+1,p(yi)p|.

Proof. Multiplying both sides of (6.17) by yi, we obtain

AUyi = UHyi + hp+1,p(vp+1e
∗
p)yi.

Using the definition of v̂i and rearranging the equation, we have

Av̂i − λ̂iyi = hp+1,p(vp+1e
∗
p)yi,

which immediately gives the result.

In practice, the larger the dimension p of the subspace U employed in the Rayleigh–Ritz
method, the more memory is required for storing an orthonormal basis of U . In addition, for
large values of p, computing the reduced matrix (6.16) and its eigenpairs becomes computation-
ally expensive; the computational cost of computing the matrix H scales as O(p2). To remedy
these potential issues, the algorithm can be restarted periodically. For example, Algorithm 15
can be employed as an alternative to the power iteration in order to find the eigenvector asso-
ciated with the eigenvalue with largest modulus.

162

Chapter 6. Numerical computation of eigenvalues

Algorithm 15 Restarted Arnoldi iteration
Choose u1 ∈ Cn and p� n
for i ∈ {1, 2, . . . } do

Perform p iterations of the Arnoldi iteration and construct U ;
Calculate the Ritz vector v̂1 associated with the largest Ritz value relative to U ;
If this vector is sufficiently accurate, then stop. Otherwise, restart with u1 = v̂1.

end for

6.4.3 The Lanczos iteration

The Lanczos iteration may be viewed as a simplified version of the Arnoldi iteration in the
case where the matrix A is Hermitian. Let us denote by {u1, . . . ,up} the orthonormal vectors
generated by the Arnoldi iteration. When A is Hermitian, it holds that

hi,j = u∗
i (Auj) = (Aui)

∗uj = hj,i.

Therefore, the matrix H is Hermitian. This is not surprising, since we showed that H = U∗AU
and the matrix A is Hermitian. Since H is also of Hessenberg form, we deduce that H is
tridiagonal. An inspection of Algorithm 14 shows that the subdiagonal entries of H are real.
Since A is Hermitian, the diagonal entries hi,i = u∗

i (Auj) are also real, and so we conclude that
all the entries of the matrix H are in fact real. This matrix if of the form

H =

α1 β2

β2 α2 β3

β3
.
. βp

βp αp

Adapting the Arnoldi iteration to this setting leads to Algorithm 16.

Algorithm 16 Lanczos iteration for constructing an orthonormal basis of Kp(A,u1)

Choose u1 with unit norm.
β1 ← 0, u0 ← 0 ∈ Cn

for j ∈ {1, . . . p} do
uj+1 ← Auj − βjuj−1

αj ← u∗
juj+1

uj+1 ← uj+1 − αjuj

βj+1 ← ‖uj+1‖
uj+1 ← uj+1/βj+1

end for

6.5 Exercises

� Exercise 6.1. PageRank is an algorithm for assigning a rank to the vertices of a directed
graph. It is used by many search engines, notably Google, for sorting search results. In this

163

Chapter 6. Numerical computation of eigenvalues

context, the directed graph encodes the links between pages of the World Wide Web: the vertices
of the directed graph are webpages, and there is an edge going from page i to page j if page i
contains a hyperlink to page j.

Let us consider a directed graph G(V,E) with vertices V = {1, . . . , n} and edges E. The
graph can be represented by its adjacency matrix A ∈ {0, 1}n×n, whose entries are given by

aij =

1 if there is an edge from i to j,

0 otherwise.

Let ri denote the “value” assigned to vertex i. The idea of PageRank, in its simplest form, is
to assign values to the vertices by solving the following system of equations;

∀i ∈ V, ri =
∑

j∈N (i)

rj
oj
. (6.18)

where oj is the outdegree of vertex j, i.e. the number of edges leaving from j. Here the sum is
over the set of nodes N (i), which denotes all the “incoming” neighbors of i, i.e. those that have
an edge pointing towards node i.

• Read the Wikipedia page on PageRank to familiarize yourself with the algorithm.

• Let r =
(
r1 . . . rn

)T
. Show using (6.18) that r satisfies

r = AT

1
o1

. . .
1
on

 r =: ATO−1r.

In other words, r is an eigenvector with eigenvalue 1 of the matrix M = ATO−1.

• Show that M is a left-stochastic matrix, i.e. that each column sums to 1.

• Prove that the eigenvalues of any matrix B ∈ Rn×n coincide with those of BT . You may
use the fact that det(B) = det(BT).

• Using the previous items, show that 1 is an eigenvalue and that ρ(M) = 1. For the second
part, find a subordinate matrix norm such that ‖M‖ = 1.

• Implement PageRank in order to rank pages from a 2013 snapshot of English Wikipedia.
You can use either the simplified version of the algorithm given in (6.18) or the improved
version with a damping factor described on Wikipedia. In the former case, the following
are both sensible stopping criteria:

‖Mr̂ − r̂‖1
‖r̂‖1

< 10−15 or ‖Mr̂ − λ̂r̂‖1
‖r‖1

< 10−15, λ̂ =
r̂TMr̂

r̂T r̂
,

where v̂ is an approximation of the eigenvector corresponding to the dominant eigenvalue.
A dataset is available on the course website to complete this part. This dataset contains

164

Chapter 6. Numerical computation of eigenvalues

a subset of the data publicly available here, and was generated from the full dataset by
retaining only the 5% best rated articles. After decompressing the archive, you can load
the dataset into Julia by using the following commands:

import CSV
import DataFrames

Data (nodes and edges)
nodes = CSV.read("names.csv", DataFrames.DataFrame)
edges = CSV.read("edges.csv", DataFrames.DataFrame)

Convert data to matrices
nodes = Matrix(nodes)
edges = Matrix(edges)

After you have assigned a rank to all the pages, print the 10 pages with the highest ranks.
My code returns the following entries:

1. United States
2. United Kingdom
3. World War II
4. Latin

5. France
6. Germany
7. English language
8. China

9. Canada

10. India

• Extra credit: Write a function search(keyword) that can be employed for searching the
database. Here is an example of what it could return:

julia> search("New York")
481-element Vector{String}:
"New York City"
"New York"
"The New York Times"
"New York Stock Exchange"
"New York University"
…

� Exercise 6.2. Show the following properties of the Krylov subspace Kp(A,x).

• Kp(A,x) ⊂ Kp+1(A,x).

• AKp(A,x) ⊂ Kp+1(A,x).

• The Krylov subspace Kp(A,x) is invariant under rescaling: for all α ∈ C,

Kp(A,x) = Kp(αA,x) = Kp(A, αx).

165

Chapter 6. Numerical computation of eigenvalues

• The Krylov subspace Kp(A,x) is invariant under shift of the matrix A: for all α ∈ C,

Kp(A,x) = Kp(A− αI,x).

• Similarity transformation: If T ∈ Cn×n is nonsingular, then

Kp(T−1AT,T−1x) = T−1Kp(A,x).

� Exercise 6.3. The minimal polynomial of a matrix A ∈ Cn×n is the monic polynomial p of
lowest degree such that p(A) = 0. Prove that, if A is Hermitian with m 6 n distinct eigenvalues,
then the minimal polynomial is given by

p(t) =
m∏
i=1

(t− λi).

� Exercise 6.4. The minimal polynomial for a general matrix A ∈ Cn×n is given by

p(t) =
m∏
i=1

(t− λi)si .

where si is the size of the largest Jordan block associated with the eigenvalue λi in the normal
Jordan form of A. Verify that p(A) = 0.

� Exercise 6.5. Let d denote the degree of the minimal polynomial of A. Show that

∀p > d, Kp+1(A,x) = Kp(A,x).

Deduce that, for p > n, the subspace Kp(A,x) is an invariant subspace of A.

� Exercise 6.6. Let A ∈ Cn×n. Show that Kn(A,x) is the smallest invariant subspace of A
that contains x.

� Exercise 6.7. Consider the matrix

M =

0 1 2 0

1 0 1 0

2 1 0 2

0 0 2 0

• Find the dominant eigenvalue of M by using the power iteration.

• Find the eigenvalue of M closest to 1 by using the inverse iteration.

• Find the other two eigenvalues of M by using a method of your choice.

� Exercise 6.8 (A posteriori error bound). Assume that A ∈ Cn×n is Hermitian, and that v̂

is a normalized approximation of an eigenvector which satisfies

‖ẑ‖ := ‖Av̂ − λ̂v̂‖ = δ, λ̂ =
v̂∗Av̂
v̂∗v̂

.

166

Chapter 6. Numerical computation of eigenvalues

Prove that there is an eigenvalue λ of A such that

|λ̂− λ| 6 δ.

Hint: Consider first the case where A is diagonal.

� Exercise 6.9 (Bauer–Fike theorem). Assume that A ∈ Cn×n is diagonalizable: AV = VD.
Show that, if v̂ is a normalized approximation of an eigenvector which satisfies

‖r‖ := ‖Av̂ − λ̂v̂‖ = δ

for some λ̂ ∈ C, then there is an eigenvalue λ of A such that

|λ̂− λ| 6 κ2(V)δ.

Hint: Rewrite
‖v̂‖ = ‖(A− λ̂I)−1r‖ = ‖V(D− λ̂I)−1V−1r)‖.

� Exercise 6.10. In Exercise 6.8 and Exercise 6.9, we saw examples a posteriori error
estimates which guarantee the existence of an eigenvalue of A within a certain distance of the
approximation λ̂. In this exercise, our aim is to provide an answer to the following different
question: given an approximate eigenpair (v̂, λ̂), what is the smallest perturbation E that we
need to apply to A in order to guarantee that (v̂, λ̂) is an exact eigenpair, i.e. that

(A + E)v̂ = λ̂v̂?

Assume that v̂ is normalized and let E =
{

E ∈ Cn×n : (A + E)v̂ = λ̂v̂
}

. Prove that

min
E∈E
‖E‖2 = ‖r‖2 := ‖Av̂ − λ̂v̂‖. (6.19)

To this end, you may proceed as follows:

• Show first that any E ∈ E satisfies Ev̂ = −r.

• Deduce from the first item that
inf
E∈E
‖E‖2 > ‖r‖2.

• Find a rank one matrix E∗ such that ‖E∗‖2 = ‖r‖2, and then conclude. Recall that any
rank 1 matrix can be written in the form E∗ = uw∗, with norm ‖u‖2‖w‖2.

Equation (6.19) is a simplified version of the Kahan–Parlett–Jiang theorem and is an example
of a backward error estimate. Whereas forward error estimates quantify the distance between an
approximation and the exact solution, backward error estimates give the size of the perturbation
that must be applied to a problem so that an approximation is exact.

� Exercise 6.11. Assume that (xk)k>0 is a sequence of normalized vectors in Cn. Show that
the following statements are equivalent:

167

Chapter 6. Numerical computation of eigenvalues

• (xk)k>0 converges essentially to x∞ in the limit as k →∞.

• The angle ∠(xk,x∞) converges to zero in the limit as k →∞.

• The projector Pxk
converges to Px∞ in the limit as k →∞.

� Exercise 6.12. Assume that A ∈ Cn×n is skew-Hermitian. Derive a Lanczos-like algorithm
for constructing an orthonormal basis of Kp(A,x) and calculating the reduced matrix

U∗AU,

where U ∈ Cn×p contains the vectors of the basis as columns. Implement your algorithm
with p = 20 in order to approximate the dominant eigenvalue of the matrix A constructed by the
following piece of code:

n = 5000
A = rand(n, n) + im * randn(n, n)
A = A - A' # A is now skew-Hermitian

� Exercise 6.13. Assume that {u1, . . . ,up} and {w1, . . . ,wn} are orthonormal bases of the
same subspace U ⊂ Cn. Show that the projectors UU∗ and WW∗ are equal.

� Exercise 6.14. Assume that A ∈ Cn×n is a Hermitian matrix with distinct eigenvalues, and
suppose that we know the dominant eigenpair (v1, λ1), with v1 normalized. Let

B = A− λ1v1v
∗
1.

If we apply the power iteration to this matrix, what convergence can we expect?

� Exercise 6.15. Assume that v̂1 and v̂2 are two Ritz vectors of a Hermitian matrix A relative
to a subspace U ⊂ Cn. Show that, if the associated Ritz values are distinct, then v̂1

∗v̂2 = 0.

6.6 Discussion and bibliography

The content of this chapter is inspired mainly from [15] and also from [12]. The latter volume
contains a detailed coverage of the standard methods for eigenvalue problems. Some of the
exercises are taken from [18], and others are inspired from [12].

168

Chapter 7

Numerical ordinary differential equations

7.1 Analysis of the continuous problem 170
7.2 One-step methods . 174

7.2.1 Forward Euler method . 175
7.2.2 Backward Euler method . 176
7.2.3 Analysis of general one-step methods 177
7.2.4 Widely used one-step methods . 180

7.3 Multistep methods . 183
7.3.1 Adams–Bashforth methods . 185
7.3.2 Adams–Moulton methods . 187

7.4 Absolute stability . 187
7.5 Exercises . 193

Introduction

This chapter concerns the numerical solution of ordinary differential equations (ODEs) of the
following form: {

x′(t) = f
(
t,x(t)

)
,

x(t0) = x0.
(7.1)

Here f : R × Rn → R and x0 is the initial condition. Equations of this type are the building
blocks of a plethora mathematical models in science and engineering. They have applications in
celestial dynamics, molecular simulation and fluid mechanics, to mention just a few. Ordinary
differential equations also arise after discretization of time-dependent partial differential equa-
tions, which are also ubiquitous in science. More often than not, it is not possible to find an
explicit solution of (7.1), and so one has to resort to numerical simulation. The rest of chapter
is organized as follows:

• In Section 7.1, we define the concepts of local and global solutions for the continuous-time
problem (7.1), and we recall fundamental results concerning the existence and uniqueness
of a solution.

169

Chapter 7. Numerical ordinary differential equations

• In Section 7.2, we analyze the so-called one-step numerical methods to solve (7.1). We
emphasize in particular the concepts of consistency, stability and convergence.

• In Section 7.3, we present multistep methods to solve (7.1), and discuss their drawbacks
and advantages compared to one-step methods.

• Finally, in Section 7.4, we introduce the concept of absolute stability and discuss its rele-
vance in the context of stiff differential equations.

7.1 Analysis of the continuous problem

A differentiable function x : I → Rn, where I denotes an interval of R containing t0, is a solution
of (7.1) if x(t0) = x0 and the equation (7.1) is satisfied for all t ∈ I. The solution is called
global if I = R, and local otherwise.

Integral formulation. If x is a solution to (7.1), then it holds that

∀t ∈ I, x(t) = x0 +

∫ t

t0

f
(
s,x(s)

)
ds. (7.2)

The converse statement is not true in general, because a solution to (7.2) need not necessarily be
differentiable everywhere. However, if the integral formulation (7.2) holds, then necessarily x is
absolutely continuous and (7.1) is satisfied for almost every t. Additionally, if (7.2) is satisfied
and the function f is continuous, then the function s 7→ f

(
s,x(s)

)
is continuous, and so (7.1)

is satisfied for all t ∈ I by the fundamental theorem of analysis. We now focus on the integral
formulation (7.2), and begin by establishing existence of a local solution.

Theorem 7.1 (Existence of a solution). Let x0 ∈ Rn and let ΩT ,R denote the set

{
(t,x) ∈ R×Rn : |t− t0| 6 T and ‖x− x0‖ 6 R

}
,

Assume that the following conditions are satisfied for some T > 0 and R > 0:

• The function f is uniformly bounded on ΩT ,R:

∀(t,x) ∈ ΩT ,R, ‖f(t,x)‖ 6M. (7.3)

• The function f satisfies the following Lipschitz condition: there is L > 0 such that

∀
(
(t,x1), (t,x2)

)
∈ ΩT ,R × ΩT ,R, ‖f(t,x1)− f(t,x2)‖ 6 L‖x1 − x2‖. (7.4)

Then there exists T ∈ (0, T] depending on R, M and L such that the differential equation (7.2)
has a local solution x : [t0 − T, t0 + T]→ Rn.

Proof. Fix T ∈ (0, T] and let I = [t0 − T, t0 + T]. Let also X denote the following subset of

170

Chapter 7. Numerical ordinary differential equations

continuous functions defined from I to Rn:

X :=

{
x ∈ C (I,Rn) : sup

t∈I

∥∥x(t)− x0

∥∥ 6 R
}

The set X endowed with supremum metric is a closed subset of C(I,Rn). Since X is a closed
subset of a complete metric space, it is itself complete. Let Φ: X → C(I,Rn) denote the
mapping

Φ(x) : t 7→ x0 +

∫ t

0
f
(
s,x(s)

)
ds.

The right-hand side, being the integral of a bounded function, is indeed a continuous function.
We will show that, for T sufficiently small,

• the mapping Φ maps X into X ;

• the mapping Φ is a contraction.

From (7.3), it follows that

∀x ∈ X , ∀t ∈ I, ‖Φ(x)(t)− x0‖ =
∥∥∥∥∫ t

t0

f
(
s,x(s)

)
ds
∥∥∥∥ 6MT.

On the other hand, from the Lipschitz condition (7.4), it holds that

∀(x,y) ∈ X × X , ‖Φ(x)− Φ(y)‖ 6 LT‖Φ(x)− Φ(y)‖.

Therefore, it suffices to take T < min
{
T , R

M , 1
L

}
to ensure that the above conditions are satisfied.

For a value of T in this range, the Banach fixed point theorem, Theorem A.3, gives the existence
of a unique fixed point x∗ ∈ X of Φ. Since a fixed point of Φ is a solution to (7.2) in view of
the definition of Φ, the statement is proved.

It may seem at first glance that uniqueness of the solution to (7.2) follows from the uniqueness
of the fixed point guaranteed by Theorem A.3. However, this theorem implies uniqueness only
in the set X , a property known as conditional uniqueness. In order to prove that the solution
is unique over the full space C([t0 − T, t0 + T],Rn), additional assumptions and arguments are
required. A simple approach is to rely on Grönwall’s lemma.

Lemma 7.2 (Grönwall’s lemma, simplified integral form). Suppose that u : [t0−T, t0+T]→
R>0 is continuous, nonnegative, and satisfies

∀t ∈ [t0, t0 + T], u(t) 6 α+

∫ t

t0

β(s)u(s)ds, (7.5)

where α > 0 and β : [t0, t0 + T]→ R>0 is continuous and nonnegative. Then

∀t ∈ [t0, t0 + T], u(t) 6 α exp
(∫ t

t0

β(s)ds
)
. (7.6)

171

Chapter 7. Numerical ordinary differential equations

Proof. Assume first that α > 0, so that the logarithm in (7.7) is well-defined. By the funda-
mental theorem of calculus and (7.5), it holds that

d
dt

(
α+

∫ t

t0

β(s)u(s)ds
)

6 β(t)

(
α+

∫ t

t0

β(s)u(s)ds
)

Therefore we have
d
dt

log
(
α+

∫ t

t0

β(s)u(s)ds
)

6 β(t), (7.7)

and after integrating and exponentiating, we obtain

α+

∫ t

t0

β(s)u(s)ds 6 α exp
(∫ t

t0

β(s)ds
)

The statement then follows by using (7.5) again. Assume next that α = 0. If (7.5) is satisfied
for α = 0, then this condition is also satisfied for all α > 0. Therefore the conclusion (7.6) holds
for all α > 0, and taking the limit α→ 0 in this equation, we obtain the statement.

Note that the estimate (7.6) is sharp, since the function v : [t0, t0 + T] given by

v(t) = α exp
(∫ t

t0

β(s)ds
)

satisfies (7.5) with equality. We are now ready to prove uniqueness under an appropriate
condition.

Theorem 7.3 (Uniqueness of the solution). Let x0 ∈ Rn and let

ΩT ,R
{
(t,x) ∈ R×Rn : |t− t0| 6 T and ‖x− x0‖ 6 R

}
,

Assume that for all T ∈ R>0 and R ∈ R>0, there is LT ,R such that

∀
(
(t,x1), (t,x2)

)
∈ ΩT ,R × ΩT ,R, ‖f(t,x1)− f(t,x2)‖ 6 LT ,R‖x1 − x2‖. (7.8)

Then if x1 and x2 in C
(
[t0−T, t0+T],Rn

)
are local solutions to (7.2), it holds that x1 = x2.

Proof. Suppose that x1 and x2 are solutions to (7.2). Let I = [t0 − T, t0 + T] and

R := max
{

sup
t∈I
‖x1(t)− x0‖, sup

t∈I
‖x2(t)− x0‖

}
<∞,

Since x1 and x2 are solutions, it holds that

∀t ∈ [t0 − T, t0 + T], x1(t)− x2(t) =

∫ t

t0

(
f
(
s,x1(s)

)
− f

(
s,x2(s)

))
ds.

Taking the norm and using (7.8), we obtain

∀t ∈ [t0, t0 + T], ‖x1(t)− x2(t)‖ 6 LT,R

∫ t

t0

‖x1(s)− x2(s)‖ds

172

Chapter 7. Numerical ordinary differential equations

Using Grönwall’s lemma, we deduce that x1(t) = x2(t) for all t ∈ [t0, t0+T]. A similar argument
can be employed to show that x1 = x2 on [t0 − T, t0].

Corollary 7.4 (Maximal solutions). Assume that f is continuous in t and satisfies the local
Lipschitz condition (7.8). Then there exists −∞ 6 T− < T+ 6 ∞ such that t0 ∈ (T−, T+)

and the following properties are satisfied.

• there exists a solution x∗ : (T−, T+)→ Rn to (7.2);

• if x : I → Rn is a local solution of (7.2), then I ⊂ (T−, T+) and x(t) = x∗(t) for
all t ∈ I.

• If T+ is finite, then limt→T+

∥∥x(t)∥∥ =∞, and if T− is finite, then limt→T−

∥∥x(t)∥∥ =∞.

The solution x∗ is called the maximal solution of (7.2).

Proof. Let I denote the union of all the open intervals I such that there exists a solution
in C(I,Rn) to (7.2). The open set I is connected and, by Theorem 7.1, it contains a neigh-
borhood of t0. Therefore I is of the form (T−, T+), where −∞ 6 T− < t0 < T+ 6 ∞. In
view of Theorem 7.3, all the local solutions coincide where they are defined, and so they can
be patched together in order to construct a solution x∗ : (T−, T+) → R. It remains to prove
the third item. To this end, suppose for contradiction that T+ was finite and that there was
(tn)n∈N such that tn → T+ in the limit n→∞ and

K := sup
n∈N
‖x∗(tn)‖ <∞.

Since f is continuous, there is M such that |f(t,x)| is uniformly bounded from above by M for
all (t,x) ∈ [T− − 1, T+ + 1]×BK+1(0). Furthermore, by the assumption (7.8), there is L such
that for all t ∈ [T− − 1, T+ + 1], the following Lipschitz condition holds:

∀(x1,x2) ∈ BK+1(0)×BK+1(0), ‖f(t,x1)− f(t,x2)‖ 6 L‖x1 − x2‖.

Consequently, Theorem 7.1 with T = R = 1 implies for all n the existence of a solution to{
x′(t) = f

(
t,x(t)

)
,

x(tn) = x∗(tn).

over the time interval [tn−T, tn+T], where T > 0 depends only on M and L, and not on n. But
then, for n sufficiently large, this solution extends beyond T+, which contradicts the maximality
of I. An analogous reasoning can be employed for T−.

Example 7.1. Consider the ODE {
x′(t) = x(t)2,

x(0) = 1.

173

Chapter 7. Numerical ordinary differential equations

The maximal solution is x∗ : (−∞, 1)→ R given by

x∗(t) =
1

1− t
.

Existence of a unique global solution. In certain settings, it is possible to prove the maximal
solution to (7.2) is globally defined for any initial condition. We discuss a few important
examples.

• The first case is when f : R × Rn is globally Lipschitz in its second argument, with a
Lipschitz constant that depends continuously on the first argument.

• The second case, generalizing the first, is when the growth of f(t, •) is at most affine:

∀(t,x) ∈ R×Rn, ‖f(t,x)‖ 6 C(t) + L(t)‖x‖,

with continuous constants C(t) and L(t).

• The third case is when f is independent of t and there is a function W ∈ C1(Rn) such
that W (x)→∞ in the limit as ‖x‖ → ∞ and

∀x ∈ Rn, ∇W (x) · f(x) 6 c <∞

Such a function is called a Lyapunov function.

The strategy of proof for global existence usually relies on an argument by contradiction. Con-
sider for example the third setting. Since the assumptions of Corollary 7.4 are satisfied, there
exists a maximal solution x∗ : (T−, T+)→∞. Assume for contradiction that T+ is finite. Then
the third item in Corollary 7.4 implies that limt→T+‖x∗(t)‖ → ∞, and so W

(
x∗(t)

)
blows up

as t approaches T+. On the other hand, we have

d
dt
W
(
x∗(t)

)
= ∇W

(
x∗(t)

)
· f
(
x∗(t)

)
6 c.

Therefore limt→T+ W
(
x∗(t)

)
6W

(
x∗(t0)

)
+ |c|(T+ − t0), which is a contradiction.

7.2 One-step methods

From now on, we assume for simplicity that t0 = 0 and that the initial value problem (7.1)
admits a unique solution over the interval [0, T]. Most numerical methods for ODEs construct
an approximation of the solution at discrete points:

xn ≈ x(tn), n = 0, 1, 2,

The discretization points (tn)n∈N are commonly equidistant, i.e. tn = n∆ where ∆ is the
discretization step. Sometimes, it is useful to employ a variable time step, but we assume
throughout this section that the time step is fixed, for simplicity. We begin in Section 7.2.1
and Section 7.2.2 by studying the simplest one-step methods, namely the forward and backward

174

Chapter 7. Numerical ordinary differential equations

Euler methods. Then, in Section 7.2.3, we present a general approach to the analysis of one-
step methods. Finally, in Section 7.2.4, we present other widely used one-step methods in
applications.

7.2.1 Forward Euler method

Assume that (7.1) has a unique solution x(t) over the interval [0, T]. If x(t) is twice continuously
differentiable, then by Taylor’s formula, we have

x(t+∆) = x(t) + ∆f(t,x) +
∆2

2
x′′(τ), τ ∈ (t, t+∆). (7.9)

This motivates a method known as the forward or explicit Euler method:

xn+1 = xn +∆f(tn,xn),

with the same initial condition as for the continuous equation (7.1). The convergence of this
method can be proved under a global Lipschitz assumption on the function f .

Theorem 7.5 (Convergence of the forward Euler method). Assume that there is L ∈ R>0

such that
∀(t,x,y) ∈ R×Rn ×Rn, ‖f(t,x)− f(t,y)‖ 6 L‖x− y‖. (7.10)

Suppose in addition that there exists a unique, twice continuously differentiable of (7.1) over
the interval [0, T], and let

M = sup
t∈[0,T]

‖x′′(t)‖

Then the following error estimate holds:

∀n ∈
{
0, 1, . . . ,

⌊
T

∆

⌋}
, ‖x(tn)− xn‖ 6

∆M

2

(
eLtn − 1

L

)
. (7.11)

Proof. By Taylor’s theorem, it holds that

x(tn) = x(tn−1) + ∆f
(
tn−1,x(tn−1)

)
+

∆2

2
αn, αn := 2

∫ 1

0
(1− s)x′′(tn +∆s)ds.

Notice that that ‖αn‖ 6M. Therefore, it holds that

x(tn)− xn =

(
x(tn−1) + ∆f

(
tn−1,x(tn−1)

)
+

∆2

2
αn

)
−
(
xn−1 +∆f

(
tn−1,xn−1

))
=
(
x(tn−1)− xn−1

)
+∆

(
f
(
tn−1,x(tn−1)

)
− f

(
tn−1,xn−1

))
+

∆2

2
αn,

Let en = x(tn) − xn and εn = ∆2

2 αn. The first term is the error at iteration n − 1, and the
second may be bounded from (7.10), which gives

‖en‖ 6 (1 + ∆L)‖en−1‖+ ‖εn‖.

175

Chapter 7. Numerical ordinary differential equations

The structure of this equation is important, as it appears in the analysis of all one-step methods
for ODEs. The first term is an amplification of the error at the previous iteration, and the second
term is an upper bound on the additional error introduced at step n. Applying this inequality
to the previous time steps, we obtain

‖en‖ 6 (1 + ∆L)
(
(1 + ∆L)‖en−2‖+ ‖εn−1‖

)
+ ‖εn‖

6 . . . 6 (1 + ∆L)n‖e0‖+
n∑

i=1

(1 + ∆L)n−i‖εi‖. (7.12)

Since ‖εi‖ 6 ∆2M/2, we have by using the formula for geometric series that

‖en‖ 6 (1 + ∆L)n‖e0‖+
(1 +∆L)n − 1

∆L

(
∆2M

2

)
.

The first term is zero because ‖e0‖ = 0. Using the bound (1 + ∆L)n 6
(
exp(∆L)

)n
= eLtn in

the second term and rearranging, we finally obtain the statement (7.11).

7.2.2 Backward Euler method

If we apply the Taylor expansion (7.9) backward around t + ∆, instead of forward around t,
then we obtain

x(t) = x(t+∆)−∆f(t+∆,x) +O(∆2).

This motivates the so-called backward or implicit Euler method:

xn+1 = xn +∆f(tn+1,xn+1). (7.13)

Observe that the right-hand side depends on xn+1. Therefore, given tn and xn, this is a
nonlinear equation for the unknown xn+1, which can be solved by using any of the methods
studied in Chapter 5. Finding a solution to (7.13) amounts to finding a fixed point of the
function

y 7→ F (y) := xn +∆f(tn,y).

A priori, the existence and uniqueness of such a fixed point is not guaranteed. We proved
in Theorem 5.2 that a sufficient condition for these two properties to hold is that F is globally
Lipschitz with a constant strictly less than 1, which holds if and only if the function y 7→ f(tn,y)

is globally Lipschitz with a constant strictly less than 1/∆. If the condition (7.10) holds, for
example, then the backward Euler method (7.13) is guaranteed to be well defined for ∆ < 1

L .
Theorem 5.2 also ensures that, if F is globally Lipschitz with a constant less than 1, then the
fixed point can be approximated by using the iteration

yk+1 = F (yk). (7.14)

and there is exponential convergence yk → xn+1 in the limit as k → ∞. A natural starting
point for (7.14) is y0 = xn. An alternative approach to the fixed point iteration (7.14) is to
use the Newton–Raphson method for (7.13), which is faster in principle but must be initialized

176

Chapter 7. Numerical ordinary differential equations

sufficiently close to the fixed point.
Using a reasoning similar to that employed for proving Theorem 7.5, we can prove the

following result.

Theorem 7.6 (Convergence of the backward Euler method). If the assumptions of Theo-
rem 7.5 hold and ∆ < 1

L , then the following error estimate holds:

∀n ∈
{
0, 1, . . . ,

⌊
T

∆

⌋}
, ‖x(tn)− xn‖ 6

∆M

2

(

1
1−∆L

)n
− 1

L

 . (7.15)

Proof. The proof is left as an exercise.

Remark 7.1. Note that, if ∆ < 1
2L , then

1

1−∆L
= 1 +∆L+ (∆L)2 + (∆L)3 + (∆L)4 . . .

6 1 + ∆L+ (∆L)2 +
1

2
(∆L)2 +

1

4
(∆L)2 + . . .

6 1 + ∆L+ 2(∆L)2 6 exp
(
∆L+ (∆L)2

)
,

and so the error estimate (7.15) gives

‖x(tn)− xn‖ 6
∆M

2

(
exp(Ltn +∆L2tn)− 1

L

)
,

which makes it clear that the right-hand side of (7.15) is close, in absolute and relative terms,
to that of (7.11) when ∆� 1.

At this point, the reader may be wondering why one would use the backward Euler method
instead of the forward Euler method, given that both methods have same order of convergence
but iterations of the former are more computationally costly. The reason is that the backward
Euler method, like many implicit methods, is more stable than its forward counterpart. Implicit
methods are especially attractive in the context of stiff differential equations. We shall elaborate
on this subject in Section 7.4.

7.2.3 Analysis of general one-step methods

In general, one-step methods to solve differential equations are of the abstract form

xn+1 = xn +∆Φ∆(tn,xn). (7.16)

where Φ∆ : R×Rn → Rn is a function such that

Φ∆(t,x) ≈
1

∆

∫ t+∆

t
f
(
s,xt,x(s)

)
ds = xt,x(t+∆)− x

∆
. (7.17)

177

Chapter 7. Numerical ordinary differential equations

Here xt,x denotes the solution to the differential equation (7.1) with initial condition x(s) = x.
The main goal of this section is to establish general conditions, known as consistency and
stability, under which the numerical scheme (7.16) is convergent. As we observed in the proof
of Theorem 7.5 – specifically in equation (7.12) – the error at the final iteration for the forward
Euler method is a sum of local errors, each amplified by a factor depending to the number of
iterations left to reach the final time. Consistency of a numerical method enables to control the
size of local errors when they arise, while stability enables to control their growth.

We emphasize that both the forward and the backward Euler methods can be recast in the
form (7.16). For the forward Euler method Φ∆(t,x) = f(t,x), while for the backward Euler
method, the function Φ∆ is defined implicitly as the function which to (t,x) associates the
solution φ ∈ Rn to the equation

φ = f(t+∆,x+∆φ).

Local truncation error and consistency

The local truncation error is the residual error obtained when substituting the exact solution
of the differential equation in (7.16):

ηn+1 :=
x(tn+1)− x(tn)

∆
−Φ∆

(
tn,x(tn)

)
.

Since there is a division by ∆, the local truncation error has the same physical dimension as
that of x′, and so it should be viewed as an error per time unit.

Definition 7.1 (Consistency). A numerical method is consistent if

lim
∆→0

(
max

16n6N
‖ηn‖

)
= 0, N =

⌊
T

∆

⌋
.

It is consistent with order p if there exists C such that

∀∆ > 0, max
16n6N

‖ηn‖ 6 C∆p.

Proving the consistency of a numerical method is usually achieved on a case-by-case basis by
application of Taylor’s formula.

Stability

The stability of a numerical method qualifies its sensitivity to perturbations. Roughly speaking,
it expresses that small perturbation of the right-hand side of (7.16) lead to small perturbations
of the numerical solution.

Definition 7.2 (Stability). A numerical method of the form (7.16) is stable if there exists a

178

Chapter 7. Numerical ordinary differential equations

constant S(T) > 0 independent of ∆ such that for all sequence (yn)16n6N satisfying

yn+1 = yn +∆Φ∆(tn,yn) + ∆δn+1, y0 = x0, (7.18)

it holds that

max
16n6N

‖xn − yn‖ 6 S(T)∆

N∑
n=1

‖δn‖. (7.19)

It is convenient to introduce the following norms for sequences of vectors (un)16n6N :

‖u•‖`1T =
N∑

n=1

‖un‖, ‖u•‖`∞T = max
16n6N

‖un‖,

With these notations, equation (7.19) may be rewritten compactly as follows:

‖x• − y•‖`∞T 6 S(T)∆‖δ•‖`1T

One could argue that this equation is neater than (7.19); it bounds a norm of just one math-
ematical object, namely the sequence (xn − yn)16n6N , by a norm of another object, namely
the sequence (δn)16n6N . Arguments for proving that a numerical scheme is stable often rely
on some form of Lipschitz continuity. If the function Φ∆(t,y) is globally Lipschitz continuous
with respect to y, then stability is particularly simple to prove, as we now demonstrate.

Proposition 7.7. Assume that there is LΦ > 0 such that for all t ∈ [0, T] and ∆ > 0,
the function Φ∆(t, •) is globally Lipschitz continuous with constant LΦ. Then the one-step
method (7.16) is stable.

Proof. By (7.16) and (7.18), it holds that

xn − yn = xn−1 − yn−1 +∆
(
Φ∆(tn−1,xn−1)−Φ∆(tn−1,yn−1)

)
−∆δn.

Taking the Euclidean norm and employing the Lipschitz continuity assumption, we obtain

‖xn − yn‖ 6 (1 + ∆LΦ)‖xn−1 − yn−1‖+∆‖δn‖.

By a reasoning similar to that in the proof of Theorem 7.5, we then obtain

‖xn − yn‖ 6 (1 + ∆LΦ)
n‖x0 − y0‖+

n∑
i=1

(1 + ∆LΦ)
n−i∆‖δi‖ 6 0 + eLΦtn∆

n∑
i=1

‖δi‖.

We conclude that (7.19) is satisfied with S(T) = eLΦT .

179

Chapter 7. Numerical ordinary differential equations

Convergence

We are now ready to prove that consistency and stability of the numerical (7.16) together imply
convergence, in the sense that

lim
∆→0

(
max

16n6N
‖x(tn)− xn‖

)
= 0, N =

⌊
T

∆

⌋
.

This result is an instance of the Lax equivalence theorem, a pillar of numerical analysis with
far-reaching applications.

Theorem 7.8 (Consistence and stability imply convergence). Assume that the one-step nu-
merical method (7.16) is consistent and stable. Then the method is also convergent.

Proof. By definition of the local truncation error, it holds that

x(tn+1) = x(tn) + ∆Φ∆

(
tn,x(tn)

)
+∆ηn+1.

Therefore, the sequence
(
x(tn)

)
16n6N

satisfies (7.18) with δn = ηn, and so the stability esti-
mate (7.19) implies that

max
16n6N

‖x(tn)− xn‖ 6 S(T)∆

N∑
n=1

‖ηn‖.

By consistency, the right-hand side converges to zero in the limit as ∆ → 0, which concludes
the proof.

Remark 7.2. If we assume in Theorem 7.8 that the method is consistent with order p, then
by adapting the proof, we find that the error satisfies

max
16n6N

‖x(tn)− xn‖ 6 CS(T)∆p.

In this setting, the numerical scheme is said to be convergent with order p.

7.2.4 Widely used one-step methods

In this section, we motivate and describe some of the other widely-used one-step methods,
namely methods of Taylor and Runge–Kutta type. We assume in this section that the equa-
tion (7.1) admits a unique smooth solution over the interval [0, T].

Taylor methods

In order to construct a method with a smaller local truncation error than that of the forward
Euler method, a Taylor expansion of higher order than (7.9) can be employed:

x(t+∆) = x(t) + ∆x′(t) + · · ·+ ∆p

p!
x(p)(t) +O(∆p+1). (7.20)

180

Chapter 7. Numerical ordinary differential equations

Since x : [0, T]→ R is a smooth solution to (7.1) by assumption, the time derivatives of x can
be obtained by differentiation of (7.1):

x′(t) = f
(
t,x(t)

)
, x′′(t) = ∂tf

(
t,x(t)

)
+
(
f (t,x(t)) · ∇x

)
f
(
t,x(t)

)
, . . .

In general, it is immediate to show inductively that x(p)(t) = f (p−1)
(
t,x(t)

)
, where the func-

tions f (p) : R×Rn → R are defined recursively from the following equation:

f (p+1) = ∂tf
(p)
(
t,x(t)

)
+
(
f (t,x(t)) · ∇x

)
f (p)

(
t,x(t)

)
.

The Taylor expansion (7.20) motivates the so-called Taylor methods for integrating (7.1) nu-
merically, which are based on the following iteration:

xn+1 = xn +∆T p
∆

(
tn,xn

)
, (7.21)

where
T p

∆(t,x) := f(t,x) +
∆

2!
f (1)(t,x) + · · ·+ ∆p−1

p!
f (p−1)(t,x).

Note that, for any p, the Taylor scheme (7.21) may be rewritten as

xn+1 = xn +∆
dxtn,xn

dt
(tn) + · · ·+

∆p

p!

dpxtn,xn

dtp
(tn).

For p = 1, this scheme coincides with the forward Euler scheme.

Runge–Kutta methods

Runge–Kutta methods resemble Taylor methods, but they do not require to calculate the deriva-
tives of the function f . This is achieved by approximating the derivatives in Taylor methods
by difference quotients. Consider for example the Taylor method of order p = 2:

xn+1 = xn +∆
dxtn,xn

dt
(tn) +

∆2

2!

d2xtn,xn

dt2
(tn). (7.22)

Substituting the approximation

d2xtn,xn

dt2
(tn) ≈

1

∆

(
dxtn,xn

dt
(tn +∆)− dxtn,xn

dt
(tn)

)
=

1

∆

(
f
(
tn +∆,xtn,xn(tn +∆)

)
− f

(
tn,xn

))
≈ 1

∆

(
f
(
tn +∆,xn +∆f(tn,xn)

)
− f

(
tn,xn

))
(7.23)

in (7.22), we obtain an explicit method known as Heun’s method:

xn+1 = xn +
∆

2
f(tn,xn) +

∆

2
f
(
tn +∆,xn +∆f(tn,xn)

)
.

It is possible to show that the local truncation error for this method also scales as ∆2. Heun’s
method is a particular instance of a Runge–Kuta method. In general, an explicit Runge–Kutta

181

Chapter 7. Numerical ordinary differential equations

method with s stages is of the form

xn+1 = xn +∆

s∑
i=1

biki

k1 = f(tn,xn),

k2 = f
(
tn + c2∆,xn +∆(a21k1)

)
,

k3 = f
(
tn + c3∆,xn +∆(a31k1 + a32k2)

)
,

...

ks = f

tn + cs∆,xn +∆
s−1∑
j=1

asjkj

 ,

with appropriate coefficients ci and aij . Heun’s iteration can be recast in this form as follows:

xn+1 = xn +
∆

2
(k1 + k2)

k1 = f(tn,xn)

k2 = f
(
tn +∆,xn +∆k1

)
.

The approach we employed to construct Heun’s method may be generalized to higher orders.
For example, the most widely known Runge–Kutta method approximates the Taylor method of
order p = 4 with the following iteration:

xn+1 = xn +
∆

6
(k1 + 2k2 + 2k3 + k4),

k1 = f(tn,xn), k2 = f

(
tn +

∆

2
,xn +∆

k1

2

)
,

k3 = f

(
tn +

∆

2
,xn +∆

k2

2

)
, k4 = f (tn +∆,xn +∆k3) .

The local truncation error for this method scales as ∆4 and, when f(t,x) = f(t), this method
coincides with Simpson’s formula (3.6) for the approximation of the integral in (7.17). The
systematic derivation of Runge–Kutta methods is cumbersome, and so we do not address this
issue in this course.

Remark 7.3. Explicit Runge–Kutta methods of a given order are not uniquely defined. For
example, if we employ instead of (7.23) the approximation

d2xtn,xn

dt2
(tn) ≈

2

∆

(
f

(
tn +

∆

2
,xn +

∆

2
f(tn,xn)

)
− f

(
tn,xn

))
,

then we obtain by substitution in (7.22) the so-called explicit midpoint method, which is also
a Runge–Kutta method of order 2:

xn+1 = xn +∆f

(
tn +

1

2
∆,xn +

∆

2
f(tn,xn)

)
.

182

Chapter 7. Numerical ordinary differential equations

Implicit methods

To conclude this section, we mention two common implicit methods with a better order of
convergence than that of the backward Euler method.

• The Crank–Nicolson method:

xn+1 = xn +
∆

2

(
f(tn,xn) + f(tn +∆,xn+1)

)
. (7.24)

When f is independent of x and depends only on t, this method coincides with the
trapezoidal rule for numerical integration.

• The implicit midpoint method:

xn+1 = xn +∆f

(
tn +

∆

2
,
xn + xn+1

2

)
.

Similarly to the backward Euler method, each iteration of these methods requires the resolu-
tion of a nonlinear equation. Implicit methods often enjoy better stability than their explicit
counterparts. This subject is further discussed in Section 7.4.

7.3 Multistep methods

The idea of multistep methods is to use, in the construction of a new iterate, information from
not only the current but also previous iterations. This degree of freedom enables to construct
more economical numerical methods than one-step methods for the same order of convergence,
at the cost of a more difficult initialization. In this section we focus on linear multistep methods
of the form

xn+1 = a0xn + a1xn−1 + · · ·+ akxn−k

+∆
(
b−1f(tn+1,xn+1) + b0f(tn,xn) + · · ·+ bkf(tn−k,xn−k)

)
. (7.25)

This equation defines an explicit method if b−1 = 0, and an implicit method if b−1 6= 0.
Note that explicit methods of the form (7.25) require only one additional evaluation f(tn,xn)

per iteration, in contrast with Runge–Kutta methods. When b−1 6= 0, the iteration (7.25)
is a nonlinear equation for the unknown xn+1, which must itself be solved by resorting to a
numerical method.

Initialization. In order to initiate the numerical method (7.25), the values x0, . . . ,xk are re-
quired. These can be calculated by using a one-step method with an order of convergence
matching that of the multistep method.

Local truncation error. Consistently with the setting of one-step methods, the local truncation
error for (7.25) is defined as the residual error left when the exact solution is substituted in the

183

Chapter 7. Numerical ordinary differential equations

numerical scheme:

∆ηn+1 := x(tn +∆)− a0x(tn)− a1x(tn −∆)− · · · − akx(tn − k∆)

−∆
(
b−1x

′(tn +∆) + b0x
′(tn) + · · ·+ bkx

′(tn − k∆)
)
. (7.26)

The multistep method (7.25) is said to be of order p if the maximum local truncation error
over all the discretization points, in norm, scales as O(∆p). The following result is useful for
estimating the order of consistency of a linear multistep method.

Proposition 7.9. The linear multistep method (7.25) is consistent with order p for any
smooth x : [0, T] → Rn if and only if the local truncation error (7.26) is everywhere zero
when x(t) is of the scalar form

x(t) = tq, q ∈ {0, . . . , p}. (7.27)

Proof. Assume that the method is consistent with order p, fix q ∈ {1, . . . , p}, and let x(t) = tq.
Fix also t ∈ [0, T] and consider the function ξ : {∆ : t/∆ ∈ N>0} → R given by

∆ξ(∆) = ∆η(t/∆)+1 = x(t+∆)− a1x(t)− a2x(t−∆)− · · · − akx
(
t− (k − 1)∆

)
−∆

(
b0x

′(t+∆) + b1x
′(t) + · · ·+ bkx

′(t− (k − 1)∆
))
.

The quantity ξ(∆) should be understood as the local truncation error at t for time step ∆. It is
a polynomial in ∆ of degree at most p and scaling as O(∆p+1). Therefore, it holds necessarily
that ξ(∆) = 0.

Conversely, assume that the right-hand side of (7.26) is equal to zero for any function of the
form (7.27). If x(t) denotes a smooth solution of (7.1), then by Taylor’s theorem there is C > 0

independent of tn such that

∀t ∈ [0, T],

{
‖x(t)− y(t)‖ 6 C|t− tn|p+1

‖x′(t)− y′(t)‖ 6 C|t− tn|p
, y(t) := x(tn) +

p∑
i=1

ei(t− tn)i,

for appropriate vectors ei ∈ Rn depending on tn. Substituting x(t) = y(t) +
(
x(t) − y(t)

)
in

the right-hand side of (7.26), we obtain

∆‖ηn+1‖ = O(∆p+1) + ∆O(∆p) = O(∆p+1),

with the constant implicit in the big O notation independent of n. This concludes the proof.

Example 7.2. In the one-dimensional setting, we wish to find parameters a0, a1 and b1 such
that the order of consistency of the following multistep scheme is as high as possible:

xn+1 = a0xn + a2xn−1 + b0∆f(tn, xn).

184

Chapter 7. Numerical ordinary differential equations

Substituting x(t) = 1 in the formula (7.26) for the local truncation error, we obtain

ηn+1 = x(tn +∆)− a0x(tn)− a1x(tn −∆)− b0∆x′(tn) = 1− a0 − a1.

Therefore a1 = (1− a0). Next, substituting x(t) = t− tn in (7.26), we obtain

ηn+1 = ∆(2− a0 − b0),

which gives b0 = 2− a0. Finally, substituting x(t) = (t− tn)2, we obtain

ηn+1 = ∆2a0,

and so a0 = 1. We conclude that the best parameters, leading to a local truncation error
scaling as O(∆2), are given by a0 = 0, a1 = 1 and b0 = 2. The resulting method reads

xn+1 = xn−1 + 2∆f(tn, xn),

and is known as the multistep midpoint method.

We now present two widely used systematic approaches for constructing multistep methods,
known as the Adams–Bashforth and Adams–Moulton approaches.

7.3.1 Adams–Bashforth methods

Let x : [0, T]→ Rn denote the exact solution to the differential equation (7.1). Integrating this
equation between tn and tn+1, we obtain

x(tn+1) = x(tn) +

∫ tn+1

tn

f
(
t,x(t)

)
dt. (7.28)

The key idea of the Adams–Bashforth method is to approximate the function t 7→ f
(
t,x(t)

)
by

the interpolating polynomial f̂ of degree k at the nodes tn−k, . . . , tn:

f̂(t) =

k∑
i=0

f
(
tn−i,x(tn−i)

)
Li(t), Li(t) :=

k∏
j=0
j 6=i

t− tn−j

tn−i − tn−j
. (7.29)

Substituting this approximation in (7.28), we obtain

x(tn+1) ≈ x(tn) +

k∑
i=0

f
(
tn−i,x(tn−i)

) ∫ tn+1

tn

Li(t)dt.

This motivates the following Adams–Bashforth numerical scheme:

xn+1 = xn +∆
k∑

i=0

bif
(
tn−i,xn−i

)
, bi :=

∫ 1

0

k∏
j=0
j 6=i

s+ j

−i+ j
ds. (7.30)

185

Chapter 7. Numerical ordinary differential equations

Since the Lagrange polynomials (Li)06i6k depend on k, so do the coefficients bi. However, these
are independent of ∆, and so they can be tabulated. The value of these coefficients for the first
few Adams–Bashforth methods are collated in Table 7.1.

i 0 1 2 3

k = 0 1

k = 1 3
2 −1

2

k = 2 23
12 −16

12
5
12

k = 3 55
24 −59

24
37
24 − 9

24

Table 7.1: Coefficients (bi)06i6k of the Adams–Bashforth methods.

Local truncation error. Assuming x ∈ Ck+2
(
[0, T],Rn

)
and applying Theorem 2.3 for the

interpolation error component-wise, we obtain

∀t ∈ [0, T],
∥∥∥x′(t)− f̂(t)

∥∥∥
∞

6
|t− tn−k| · · · |t− tn|

(k + 1)!
sup

t∈[0,T]

∥∥∥x(k+2)(t)
∥∥∥
∞
,

where f̂ is the function defined in (7.29). Since

∆ηn+1 = x(tn+1)− x(tn)−∆
k∑

i=0

bif
(
tn−i,x(tn−i)

)
=

∫ tn+1

tn

(
x′(t)− f̂(t)

)
dt,

we deduce that

‖ηn+1‖ 6 CkMk+2∆
k+1, Mk+2 := sup

t∈[0,T]

∥∥∥x(k+2)(t)
∥∥∥
∞
, (7.31)

for an appropriate numerical constant Ck independent of n and of the problem data. Therefore
the Adams–Bashforth method (7.30) is consistent with order k + 1.

Convergence. By using a reasoning similar to that in the proof of Theorem 7.5, we can prove
a convergence result of the Adams–Bashforth method.

Theorem 7.10. Assume that the solution x : [0, T]→ Rn to (7.1) is k+2 times continuously
differentiable and that the global Lipschitz condition (7.10) is satisfied. Suppose also that

∀i ∈ {0, . . . , k}, ‖x(ti)− xi‖ 6 δ.

Then the following error estimate holds for the Adams–Bashforth method (7.30):

∀n ∈
{
0, 1, . . . ,

⌊
T

∆

⌋}
, ‖x(tn)− xn‖ 6 δeLB + CkMk+2∆

k+1

(
eLBtn − 1

LB

)
,

where Ck and Mk+2 are the constants from (7.31), and with B := |b0|+ · · ·+ |bk|.

186

Chapter 7. Numerical ordinary differential equations

Sketch of proof. Let en := x(tn+1)− xn+1. From the equation

x(tn+1)− xn+1 = x(tn)− xn +∆
k∑

i=0

bi

(
f
(
tn−i,x(tn−i)

)
− f

(
tn−i,xn−i

))
+∆ηn+1,

which is valid for n > k, we deduce that

max
{
‖e0‖, . . . , ‖en+1‖

}
6 (1 + ∆LB)max

{
‖e0‖, . . . , ‖en‖

}
+ CkMk+2∆

k+2.

Since max
{
‖e0‖, . . . , ‖ek‖

}
6 δ by assumption, the statement easily follows.

7.3.2 Adams–Moulton methods

The Adams–Moulton methods are very similar to their Adams–Bashforth cousins. The only
difference is that the former are obtained by interpolating the function t 7→ f

(
t,x(t)

)
in (7.28)

at nodes shifted forward by ∆, i.e. at the nodes tn−k+1, . . . , tn+1. This leads to the method

xn+1 = xn +∆

k−1∑
i=−1

bif
(
tn−i,xn−i

)
, bi :=

∫ 1

0

k−1∏
j=−1
j 6=i

s+ j

−i+ j
ds. (7.32)

Unlike the Adams–Bashforth methods, which are explicit, the Adams–Moulton methods are
implicit. The value of the coefficients for the first few Adams–Moulton methods are collated
in Table 7.2. Notice that, for k = 0, the Adams–Moulton method coincides with the backward
Euler method, and for k = 1 it coincides with the Crank–Nicolson method.

i −1 0 1 2

k = 0 1

k = 1 1
2

1
2

k = 2 5
12

8
12 − 1

12

k = 3 9
24

19
24 − 5

24
1
24

Table 7.2: Coefficients (bi)06i6k of the Adams–Moulton methods.

7.4 Absolute stability

To conclude this chapter, we introduce the notion of absolute stability and explain its relevance.
Absolute stability is a property of a numerical method in relation to the model equation{

x′(t) = λx(t),

x(0) = 1.
(7.33)

187

Chapter 7. Numerical ordinary differential equations

A numerical scheme for approximating (7.33) is called absolutely stable if

|xn| → 0 in the limit as n→∞. (7.34)

where (xn)n=0,1,... denotes the numerical solution to (7.33). Whether a numerical method is
absolutely stable or not depends on the parameters λ and ∆.

Example 7.3. The forward Euler method for (7.33) reads

xn+1 = xn +∆λxn = (1 +∆λ)xn.

Therefore xn → 0 if and only if |1 + ∆λ| 6 1.

As Example 7.3 illustrates, whether absolute stability holds for the forward Euler methods
depends only the value of the product ∆λ ∈ C. This dependence on λ and ∆ only through
the product ∆λ holds in fact generally. Indeed, all the numerical schemes we considered in
this chapter are invariant under linear time rescaling of the ordinary differential equation: the
numerical solution of the rescaled equation, when the time step is rescaled by the same factor,
coincides with the discrete function obtained by linear rescaling of the numerical solution to the
original equation. This motivates the definition of absolute stability region as

A := {z ∈ C : (7.34) holds when ∆λ = z} ⊂ C.

The exact solution to the model equation (7.33) diverges to ∞ as t → ∞ if <(λ) > 0, and it
converges to 0 if <(λ) < 0. Numerical schemes which exhibit a similar property at the discrete
level are called A-stable. More precisely, a numeric method is A-stable if the absolute stability
region A contains the left half-plane, i.e. if

{z ∈ C : <(z) < 0} ⊂ A.

Before investigating whether the numerical schemes introduced previously in this chapter are
absolutely stable, we address the following natural question: why focus on the simple model
equation (7.33)? We provide a couple of motivations:

• First, note that equations of the form (7.33) are more relevant in science than might appear
at first glance. Indeed, when discretizing in space a linear parabolic partial differential
equation, one often obtains a linear differential equation of the form

x′(t) = Ax,

where A ∈ Cn×n. If the matrix A = QDQ∗ is diagonalizable, then the vector z(t) := Q∗x(t)

satisfies the differential equation
z′(t) = Dz.

In other words, each component of z satisfies an ordinary differential equation of the same
form as the model equation (7.33). In applications, the components of z often encode the

188

Chapter 7. Numerical ordinary differential equations

amplitudes of Fourier modes of the solution to the partial differential equation, and for
dissipative equations all the eigenvalues of A have a negative real part. However, the
spectral radius of A usually diverges as the number of discretization points increases.
In this context, A-stability is particularly attractive, as it ensures that the numerical
approximation remains well-behaved as the number of discretization points increases.

• Second, the model equation (7.33) may be viewed as a linearized approximation of a more
interesting equation. Consider, for example, the following one-dimensional autonomous
differential equation: {

x′(t) = f
(
x(t)

)
,

x(0) = x0.
(7.35)

Assume that f(x∗) = 0 for some x∗ ∈ R. Such a point is called a critical point of the
differential equation. If f ′(x∗) < 0, then x∗ is an attractor of the equation, in the sense
that x(t) → x∗ provided that x(0) is sufficiently close to x∗. This result, which is the
counterpart of Proposition 5.5 for differential equations, is a particular case of a theorem
due to Poincaré and Lyapunov; see [16, Theorem 7.1]. If |x0 − x∗| is sufficiently small,
then the solution to (7.35) is expected to be close to that of the linearized equation{

y′(t) = f ′
(
x∗
)(
y(t)− x∗

)
,

y(0) = x0,
(7.36)

which is of the form (7.33). Often, studying the linearized equation (7.36) enables to gain
insight into the behavior of the original equation (7.35), and analyzing the performance
of a numerical method for the linearized equation (7.36) is useful to inform the choice of
a numerical scheme for (7.35).

• More generally, if x(t) and xε(t) are respectively the solutions to{
x′(t) = f

(
t, x(t)

)
,

x(0) = x0 + ε,
and

{
x′ε(t) = f

(
t, xε(t)

)
,

xε(0) = x0 + ε,
(7.37)

then the difference e(t) := xε(t)− x(t) satisfies the equation

e′(t) = f
(
t, xε(t)

)
− f

(
t, x(t)

)
≈ ∂xf

(
t, x(t)

)
e(t),

e(0) = ε,
(7.38)

which looks similar to (7.33) with ∂xf
(
t, x(t)

)
in place of λ. At a given time t, the solutions

tend to converge to each other as time increases if ∂xf
(
t, x(t)

)
< 0, and diverge from each

other if ∂xf
(
t, x(t)

)
> 0. Testing absolute stability with λ = ∂xf

(
t, x(t)

)
enables to

determine whether this property holds true also at the discrete level. Although the latter
statement is difficult to state precisely and prove generally, we illustrate its validity for
the forward Euler method in Example 7.4.

189

Chapter 7. Numerical ordinary differential equations

Example 7.4. Let (xn) and (xεn) denote the numerical solutions obtained by applying the
forward Euler method to the differential equations in (7.37). If ε� 1, then

xεn+1 − xn+1 = xεn − xn +∆f(tn, x
ε
n)−∆f(tn, xn)

≈ xεn − xn +∆∂xf(tn, xn)(x
ε
n − xn) =

(
1 + ∆∂xf(tn, xn)

)
(xεn − xn).

Therefore, the numerical solutions (xεn) and (xn) tend to become closer as n increases if

∆∂xf(tn, xn) ∈ A. (7.39)

The absolute stability regions of the forward and backward Euler methods are illustrated
in green in Figure 7.1. For the forward Euler method, absolute stability holds if and only
if |1 + ∆λ| < 1, as we proved in Example 7.3. A similar reasoning gives that the absolute
stability region for backward Euler method is given by {z ∈ C : |1− z|−1 < 1}. The backward
Euler method is A-stable but the forward Euler method is not. Notice that, if the time step is
sufficiently large, then the backward Euler method is absolutely stable even for values of λ with
a positive real part, for which exact solutions to the model equation are divergent.

Figure 7.1: Absolute stability regions for the forward (left) and backward (right) Euler methods.

Example 7.5 (Absolute stability region of the Taylor methods). When applied to (7.33), the
Taylor method of order p given in (7.21) reads

xn+1 =

(
1 + ∆λ+

∆2λ2

2
+ · · ·+ ∆pλp

p!

)
xn.

Thus, the absolute stability region is given by{
z ∈ C :

∣∣∣∣1 + z +
z2

2
+ · · ·+ zp

p!

∣∣∣∣ < 1

}
.

This region is illustrated for various values of p in Figure 7.2. We observe that the absolute
stability region grows as p increases.

190

Chapter 7. Numerical ordinary differential equations

Figure 7.2: Stability regions for the first few Taylor methods.

Stiff differential equations

In the context of ordinary differential equations, stiffness is not a precisely defined concept, but
rather rather a generic term employed to describe equations with widely separated time scales.
Roughly speaking, a differential equation of the form (7.1) is called stiff if the Jacobian matrix
of f , with respect to the variable x, has at least one eigenvalue with a large negative real part.
In the one-dimensional setting, the solutions to stiff differential equations which are close at
the initial time tend to converge quickly to each other, in view of (7.38). This is illustrated
in Example 7.6.

Example 7.6 (Stiff differential equation). Consider the following equation [7, Chapter 4]:{
x′(t) = −α

(
x(t)− sin(t)

)
+ cos(t)

x(0) = x0
(7.40)

The exact solution to this equation is given by

x(t) = sin(t) + x0 e−αt.

When α ∈ R is large, the distance between the solution and the function t 7→ sin(t) con-
verges to zero very quickly, regardless of the initial condition. This behavior is illustrated
in Figure 7.3.

In the rest of this section, we use the differential equation (7.40) as a guiding example. For
this problem, we have ∂xf(t, x) = α. Therefore, in view of (7.39), we expect that the forward
Euler scheme is non-divergent if |1− α∆| < 1, i.e. if

∆ < ∆∗ =
2

α
.

191

Chapter 7. Numerical ordinary differential equations

Figure 7.3: Solutions to (7.40) for various initial conditions when α = 2 (left) and α = 5 (right).

It turns out that this prediction is precise, as depicted in Figure 7.4. Note that if the equation
is very stiff, that is to say if α� 1, then a very small time step is required to ensure stability.

In contrast with the forward Euler scheme, the backward Euler scheme is stable regardless
of the time step. Since the right-hand side of (7.40) is linear in x, the value of the iterate xn+1

can be calculated explicitly from xn for the backward scheme:

xn+1 =
xn +∆α sin(tn+1) + ∆ cos(tn+1)

1 + ∆α
.

Numerical approximations obtained using this scheme are illustrated in Figure 7.5. We observe
that the method is stable even for the large time step ∆ = 2∆∗.

Figure 7.4: Numerical approximations of the solution to (7.40) with α = 10 obtained with the
forward Euler method, for four different values of ∆.

192

Chapter 7. Numerical ordinary differential equations

Figure 7.5: Numerical approximations of the solution to (7.40) with α = 10 obtained with the
backward Euler method, for two different values of ∆.

7.5 Exercises

� Exercise 7.1. Show that the absolute stability region of the Crank–Nicolson method (7.24)
is given by the left half-plane; see Figure 7.6.

Figure 7.6: Absolute stability regions for the Crank Nicolson method.

� Exercise 7.2. Calculate the absolute stability region for Gear’s method.

193

Chapter 8

Optimization

8.1 Definition and characterization of convexity 195

8.2 Unconstrained optimization . 197

8.3 Constrained optimization . 199

In this chapter, we focus on optimization problems of the following form:

Find x∗ ∈ arg min
x∈K

J(x), (8.1)

where K is a given subset of Rn and J : K → R is a given objective function. We came across
several examples of such problems earlier in these notes:

• In Chapter 2, in the context of least-squares approximation, we considered the problem
of minimizing

J(α) =
1

2
‖Aα− b‖2.

• In Chapter 4, we observed that, if A is a symmetric and positive definite matrix, then
solving the linear system Ax = b amounts to finding the minimizer of the functional

J(x) =
1

2
xTAx− bTx.

When K = Rn, equation (8.1) is an unconstrained optimization problem, and when K (Rn,
equation (8.1) is a constrained optimization problem. In practice, the set K is often an inter-
section of sets of the form

{
x ∈ Rn : φ(x) 6 0

}
, or

{
x ∈ Rn : φ(x) = 0

}
,

for appropriate φ : Rn → R. Constraints of the former form are called inequality constraints,
while constraints of the latter form are called equality constraints. Our aim in this chapter is to
give a brief introduction to numerical optimization. We focus on the simplest method, namely
the steepest descent method with fixed step. The rest of this chapter is organized as follows:

194

Chapter 8. Optimization

• We begin in Section 8.1 by defining the notions of convexity, strict convexity and strong
convexity, which play an important role in optimization.

• Then, in Section 8.2, we analyze the steepest descent method with fixed step in the setting
of unconstrained optimization. To this end, we first establish conditions under which (8.1)
is well posed.

• Finally, in Section 8.3, we extend the steepest descent method to the case of optimization
with constraints.

Remark 8.1. For generality, we could consider the setting where the set K in (8.1) is a subset
of some finite dimensional or infinite dimensional vector space V . An optimization problem
over (a subset of) a finite dimensional vector space of dimension n can always be recast as an
optimization problem over (a subset of) Rn – the type we study in this chapter – by fixing a
basis. The case of an infinite dimensional vector space, however, is more delicate, and we do
not address it here.

8.1 Definition and characterization of convexity

Definition 8.1 (Convexity). Assume that J : K → R.

• The function J is said to be convex if

∀(x,y) ∈ K ×K, ∀θ ∈ [0, 1], J
(
θx+ (1− θ)y

)
6 θJ(x) + (1− θ)J(y). (8.2)

• The function J is called strictly convex if (8.2) holds with strict inequality if x 6= y

and θ ∈ (0, 1).

• The function J is called strongly convex with parameter α > 0 if for all (x,y) ∈ K×K
and for all θ ∈ [0, 1],

J
(
θx+ (1− θ)y

)
6 θJ(x) + (1− θ)J(y)− α

2
θ(1− θ)‖x− y‖2. (8.3)

If the function J is differentiable, then convexity, strict convexity and strong convexity can
be characterized in terms of the gradient ∇J . We illustrate this for strong convexity, noting
that a characterization of convexity is obtained by substituting α = 0 in the following result.

Proposition 8.1. A differentiable function J : Rn → R is strongly convex with parameter α
if and only if

∀(x,y) ∈ Rn ×Rn, J(x) > J(y) +
〈
∇J(y),x− y

〉
+
α

2
‖x− y‖2, (8.4)

195

Chapter 8. Optimization

or, equivalently,

∀(x,y) ∈ Rn ×Rn,
〈
∇J(x)−∇J(y),x− y

〉
> α‖x− y‖2. (8.5)

Proof. For clarity, we divide the proof into items and prove one implication per item.

• (8.3) ⇒ (8.4). Rearranging (8.3), we have

J
(
y + θ(x− y)

)
− J(y)

θ
6 J(x)− J(y)− α

2
(1− θ)‖x− y‖2.

Taking the limit θ → 0, we deduce that

〈
∇J(y),x− y

〉
6 J(x)− J(y)− α

2
‖x− y‖2.

This gives (8.4) after rearranging.

• (8.4) ⇒ (8.3). To prove this implication, suppose that (8.4) holds, take (x,y) ∈ Rn ×Rn

and let z = θx+ (1− θ)y. Using (8.4) successively with (x, z) and (y, z), we deduce

J(x) > J(z) +
〈
∇J(z),x− z

〉
+
α

2
‖x− z‖2,

J(y) > J(z) +
〈
∇J(z),y − z

〉
+
α

2
‖y − z‖2.

Combining these inequalities, we deduce that

θJ(x) + (1− θ)J(y) > J(z) +
〈
∇J(z), θx+ (1− θ)y − z

〉
+
αθ

2
‖x− z‖2 + α(1− θ)

2
‖y − z‖2

= J(z) + 0 +
α

2
θ(1− θ)‖x− y‖2.

Rearranging gives (8.3).

• (8.4) ⇒ (8.5). Assuming that (8.4) holds and applying this inequality first to (x,y) and
then to (y,x), we obtain

J(x) > J(y) +
〈
∇J(y),x− y

〉
+
α

2
‖x− y‖2

J(y) > J(x) +
〈
∇J(x),y − x

〉
+
α

2
‖x− y‖2.

Adding these equations and rearranging, we deduce (8.5).

• (8.5)⇒ (8.4). Suppose that (8.5) holds and take (x,y) ∈ Rn×Rn. Using the fundamental

196

Chapter 8. Optimization

theorem of analysis and (8.5), we have

J(x) = J(y) +

∫ 1

0

〈
∇J
(
y + θ(x− y)

)
,x− y

〉
dθ

> J(y) +

∫ 1

0

〈
∇J(y),x− y

〉
+ αθ‖x− y‖2 dθ

= J(y) +
〈
∇J(y),x− y

〉
+
α

2
‖x− y‖2,

which gives (8.4).

We have proved all the implications required to conclude the proof.

8.2 Unconstrained optimization

Throughout this section K = Rn. We begin by establishing conditions under which the opti-
mization problem (8.1) admits a unique solution in this setting. We first prove existence of a
global minimizer under appropriate conditions.

Proposition 8.2 (Existence of a global minimizer). Suppose that J : Rn → R is continuous
and coercive, the latter meaning that J(x) → ∞ when ‖x‖ → ∞. Then there exists a global
minimizer of J in Rn.

Proof. Let (xn)n∈N be a minimizing sequence of J , i.e. a sequence in Rn such that

J(xn)→ inf
x∈Rn

J(x) as n→∞.

The sequence (xn) is bounded, because otherwise it would hold that J(xn) → ∞ by coerciv-
ity. Therefore, since closed bounded sets in Rn are compact, there is a subsequence (xnk

)k∈N

converging to some x∗ ∈ Rn. Since J is continuous, we have that

J(x∗) = lim
k→∞

J(xnk
) = inf

x∈Rn
J(x).

We conclude that x∗ is a minimizer of J .

Remark 8.2. We relied crucially in the proof of Proposition 8.2 on the fact that closed bounded
sets in Rn are compact. In the infinite-dimensional setting, coercivity and continuity alone
are not sufficient to guarantee the existence of a minimizer.

Uniqueness of the minimizer can be established under a strict convexity assumption.

Proposition 8.3 (Uniqueness of the minimizer). If J is strictly convex, then there exists at
most one global minimizer.

Proof. Suppose for contradiction that there were two minimizers x∗ and y∗. Then by strict
convexity we have

J

(
x∗ + y∗

2

)
<

1

2

(
J(x∗) + J(y∗)

)
= J(x∗),

197

Chapter 8. Optimization

which contradicts the minimality of J(x∗).

Finally, before introducing the steepest descent algorithm, we recall the following standard
result from analysis, the proof of which is left as an exercise.

Theorem 8.4 (Euler condition). Suppose that J : Rn → R is differentiable.

• If x∗ is a local minimizer of J , then ∇J(x∗) = 0.

• If J is convex, then ∇J(x∗) = 0 if and only if x∗ is a global minimizer.

Steepest descent method. In this section, we study the more general version of the steepest
descent with fixed step given in Algorithm 17.

Algorithm 17 Steepest descent method
1: Pick λ, and initial x0.
2: for k ∈ {0, 1, . . . } do
3: dk ← ∇J(xk)
4: xk+1 ← xk − λdk

5: end for

Remark 8.3. We encountered the steepest descent with fixed step for a quadratic objective
function when we analyzed Richardson’s method for solving linear equations in Chapter 4.

In practice, Algorithm 17 must be supplemented with an appropriate stopping criterion.
This could be, for example, a criterion of the form ‖xk+1 − xk‖ 6 ε, or

∣∣J(xk+1)− J(xk)
∣∣ 6 ε.

It is sometimes also useful to use a normalized criterion of the form ‖xk+1 −xk‖ 6 ε‖x0‖. The
steepest descent method may be viewed as a fixed point iteration for the function

F λ(x) = x− λ∇J(x). (8.6)

A point x∗ ∈ Rn is a fixed point of this function if and only if x∗ is a solution to the nonlinear
equation ∇J(x∗) = 0. We shall now prove the convergence of the steepest descent under
appropriate assumptions on the function J .

Theorem 8.5 (Convergence of the steepest descent method). Suppose that J is differentiable,
strongly convex with parameter α, and that its gradient ∇J : Rn → Rn is Lipschitz continuous
with parameter L:

∀(x,y) ∈ Rn ×Rn, ‖∇J(x)−∇J(y)‖ 6 L‖x− y‖. (8.7)

Then provided that
0 < λ <

2α

L
, (8.8)

the steepest descent method with fixed step is convergent. More precisely, there exists ρ ∈ (0, 1)

198

Chapter 8. Optimization

such that for all k > 0

‖xk − x∗‖ 6 ρk‖x0 − x∗‖. (8.9)

Proof. Under the assumptions of the theorem, there exists a unique global minimizer of J ,
which is the unique fixed point of F λ. We begin by proving that F λ defined in (8.6) is globally
Lipschitz continuous. We have

‖F λ(x)− F λ(y)‖2 =
∥∥x− y − λ

(
∇J(x)−∇J(y)

)∥∥2
= ‖x− y‖2 − 2λ

〈
x− y,∇J(x)−∇J(y)

〉
+ λ2‖∇J(x)−∇J(y)‖2

6 (1− 2αλ+ λ2L)‖x− y‖2,

where we employed (8.5) for the second term and (8.7) for the third term. Thus, F λ is globally
Lipschitz continuous with constant ρ =

√
1− 2αλ+ λ2L, which is less than 1 if and only (8.8)

is satisfied. The bound (8.9) then follows by noting that

‖xk − x∗‖ = ‖F λ(xk−1)− F λ(x∗)‖ 6 ρ‖xk−1 − x∗‖ 6 . . . 6 ρk‖x0 − x∗‖,

which concludes the proof. (Note that (8.9) also follows from Theorem 5.2.)

Remark 8.4 (Convergence speed). The choice of λ minimizing the Lipschitz constant ρ is given
by λ∗ = α

L2 , which corresponds to ρ∗ = 1−
(
α
L

)2. Often, in practice, it holds that α� L, in
which case the convergence of the steepest descent with fixed step is slow.

8.3 Constrained optimization

In this section, we assume that K ⊂ Rn. We begin by establishing well-posedness of the
optimization problem (8.1) in this setting.

Proposition 8.6 (Well posedness of (8.1) in the constrained setting). The two items below
concern existence and uniqueness, respectively.

• Suppose that K ⊂ Rn is closed and that J : K → R is continuous and coercive. Then
there exists a global minimizer of J in K.

• Suppose that K ⊂ Rn is convex and that J : K → R is strictly convex. Then there exists
at most one global minimizer.

Proof. The proof is very similar to those of Proposition 8.2 and Proposition 8.3, and so we
leave it to the reader. Note that the set K must be closed to ensure existence, and convex to
guarantee uniqueness. These assumptions are clearly satisfied when K = Rn, so Proposition 8.6
indeed generalizes Propositions 8.2 and 8.3.

The following theorem, which generalizes (8.4), establishes a characterization of the mini-
mizer when J is differentiable.

199

Chapter 8. Optimization

Theorem 8.7 (Euler–Lagrange conditions). Suppose that J : K → R is differentiable and
that K ⊂ Rn is closed and convex. Then the following statements hold.

• If x∗ is a local minimizer of J , then

∀x ∈ K, 〈∇J(x∗),x− x∗〉 > 0. (8.10)

• Conversely, if (8.10) is satisfied and J is convex, then x∗ is a global minimizer of J .

Proof. Suppose that x∗ is a local minimizer of J . This means that there exists δ > 0 such that

∀x ∈ Bδ(x∗) ∩ K, J(x∗) 6 J(x).

Therefore J(x∗) 6 J
(
(1− t)x∗ + tx

)
for all t ∈ [0, 1] sufficiently small. But then

〈∇J(x∗),x− x∗〉 = lim
t→0

J
(
(1− t)x∗ + tx

)
− J(x∗)

t
> 0.

Conversely, suppose that (8.10) is satisfied and that J is convex. Since J is convex, equation (8.4)
holds with α = 0, and applying this equation with y = x∗, we deduce that x∗ is a global
minimizer.

The steepest descent Algorithm 17 can be extended to optimization problems with con-
straints by introducing an additional projection step. In order to precisely formulate the algo-
rithm, we begin by introducing the projection operator ΠK.

Proposition 8.8 (Projection on a closed convex set). Suppose that K is a closed convex
subset of Rn. Then for all x ∈ Rn there a unique ΠKx ∈ K, called the orthogonal projection
of x onto K, such that

‖ΠKx− x‖ = inf
y∈K
‖y − x‖.

Proof. The functional Jx(y) = ‖y−x‖2 is strongly convex, and so Proposition 8.6 immediately
implies the existence and uniqueness of ΠKx.

Remark 8.5. In view of Theorem 8.7, the projection ΠKx is the unique element of K which
satisfies

∀y ∈ K, 〈ΠKx− x,y −ΠKx〉 > 0. (8.11)

We are now ready to present the steepest descent method with projection: see Algorithm 18.
Like Algorithm 17, the steepest descent with projection may be viewed as a fixed point iteration,
this time for the function

F λ(x) := ΠK
(
x− λ∇J(x)

)
. (8.12)

We now prove the convergence of the method.

200

Chapter 8. Optimization

Algorithm 18 Steepest descent with projection
1: Pick λ, and initial x0.
2: for k ∈ {0, 1, . . . } do
3: dk ← ∇J(xk)
4: xk+1 ← ΠK(xk − λdk)
5: end for

Theorem 8.9 (Convergence of steepest descent with projection). Suppose that J is differ-
entiable, strongly convex with parameter α, and that its gradient ∇J : Rn → Rn is Lipschitz
continuous with parameter L. Assume also that K ⊂ Rn is closed and convex. Then provided
that

0 < λ <
2α

L
, (8.13)

the steepest descent method with fixed step is convergent. More precisely, there exists ρ ∈ (0, 1)

such that for all k > 0

‖xk − x∗‖ 6 ρk‖x0 − x∗‖.

Proof. Under the assumptions, there exists a unique global minimizer x∗ ∈ K. We already
showed in the proof of Theorem 8.5 that the mapping x 7→ x− λ∇J(x) is a contraction if and
only if λ satisfies (8.13). In order to prove that F λ given in (8.12) is a contraction under the
same condition, it is sufficient to prove that ΠK : Rn → K satisfies the following estimate:

∀(x,y) ∈ Rn ×Rn, ‖ΠKx−ΠKy‖ 6 ‖x− y‖.

To this end, take (x,y) ∈ Rn ×Rn and let δ = ΠKx−ΠKy. By (8.11), it holds that

‖δ‖2 = 〈δ,ΠKx− x〉+ 〈δ,x− y〉+ 〈δ,y −ΠKy〉

6 0 + 〈δ,x− y〉+ 0 6 ‖δ‖‖x− y‖,

which yields the required inequality. Therefore F λ in (8.12) is a contraction and so, by the
Banach fixed point theorem, it admits a unique fixed point y∗ ∈ K. To show that y∗ = x∗,
note that if F λ(y∗) = y∗, then by (8.11) it holds that

∀y ∈ K, 〈λ∇J(y∗),y − y∗〉 > 0.

Therefore, using Theorem 8.7, we obtain that y∗ is a global minimizer of J , so y∗ = x∗.

Remark 8.6. The applicability of Algorithm 18 is limited in practice, as computing ΠK(x)

analytically is possible only in simple settings.

201

Appendix A

Background material

A.1 Inner products and norms . 202

A.2 Completeness . 205

A.3 Contraction mappings and the Banach fixed point theorem 206

A.4 Vector norms . 207

A.5 Matrix norms . 207

A.6 Diagonalization and spectral theorem 209

A.7 Similarity transformation and Jordan normal form 212

A.8 Oldenburger’s theorem and Gelfand’s formula 213

In this chapter, we collect basic results that are useful for this course.

A.1 Inner products and norms

We begin by recalling the definitions of the fundamental concepts of norm and inner product.
For generality, we consider the case of a complex vector space, i.e. a vector space for which the
scalar field is C.

Definition A.1. A norm on a complex vector space X is a function ‖•‖ : X → R satisfying
the following axioms:

• Positivity: ∀x ∈ X\{0}, ‖x‖ > 0.

• Homogeneity: ∀(c,x) ∈ C×X , ‖cx‖ = |c| ‖x‖.

• Triangular inequality: ∀(x,y) ∈ X × X , ‖x+ y‖ 6 ‖x‖+ ‖y‖.

For example, the Euclidean norm on Cn is given by

‖x‖ =
√
|x1|2 + . . .+ |xn|2.

202

Appendix A. Background material

Definition A.2. An inner product on a complex vector space X is a function

〈•, •〉 : X × X → C

satisfying the following axioms:

• Conjugate symmetry: Here • denotes the complex conjugate.

∀(x,y) ∈ X × X , 〈x,y〉 = 〈y,x〉.

• Linearity: For all (α, β) ∈ C2 and all (x,y, z) ∈ X 3, it holds that

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉.

• Positive-definiteness:
∀x ∈ X\{0}, 〈x,x〉 > 0.

For example, the familiar Euclidean inner product on Cn is given by

〈x,y〉 :=
n∑

i=1

xiyi.

A vector space with an inner product is called an inner product space. Any inner product on X
induces a norm via the formula

‖x‖ =
√
〈x,x〉. (A.1)

The Cauchy–Schwarz inequality enables to bound inner products using norms. It is also useful
for showing that the functional defined in (A.1) satisfies the triangle inequality, which is the
goal of Exercise A.2.

Proposition A.1 (Cauchy–Schwarz inequality). Let X be an inner product space. Then

∀(x,y) ∈ X × X , |〈x,y〉| 6 ‖x‖‖y‖. (A.2)

Proof. The statement is obvious if y = 0, so we assume in the rest of the proof that y 6= 0. Let
us define p : R 3 t 7→ ‖x+ ty‖2. Using the bilinearity of the inner product, we have

p(t) = ‖x‖2 + 2t〈x,y〉+ t2‖y‖2.

This shows that p is a convex second-order polynomial with a minimum at t∗ = −〈x,y〉/‖y‖2.
Substituting this value in the expression of p, we obtain

p(t∗) = ‖x‖2 − 2
|〈x,y〉|2

‖y‖2
+
|〈x,y〉|2

‖y‖2
= ‖x‖2 − |〈x,y〉|

2

‖y‖2
.

Since p(t∗) > 0 by definition of p, we obtain (A.2).

203

Appendix A. Background material

Several norms can be defined on the same vector space X . Two norms ‖•‖α and ‖•‖β on X
are said to be equivalent if there exist positive real numbers c` and cu such that

∀x ∈ X , c`‖x‖α 6 ‖x‖β 6 cu‖x‖α. (A.3)

As the terminology indicates, norm equivalence is an equivalence relation. When working with
norms on finite-dimensional vector spaces, it is important to keep in mind the following result.
The proof is provided for information purposes only.

Proposition A.2. Assume that X is a finite-dimensional vector space. Then all the norms
defined on X are pairwise equivalent.

Proof. Let (e1, . . . , en) be a basis of X . Any x ∈ X admits a unique representation in this basis
as x = λ1e1+ · · ·+λnen. We will show that any norm ‖•‖ on X is equivalent to the norm ‖•‖∗
given by

‖x‖∗ = |λ1|+ . . .+ |λn|. (A.4)

By the triangle inequality, it holds that

‖x‖ 6 |λ1|‖e1‖+ · · ·+ |λn|‖en‖ 6
(
|λ1|+ · · ·+ |λn|

)
max

{
‖e1‖, . . . , ‖en‖

}
= ‖x‖∗ max

{
‖e1‖, . . . , ‖en‖

}
. (A.5)

It remains to show that there exists a positive constant ` such that

∀x ∈ X , ‖x‖ > `
(
|λ1|+ · · ·+ |λn|

)
. (A.6)

To this end, we reason by contradiction. If this inequality were not true, then there would
exist a sequence (x(i))i∈N such that ‖x(i)‖ → 0 as i → ∞ and ‖x(i)‖∗ = 1 for all i ∈ N.
Since λ

(i)
1 ∈ [−1, 1] for all i ∈ N, we can extract a subsequence, still denoted by (x(i))i∈N

for simplicity, such that the corresponding coefficient λ(i)1 satisfies λ(i)1 → λ∗1 ∈ [−1, 1], by
compactness of the interval [−1, 1]. Repeating this procedure for λ2, λ3, . . . , taking a new
subsequence every time, we obtain a subsequence (x(i))i∈N such that λ(i)j → λ∗j in the limit
as i → ∞, for all j ∈ {1, . . . , n}. Therefore, it holds that x(i) → x∗ := λ∗1e1 + · · ·λ∗nen in
the ‖•‖∗ norm, and thus also in the ‖•‖ norm by (A.5). Since x(i) → 0 in the latter norm by
assumption, we deduce that x∗ = 0. But the vectors e1, . . . , en are linearly independent, and
so this implies that λ∗1 = · · · = λ∗n = 0, which is a contradiction because we also have that

|λ∗1|+ · · ·+ |λ∗n| = lim
i→∞

∣∣λ(i)1

∣∣+ · · ·+ ∣∣λ(i)n

∣∣ = 1.

This concludes the proof of (A.6).

� Exercise A.1. Show that ‖•‖∗ : X → R defined in (A.4) is indeed a norm.

� Exercise A.2. Using Proposition A.1, show that the function ‖•‖ defined by (A.1) satisfies
the triangle inequality.

204

Appendix A. Background material

A.2 Completeness

Assume that X is a vector space with a norm ‖•‖. Together, (X , ‖•‖) form a normed vector
space. A sequence (xn)n>0 in X is convergent in this space if there exists x∗ ∈ X such that

‖xn − x∗‖ → 0 in the limit n→∞.

In this case, we write limn→∞ xn = x∗ or xn → x∗.

Definition A.3 (Cauchy sequence). A sequence (xn)n>0 in X is said to be Cauchy if

lim
m,n→+∞

‖xn − xm‖ = 0.

The normed vector space (X , ‖•‖) is called complete if every Cauchy sequence is convergent.

Every convergent sequence is Cauchy, but the converse is not always true.

Example A.1. Consider the case where X = C([−1, 1]), the space of continuous functions
from [−1, 1] to R, endowed with the norm

‖f‖ =
∫ 1

−1
|f(x)|dx.

The sequence of functions (fn)n>0 in X given by

fn(x) = x
1

2n+1 (A.7)

is Cauchy but not convergent. Indeed, assume for contradiction that there existed f∗ ∈ X
such that

‖fn − f∗‖ −−−→
n→∞

0. (A.8)

Then f∗ necessarily coincides with sign function:

sgn(x) :=

−1 if x < 0,

0 if x = 0,

1 if x > 0.

However, this function is discontinuous, which contradicts the statement that f∗ ∈ X .

In this course, all the vector spaces encountered are complete. For example,

• Rn with any vector norm is complete;

• Cm×n with any matrix norm is complete.

In order to show that a sequence is convergent in a complete normed vector space, it is sufficient
to show that the sequence is Cauchy. This approach is used in Lemma 4.2 and Theorem A.3.

� Exercise A.3. Prove that every convergent sequence is Cauchy.

205

Appendix A. Background material

A.3 Contraction mappings and the Banach fixed point theorem

Let (X , ‖•‖) denote a normed vector space. A map φ : X → X is called a contraction mapping
if there is a constant L ∈ (0, 1) such that

∀(x, y) ∈ X × X , ‖φ(x)− φ(y)‖ 6 L‖x− y‖.

The importance of contraction mappings in this course stems from the following theorem.

Theorem A.3 (Banach fixed point theorem). Let (X , ‖•‖) be a complete normed space, and
let φ : X → X be a contraction mapping. Then φ has a unique fixed point in X .

Proof. We prove first existence and then uniqueness.
Existence. Take x0 ∈ X , and define the sequence (xk)k∈N inductively by

xk+1 = φ(xk). (A.9)

It holds that

‖xk+1 − xk‖ = ‖φ(xk)− φ(xk−1)‖ 6 L‖xk − xk−1‖ 6 . . . 6 Lk‖x1 − x0‖.

Therefore, for any n > m, we have by the triangle inequality

‖xn − xm‖ 6 ‖xn − xn−1‖+ · · ·+ ‖xm+1 − xm‖

6 (Ln−1 + · · ·+ Lm)‖x1 − x0‖

6 Lm(1 + L+ L2 + · · ·)‖x1 − x0‖ =
Lm

1− L
‖x1 − x0‖.

It follows that the sequence (xk)k∈N is Cauchy in X , implying by completeness that xk → x∗ in
the limit as k →∞, for some limit x∗ ∈ X . Being a contraction, the mapping φ is continuous,
and so taking the limit k →∞ in (A.9), we obtain that

x∗ = lim
k→∞

xk+1 = lim
k→∞

φ(xk) = φ

(
lim
k→∞

xk

)
= φ(x∗).

In other words, x∗ is a fixed point of φ.

Uniqueness. Assume that y∗ ∈ X is a fixed point. Then,

‖y∗ − x∗‖ = ‖φ(y∗)− φ(x∗)‖ 6 L‖y∗ − x∗‖,

which implies that y∗ = x∗ since L < 1.

Remark A.1. The Banach fixed point theorem holds also in complete metric spaces.

206

Appendix A. Background material

A.4 Vector norms

In the vector space Cn, the most commonly used norms are particular cases of the p-norm, also
called Hölder norm.

Definition A.4. Given p ∈ [1,∞], the p-norm of a vector x ∈ Cn is defined as follows:

‖x‖p :=

(
∑n

i=1|xi|p)
1
p if p <∞,

max
{
|x1|, . . . , |xn|

}
if p =∞.

The values of p most commonly encountered in applications are 1, 2 and ∞. The 1-norm is
sometimes called the taxicab or Manhattan norm, and the 2-norm is usually called the Euclidean
norm. The explicit expressions of these norms are

‖x‖1 =
n∑

i=1

|xi|, ‖x‖2 =

√√√√ n∑
i=1

|xi|2.

Notice that the infinity norm ‖•‖∞ may be defined as the limit of the p-norm as p→∞:

‖x‖∞ := lim
p→∞
‖x‖p.

In the rest of this chapter, the notations 〈•, •〉 and ‖•‖ without subscript always refer to the
Euclidean inner product (A.1) and induced norm, unless specified otherwise.

A.5 Matrix norms

Given two norms ‖•‖α and ‖•‖β on Cm and Cn, respectively, we define the operator norm
induced by ‖•‖α and ‖•‖β of the matrix A as

‖A‖α,β = sup
{
‖Ax‖α : x ∈ Cn, ‖x‖β 6 1

}
. (A.10)

The term operator norm is motivated by the fact that, to any matrix A ∈ Cm×n, there nat-
urally corresponds the linear operator from Cn to Cm with action x 7→ Ax. Matrix norms
of the type (A.10) are also called subordinate matrix norms. An immediate corollary of the
definition (A.10) is that, for all x ∈ Cn,

‖Ax‖α = ‖Ax̂‖α‖x‖β 6 sup
{
‖Ay‖α : ‖y‖β 6 1

}
‖x‖β = ‖A‖α,β‖x‖β, x̂ =

x

‖x‖β
. (A.11)

� Exercise A.4. Show that equation (A.10) defines a norm on Cm×n.

The matrix p-norm is defined as the operator norm (A.10) in the particular case where ‖•‖α
and ‖•‖β are both Hölder norms with the same value of p.

207

Appendix A. Background material

Definition A.5. Given p ∈ [1,∞], the p-norm of a matrix A ∈ Cm×n is given by

‖A‖p := sup
{
‖Ax‖p : x ∈ Cn, ‖x‖p 6 1

}
. (A.12)

Not all matrix norms are induced by vector norms. For example, the Frobenius norm, which
is widely used in applications, is not induced by a vector norm. It is, however, induced by an
inner product on Cm×n.

Definition A.6. The Frobenius norm of A ∈ Cm×n is given by

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
 1

2

. (A.13)

A matrix norm ‖•‖ is said to be submultiplicative if, for any two matrices A ∈ Cm×n

and B ∈ Cn×`, it holds that
‖AB‖ 6 ‖A‖‖B‖.

All subordinate matrix norms, for example the p-norms, are submultiplicative, and so is the
Frobenius norm.

� Exercise A.5. Write down the inner product on Cm×n corresponding to (A.13).

� Exercise A.6. Show that the matrix p-norm is submultiplicative.

208

Appendix A. Background material

A.6 Diagonalization and spectral theorem

Definition A.7. A square matrix A ∈ Cn×n is said to be diagonalizable if there exists an
invertible matrix P ∈ Cn×n and a diagonal matrix D ∈ Cn×n such that

AP = PD. (A.14)

In this case, the diagonal elements of D are called the eigenvalues of A, and the columns of P
are called the eigenvectors of A.

Denoting by ei the i-th column of P and by λi the i-th diagonal element of D, we have by (A.14)
that Aei = λiei or, equivalently, (A−λiIn)ei = 0. Here In is the Cn×n identity matrix. Therefore,
a complex number λ is an eigenvalue of A if and only if det(A− λIn) = 0. In other words, the
eigenvalues of A are the roots of det(A− λIn), which is called the characteristic polynomial.

Symmetric matrices and spectral theorem

The transpose of a matrix A ∈ Cm×n is denoted by AT ∈ Cn×m and defined as the matrix with
entries aTij = aji. The conjugate transpose of A, denoted by A∗, is the matrix obtained by taking
the transpose and taking the complex conjugate of all the entries. A real matrix that is equal to
its transpose is necessarily square and called symmetric, and a complex matrix that is equal to its
conjugate transpose is called Hermitian. Hermitian matrices, of which real symmetric matrices
are a subset, enjoy many nice properties, the main one being that they are diagonalizable with
a matrix Q that is unitary, i.e. such that Q−1 = Q∗. This is the content of the spectral theorem,
a pillar of linear algebra with important generalizations to infinite-dimensional operators.

Theorem A.4 (Spectral theorem for Hermitian matrices). If A ∈ Cn×n is Hermitian, then
there exists an unitary matrix Q ∈ Cn×n and a diagonal matrix D ∈ Rn×n such that

AQ = QD.

Sketch of the proof. The result is trivial for n = 1. Reasoning by induction, we assume that the
result is true for Hermitian matrices in Cn−1×n−1 and prove that it then also holds for A ∈ Cn×n.

Step 1. Existence of a real eigenvalue. By the fundamental theorem of algebra, there
exists at least one solution λ1 ∈ C to the equation det(A−λIn) = 0, to which there corresponds
at least one solution q1 ∈ Cn of norm 1 to the equation (A− λ1In)q1 = 0. The eigenvalue λ1 is
necessarily real because

λ1〈q1, q1〉 = 〈λ1q1, q1〉 = 〈Aq1, q1〉 = 〈q1,Aq1〉 = 〈q1, λ1q1〉 = λ1〈q1, q1〉.

Step 2. Using the induction hypothesis. Next, take an orthonormal basis (e2, . . . , en)

of the orthogonal complement Span{q1}⊥ and construct the unitary matrix

V =
(
q1 e2 . . . en

)
,

209

Appendix A. Background material

i.e. the matrix with columns q1, e2, etc. A calculation gives,

V∗AV =

〈q1,Aq1〉 〈q1,Ae2〉 . . . 〈q1,Aen〉
〈e2,Aq1〉 〈e2,Ae2〉 . . . 〈e2,Aen〉

...
...

〈en,Aq1〉 〈en,Ae2〉 . . . 〈en,Aen〉

 =

λ1 0 . . . 0

0 〈e2,Ae2〉 . . . 〈e2,Aen〉
...

...
0 〈en,Ae2〉 . . . 〈en,Aen〉

 .

Let us denote the n− 1× n− 1 lower right block of this matrix by Vn−1. This is a Hermitian
matrix of size n−1 so, using the induction hypothesis, we deduce that Vn−1 = Qn−1Dn−1Q∗

n−1 for
appropriate matrices Qn−1 ∈ Cn−1×n−1 and Dn−1 ∈ Rn−1×n−1 which are unitary and diagonal,
respectively.

Step 3. Constructing Q and D. Define now

Q = V
(
1 0T

0 Qn−1

)
.

It is not difficult to verify that Q is a unitary matrix, and we have

Q∗AQ =

(
1 0T

0 Q∗
n−1

)
V∗AV

(
1 0T

0 Qn−1

)
=

(
1 0T

0 Q∗
n−1

)(
λ1 0T

0 Vn−1

)(
1 0T

0 Qn−1

)
.

Developing the last expression, we obtain

Q∗AQ =

(
λ1 0T

0 Dn−1

)
,

which concludes the proof.

We deduce, as a corollary of the spectral theorem, that if e1 and e2 are eigenvectors of a
Hermitian matrix associated with different eigenvalues, then they are necessarily orthogonal for
the Euclidean inner product. Indeed, since A = A∗ and the eigenvalues are real, it holds that

(λ1 − λ2)〈e1, e2〉 = 〈λ1e1, e2〉 − 〈e1, λ2e2〉

= 〈Ae1, e2〉 − 〈e1,Ae2〉 = 〈Ae1, e2〉 − 〈A∗e1, e2〉 = 0.

The largest eigenvalue of a matrix, in modulus, is called the spectral radius and denoted by ρ.
The following result relates the 2-norm of a matrix to the spectral radius of AA∗.

Proposition A.5. It holds that ‖A‖2 =
√
ρ(A∗A).

Proof. Since A∗A is Hermitian, it holds by the spectral theorem that A∗A = QDQ∗ for some
unitary matrix Q and real diagonal matrix D. Therefore, denoting by (µi)16i6n the (positive)

210

Appendix A. Background material

diagonal elements of D and introducing y := Q∗x, we have

‖Ax‖ =
√
x∗A∗Ax =

√
x∗QDQ∗x

=

√√√√ n∑
i=1

µiy2i 6
√
ρ(A∗A)

√√√√ n∑
i=1

y2i =
√
ρ(A∗A)‖x‖, (A.15)

where we used in the last equality the fact that y has the same norm as x, because Q is
unitary. It follows from (A.15) that ‖A‖ 6

√
ρ(A∗A), and the converse inequality also holds

true since ‖Ax‖ =
√
ρ(A∗A)‖x‖ if x is the eigenvector of A∗A corresponding to an eigenvalue

of modulus ρ(A∗A).

To conclude this section, we recall and prove the Courant–Fisher theorem.

Theorem A.6 (Courant–Fisher Min-Max theorem). The eigenvalues λ1 > λ2 > · · · > λn of
a Hermitian matrix are characterized by the relation

λk = max
S,dim(S)=k

(
min

x∈S\{0}

x∗Ax
x∗x

)
. (A.16)

Proof. Let v1, . . . ,vn be normalized and pairwise orthogonal eigenvectors associated with the
eigenvalues λ1, . . . , λn, and let Sk = Span{v1, . . . ,vk}. Any x ∈ Sk may be expressed as a linear
combination x = α1v1 + · · ·+ αkvk, and so

∀x ∈ Sk,
x∗Ax
x∗x

=

∑k
i=1 λi|αi|2∑k
i=1|αi|2

> λk.

Therefore, it holds that
min

x∈Sk\{0}

x∗Ax
x∗x

> λk,

which proves the > direction of (A.16). For the 6 direction, let Uk = Span{vk, . . .vn}. Using a
well-known result from linear algebra, we calculate that, for any subspace S ⊂ Cn of dimension k,

dim(S ∩ Uk) = dim(S) + dim(Uk)− dim(S + Uk)

> k + (n− k + 1)− n = 1.

Therefore, any S ⊂ Cn of dimension k has a nonzero intersection with Uk. But since any vector
in Uk can be expanded as β1vk + · · ·+ βnvn, we have

∀x ∈ Uk,
x∗Ax
x∗x

=

∑n
i=k λi|αi|2∑n
i=k|αi|2

6 λk.

This shows that
∀S ⊂ Cn with dim(S) = k, min

x∈S\{0}

x∗Ax
x∗x

6 λk,

which enables to conclude the proof.

� Exercise A.7. Prove that if A ∈ Rn×n is diagonalizable as in (A.14), then An = PDnP−1.

211

Appendix A. Background material

A.7 Similarity transformation and Jordan normal form

In this section, we work with matrices in Cn×n. A similarity transformation is a mapping of
the type Cn×n 3 A 7→ P−1AP ∈ Cn×n, where P ∈ Cn×n is a nonsingular matrix. If two matrices
are related by a similarity transformation, then they are called similar, because they may be
viewed as two representations of the same linear mapping in different bases.

Definition A.8 (Jordan block). A Jordan block with dimension n is a matrix of the form

Jn(λ) =

λ 1

λ 1
.

λ 1

λ

The parameter λ ∈ C is called the eigenvalue of the Jordan block.

A Jordan block is diagonalizable if and only if it is of dimension 1. The only eigenvector of
a Jordan block is

(
1 0 . . . 0

)T
. The power of a Jordan block admits an explicit expres-

sion.

Lemma A.7. It holds that

Jn(λ)k =

λk
(
k
1

)
λk−1

(
k
2

)
λk−2 · · · · · ·

(
k

n−1

)
λk−n+1

λk
(
k
1

)
λk−1 · · · · · ·

(
k

n−2

)
λk−n+2

.
.

λk
(
k
1

)
λk−1

λk

. (A.17)

Proof. The explicit expression of the Jordan block can be obtained by decomposing the block
as Jn(λ) = λI + N and using the binomial formula:

(λI + N)k =
k∑

i=1

(
k

i

)
(λI)k−iNi.

To conclude the proof, we use the fact that Ni is a matrix with zeros everywhere except for i-th
super-diagonal, which contains only ones. Moreover Ni = 0n×n if i > n.

A matrix is said to be of Jordan normal form if it is block-diagonal with Jordan blocks on

212

Appendix A. Background material

the diagonal. In other words, a matrix J ∈ Cn×n is of Jordan normal form if

J =

Jn1(λ1)

Jn2(λ2)
. . .

Jnk−1
(λk−1)

Jnk
(λk)

with n1 + · · ·+ nk = n. Note that λ1, . . . , λk are the eigenvalues of A. We state without proof
the following important result.

Proposition A.8 (Jordan normal form). Any matrix A ∈ Cn×n is similar to a matrix in
Jordan normal form. In other words, there exists an invertible matrix P ∈ Cn×n and a matrix
in normal Jordan form J ∈ Cn×n such that

A = PJP−1

A.8 Oldenburger’s theorem and Gelfand’s formula

The following result establishes a necessary and sufficient condition for the convergence of ‖Ak‖
to 0 in terms of the spectral radius of A, and for any matrix norm ‖•‖.

Proposition A.9 (Oldenburger). Let ρ(A) denote the spectral radius of A ∈ Cn×n and ‖•‖
be a matrix norm. Then

• ‖Ak‖ → 0 in the limit as k →∞ if and only if ρ(A) < 1.

• ‖Ak‖ → ∞ in the limit as k →∞ if and only if ρ(A) > 1.

Proof. Since all matrix norms are equivalent, we can assume without loss of generality that ‖•‖ is
the 2-norm. We prove only the equivalence ‖Ak‖ → 0⇔ ρ(A) < 1. The other statement can be
proved similarly. By Proposition A.8, there exists a nonsingular matrix P such that A = PJP−1,
for a matrix J ∈ Cn×n which is in normal Jordan form. Since ρ(A) = ρ(J) and ‖Ak‖ → 0 if
and only if ‖Jk‖ → 0, it is sufficient to show that ‖Jk‖ → 0 ⇔ ρ(J) < 1. The latter statement
follows from the expression of the power of a Jordan block given in Lemma A.7.

With this result, we can prove Gelfand’s formula, which relates the spectral radius to the
asymptotic growth of ‖Ak‖, and is used in Chapter 4.

Proposition A.10 (Gelfand’s formula). Let A ∈ Cn×n. It holds for any norm that

lim
k→∞
‖Ak‖

1
k = ρ(A)

Proof. Let 0 < ε < ρ(A) and define A+ = A
ρ(A)+ε and A− = A

ρ(A)−ε . It holds by construction

213

Appendix A. Background material

that ρ(A+) < 1 and ρ(A−) > 1. Using Proposition A.9, we deduce that

lim
k→∞
‖(A+)k‖ = 0, lim

k→∞
‖(A−)k‖ =∞.

Therefore, it holds that

lim sup
k→∞

∥∥∥(A+)k
∥∥∥ 1

k
6 1, lim inf

k→∞

∥∥∥(A−)k
∥∥∥ 1

k
> 1.

Substituting the expressions of A+ and A−, we deduce that

lim sup
k→∞

∥∥∥Ak
∥∥∥ 1

k
6 ρ(A) + ε, lim inf

k→∞

∥∥Ak
∥∥ 1

k > ρ(A)− ε.

Since ε was arbitrary, we obtain that

ρ(A) 6 lim inf
k→∞

∥∥Ak
∥∥ 1

k 6 lim sup
k→∞

∥∥Ak
∥∥ 1

k 6 ρ(A),

which implies the statement.

214

Appendix B

Brief introduction to Julia

In this chapter, we very briefly present some of the basic features and functions of Julia. Most
of the information contained in this chapter can be found in the online manual, to which we
provide pointers in each section.

Installing Julia

The suggested programming environment for this course is the open-source text editor Visual
Studio Code. You may also use Vim or Emacs, if you are familiar with any of these.

� Task 1. Install Visual Studio Code. Install also the Julia and Jupyter Notebook extensions.

Obtaining documentation

To find documentation on a function from the Julia console, type “?” to access “help mode”,
and then the name of the function. Tab completion is helpful for listing available function
names.

� Task 2. Read the help pages for if, while and for. More information on these keywords is
available in the online documentation.

Remark B.1 (Shorthand if notation). If there is no elseif clause, it is sometimes convenient
to use the following shorthand notations instead of an if block.

condition = true

Assign x = 0 if `condition` is true, else assign x = 2
x = condition ? 0 : 2

Print "true" if `condition` is true
condition && println("true")

215

https://docs.julialang.org/en/v1/manual/control-flow/

Appendix B. Brief introduction to Julia

Print "false" if `condition` is false
condition || println("false")

Installing and using a package [link to relevant manual section]

To install a package from the Julia REPL (Read Evaluate Print Loop, also more simply called
the Julia console), first type “]” to enter the package REPL, and then type add followed by the
name of the package to install. After it has been added, a package can be used with the import

keyword. A function fun defined in a package pack can be accessed as pack.fun. For example,
to plot the cosine function from the Julia console or in a script, write

import Plots
Plots.plot(cos)

Alternatively, a package may be imported with the using keyword, and then functions can
be accessed without specifying the package name. While convenient, this approach is less
descriptive; it does not explicitly show what package a function comes from. For this reason, it
is often recommended to use import, especially in a large codebase.

� Task 3. Install the Plots package, read the documentation of the Plots.plot function, and
plot the function f(x) = exp(x). The tutorial on plotting available at this link may be useful for
this exercise.

Remark B.2. We have seen that ? and] enable to access “help mode” and “package mode”,
respectively. Another mode which is occasionally useful is “shell mode”, which is accessed
with the character ; and allows to type bash commands, such as cd to change directory. See
this part of the manual for additional documentation on Julia modes.

Printing output

The functions println and print enable to display output. The former adds a new line at
the end and the latter does not. The symbol $, followed by a variable name or an expression
within brackets, can be employed to perform string interpolation. For instance, the following
code prints a = 2, a^2 = 4.

a = 2
println("a = $a, a^2 = $(a*a)")

To print a matrix in an easily readable format, the display function is very useful.

Defining functions [link to relevant manual section]

Functions can be defined using a function block. For example, the following code block defines
a function that prints “Hello, NAME!”, where NAME is the string passed as argument.

function hello(name)
Here * is the string concatenation operator

216

https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.juliaplots.org/latest/tutorial/
https://docs.julialang.org/en/v1/stdlib/REPL/
https://docs.julialang.org/en/v1/manual/functions/

Appendix B. Brief introduction to Julia

println("Hello, " * name)
end

Call the function
hello("Bob")

If the function definition is short, it is convenient to use the following more compact syntax:

hello(name) = println("Hello, " * name)

Sometimes, it is useful to define a function without giving it a name, called an anonymous
function. This can be achieved in Julia using the arrow notation ->. For example, the following
expressions calculate the squares and cubes of the first 5 natural numbers. Here, the function
map enables to transform the collection passed as second argument by applying the function
passed as first argument to each element.

squares = map(x -> x^2, [1, 2, 3, 4, 5])
cubes = map(x -> x^3, [1, 2, 3, 4, 5])

The return keyword can be used for returning a value to the function caller. Several values,
separated by commas, can be returned at once. For instance, the following function takes a
number x and returns a tuple (x, x2, x3).

function powers(x)
return x, x^2, x^3

end

This is an equivalent definition in short notation
short_powers(x) = x, x^2, x^3

This assigns a = 2, b = 4, c = 8
a, b, c = powers(2)

Like many other languages, including Python and Scheme, Julia follows a convention for
argument-passing called “pass-by-sharing”: values passed as arguments to a function are not
copied, and the arguments act as new bindings within the function body. It is possible, therefore,
to modify a value passed as argument, provided this value is of mutable type. Functions
that modify some of their arguments usually end with an exclamation mark !. For example,
the following code prints first [4, 3, 2, 1], because the function sort does not modify its
argument, and then it prints [1, 2, 3, 4], because the function sort! does.

x = [4, 3, 2, 1]
y = sort(x) # y is sorted
println(x); sort!(x); println(x)

Similarly, when displaying several curves in a figure, we first start with the function plot, and
then we use plot! to modify the existing figure.

217

Appendix B. Brief introduction to Julia

import Plots
Plots.plot(cos)
Plots.plot!(sin)

As a final example to illustrate argument-passing, consider the following code. Here two
arguments are passed to the function test: an array, which is a mutable value, and an integer,
which is immutable. The instruction arg1[1] = 0 modifies the array to which both a and arg1
are bindings. The instruction arg2 = 2, on the other hand, just causes the variable arg2 to
point to a new immutable value (3), but it does not change the destination of the binding b,
which remains the immutable value 2. Therefore, the code prints [0, 2, 3] and 3.

function test(arg1, arg2)
arg1[1] = 0
arg2 = 2

end

a = [1, 2, 3]
b = 3
test(a, b)
println(a, b)

� Task 4 (Euler–Mascheroni constant for the harmonic series). Euler showed that

lim
N→∞

(
− ln(N) +

N∑
n=1

1

n

)
= γ := 0.577...

Write a function that returns an approximation of the Euler–Mascheroni constant γ by evaluating
the expression between brackets at a finite value of N .

function euler_constant(N)
Your code comes here

end

� Task 5 (Ancient algorithms). The goal of this exercise is to explore three of the oldest
algorithms ever invented.

• Circa 1600 BC, the Babylonians invented an iterative method for calculating the square
root of a number. Read the relevant information on the associated Wikipedia page and
write a function that calculates the square root of the argument using this algorithm.

function babylonian_square_root(n)
Your code comes here

end

The function should return the square root of n

• Circa 300 BC, the Greek mathematician Euclid of Alexandria published the Elements, his
famous mathematical treatise. In one of the books, he proposes an algorithm for calculating

218

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method

Appendix B. Brief introduction to Julia

the greatest common divisor of two numbers. This algorithm, which is still in common
use today, is based on the observation that if a > b > 0 are natural numbers, then

gcd(a, b) = gcd(b, r), (B.1)

where r is the remainder of the division of a by b. Indeed, in view of the equation

a = qb+ r,

the common divisors of {a, b} coincide with those of {b, r}. Using (B.1), write a function
to calculate the greatest common divisor of two numbers.

function euclid_gcd(a, b)
Your code comes here

end

• Circa 200 BC, the Greek mathematician Eratosthenes of Cyrene invented a method for
efficiently calculating the prime numbers, which is now known as the sieve of Eratosthenes.
Read the associated Wikipedia page and write a function implementing this algorithm.

function eratosthenes_sieve(n)
Your code comes here

end

The function should return an array containing all the prime
numbers less than or equal to n.

� Task 6 (Tower of Hanoi). We consider a variation on the classic Tower of Hanoi problem, in
which the number r of pegs is allowed to be larger than 3. We denote the pegs by p1, . . . , pr, and
assume that the problem includes n disks with radii 1 to n. The tower is initially constructed
in p1, with the disks arranged in order of decreasing radius, the largest at the bottom. The goal
of the problem is to reconstruct the tower at pr by moving the disks one at the time, with the
constraint that a disk may be placed on top of another only if its radius is smaller.

It has been conjectured that the optimal solution, which requires the minimum number of
moves, can always be decomposed into the following three steps, for some k ∈ {1, n− 1}:

• First move the top k disks of the tower to peg p2;

• Then move the bottom n− k disks of the tower to pr without using p2;

• Finally, move the top of the tower from p2 to pr.

This suggests a recursive procedure for solving the problem, known as the Frame-Stewart algo-
rithm. Write a Julia function T(n, r) returning the minimal number of moves necessary.

Local and global scopes [link to relevant manual section]

Some constructs in Julia introduce scope blocks, notably for and while loops, as well as function
blocks. The variables defined within these structures are not available outside them. For
example

219

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://docs.julialang.org/en/v1/manual/variables-and-scoping/

Appendix B. Brief introduction to Julia

if true

a = 1
end

println(a)

prints 1, because if does not introduce a scope block, but

for i in [1, 2, 3]
a = 1

end

println(a)

produces ERROR: LoadError: UndefVarError: a not defined. The variable a defined within
the for loop is said to be in the local scope of the loop, whereas a variable defined outside of it is
in the global scope. In order to modify a global variable from a local scope, the global keyword
must be used. For instance, the following code

a = 1
for i in [1, 2, 3]

global a += 1
end

println(a)

modifies the global variable a and prints 4.

Multi-dimensional arrays [link to relevant manual section]

A working knowledge of multi-dimensional arrays is important for this course, because vectors
and matrices are ubiquitous in numerical algorithms. In Julia, a two-dimensional array can be
created by writing its lines one by one, separating them with a semicolon ;. Within a line,
elements are separated by a space. For example, the instruction

M = [1 2 3; 4 5 6]

creates the matrix

M =

(
1 2 3

4 5 6

)
More generally, the semicolon enables vertical concatenation while space concatenates horizon-
tally. For example, [M M] defines the matrix(

1 2 3 1 2 3

4 5 6 4 5 6

)

The expression M[r, c] gives the (r, c) matrix element of M , located at row r and column c.
The special entry end can be used to access the last row or column. For instance, M[end-1, end]
gives the matrix entry in the second to last row and the last column. From the matrix M above,
the submatrix [2 3; 5 6] can be obtained with M[:, 2:3]. Here the row index : means “select
all lines” and the column index 2:3 means “select columns 2 to 3”. Likewise, the submatrix
[1 3; 4 6] may be extracted with M[:, [1; 3]].

220

https://docs.julialang.org/en/v1/manual/arrays/

Appendix B. Brief introduction to Julia

Remark B.3 (One-dimensional arrays). The comma , can also be employed for creating one-
dimensional arrays, but its behavior differs slightly from that of the vertical concatenation
operator ;. For example, x = [1, [2; 3]] creates a Vector object with two elements, the
first one being 1 and the second one being [1; 3], which is itself a Vector. In contrast, the
instruction x = [1; [1; 2]] creates the same Vector as [1; 2; 3] would.

We also mention that the expression x = [1 2 3] produces not a one-dimensional Vector
but a two-dimensional Matrix, with one row and three columns. This can be checked using
the size function, which for x = [1 2 3] returns the tuple (1, 3).

There are many built-in functions for quickly creating commonly used arrays. For example,

• transpose(M) gives the transpose of M , and adjoint(M) or M' gives the transpose con-
jugate. For a matrix with real-valued entries, both functions deliver the same result.

• zeros(Int, 4, 5) creates a 4× 5 matrix of zeros of type Int;

• ones(2, 2) creates a 2× 2 matrix of ones of type Float64;

• range(0, 1, length=101), or LinRange(0, 1, 101), creates an array of size 101 with
elements evenly spaced between 0 and 1 included. More precisely, range returns an array-
like object, which can be converted to a vector using the collect function.

• collect(reshape(1:9, 3, 3)) creates a 3× 3 matrix with elements1 4 7

2 5 8

3 6 9

Let us also mention the following shorthand notation, called array comprehension, for creating
vectors and matrices:

• [i^2 for i in 1:5] creates the vector [1, 4, 9, 16, 25].

• [i + 10*j for i in 1:4, j in 1:4] creates the matrix
11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

 .

• [i for i in 1:10 if ispow2(i)] creates the vector [1, 2, 4, 8]. The same result
can be achieved with the filter function: filter(ispow2, 1:10).

In contrast with Matlab, array assignment in Julia does not perform a copy. For example
the following code prints [1, 2, 3, 4], because the instruction b = a defines a new binding
to the array a.

221

Appendix B. Brief introduction to Julia

a = [2; 2; 3]
b = a
b[1] = 1
append!(b, 4)
println(a)

A similar behavior applies when passing an array as argument to a function, as we saw previ-
ously. The copy function can be used to perform a copy.

� Task 7. Create a 10 by 10 diagonal matrix with the i-th entry on the diagonal equal to i.

Broadcasting

To conclude this chapter, we briefly discuss broadcasting, which enables to apply functions to
array elements and to perform operations on arrays of different sizes. Julia really shines in this
area, with syntax that is both explicit and concise. Rather than providing a detailed definition
of broadcasting, which is available in this part of the official documentation, we illustrate the
concept using examples. Consider first the following code block:

function welcome(name)
return "Hello, " * name * "!"

end

result = broadcast(welcome, ["Alice", "Bob"])

Here broadcast returns an array with elements "Hello, Alice!" and "Hello, Bob!", as
would the map function. Broadcasting, however, is much more flexible because it can handle
arrays with different sizes. For instance, broadcast(gcd, 24, [10, 20, 30]) returns an array
of size 3 containing the greatest common divisors of the pairs (24, 10), (24, 20) and (24, 30).
Similarly, the instruction broadcast(+, 1, [1, 2, 3]) returns [2, 3, 4]. To understand
the latter example, note that + (as well as *, - and /) can be called like any other Julia
functions; the notation a + b is just syntactic sugar for +(a, b).

Since broadcasting is so often useful in numerical mathematics, Julia provides a shorthand
notation for it: the instruction broadcast(welcome, ["Alice", "Bob"]) can be written com-
pactly as welcome.(["Alice", "Bob"]). Likewise, the line broadcast(+, 1, [1, 2, 3]) can
be shortened to (+).(1, [1, 2, 3]), or to the more readable expression 1 .+ [1, 2, 3].

� Task 8. Explain in words what the following instructions do.

reshape(1:9, 3, 3) .* [1 2 3]
reshape(1:9, 3, 3) .* [1; 2; 3]
reshape(1:9, 3, 3) * [1; 2; 3]

222

https://docs.julialang.org/en/v1/manual/arrays/#Broadcasting

Appendix C

Chebyshev polynomials

The Chebyshev polynomials (Tn)n∈N are given on [−1, 1] by the formula

∀x ∈ [−1, 1], Tn(x) = cos
(
n arccos(x)

)
. (C.1)

Although this formula makes sense only if x ∈ [−1, 1], the polynomials are defined for all x ∈ R.
Equivalently, the Chebyshev polynomials can be defined from the equation

∀x ∈ [1,∞), Tn(x) = cosh
(
n arccosh(x)

)
, (C.2)

where cosh(θ) = 1
2

(
eθ + e−θ

)
and arccosh : [1,∞)→ [0,∞) is the inverse function of cosh. The

first few Chebyshev polynomials are illustrated in Figure C.1. It is immediate to show the
following properties from (C.1):

• The roots of Tn are given by

zk = cos
(
π

2n
+
kπ

n

)
, k = 0, . . . , n− 1.

These are illustrated in Figure C.2.

• The polynomial Tn takes the value 1 or -1 when evaluated at

xk = cos
(
kπ

n

)
, k = 0, . . . , n. (C.3)

More precisely, it holds that Tn(xk) = (−1)k.

� Exercise C.1. Show that (C.1) defines a polynomial of degree n, and find its expression in
the usual polynomial notation.

Solution. The key idea is to rewrite the cosine function in terms of the complex exponential:

cos(nθ) = 1

2

(
einθ + e−inθ) = 1

2

((
cos(θ) + i sin(θ)

)n
+
(
cos(θ)− i sin(θ)

)n)
.

223

Appendix C. Chebyshev polynomials

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

0

1 T0(x)

T1(x)

T2(x)

T3(x)

T4(x)

T5(x)

T6(x)

Figure C.1: Illustration of the first few Chebyshev polynomials over the interval [−1, 1].

By expanding the powers on the right-hand side, we obtain

(
cos(θ) + i sin(θ)

)n
=

n∑
j=0

(
n

j

)
cos(θ)n−j ij sin(θ)j

(
cos(θ)− i sin(θ)

)n
=

n∑
j=0

(
n

j

)
cos(θ)n−j (−i)j sin(θ)j .

The terms corresponding to odd values of j cancel out in the expression of cos(nθ), and so we obtain
the following expression for cos(nθ) in terms of cos(θ) and sin(θ):

cos(nθ) =
bn/2c∑
j=0

(
n

2j

)
cos(θ)n−2j i2j sin(θ)2j

=

bn/2c∑
j=0

(−1)j
(
n

2j

)
cos(θ)n−2j

(
1− cos(θ)2

)j
.

Therefore, we conclude that

Tn(x) =

bn/2c∑
j=0

(
n

2j

)
xn−2j

(
x2 − 1

)j
. (C.4)

4

� Exercise C.2. Show that the same polynomials are obtained from (C.2).

Solution. Notice that

cosh(nξ) = 1

2

(
enξ + e−nξ

)
=

1

2

((
cosh(ξ) + sinh(ξ)

)n
+
(
cosh(ξ)− sinh(ξ)

)n)
.

224

Appendix C. Chebyshev polynomials

Using the binomial formula, we obtain

cosh(nξ) = 1

2

n∑
j=0

(
n

j

)(
cosh(ξ)n−j sinh(ξ)j + cosh(ξ)n−j(−1)j sinh(ξ)j

)
=

1

2

n∑
j=0

(
n

j

)
cosh(ξ)n−j

(
sinh(ξ)j + (−1)j sinh(ξ)j

)
.

The contributions of the odd values of j cancel out, and so we obtain

cosh(nξ) =
bn/2c∑
j=0

(
n

2j

)
cosh(ξ)n−2j sinh(ξ)2j .

Since cosh(ξ)2 − sinh(ξ)2 = 1, we deduce that

cosh(nξ) =
bn/2c∑
j=0

(
n

j

)
cosh(ξ)n−2j(cosh(ξ)2 − 1)j ,

which after the substitution of ξ = arccosh(x) leads to (C.4). 4

� Exercise C.3 (Yet another expression for the Chebyshev polynomials). Show that Tn(x)
may be defined from the formula

Tn(x) =
1

2

(
x+

√
x2 − 1

)n
+

1

2

(
x−

√
x2 − 1

)n
for |x| ≥ 1. (C.5)

Solution. We showed in the solution of Exercise C.2 that

cosh(nξ) = 1

2

((
cosh(ξ) + sinh(ξ)

)n
+
(
cosh(ξ)− sinh(ξ)

)n)
.

Letting ξ = arccosh(x) in this equation and using that cosh(ξ)2 − sinh(ξ)2 = 1, we obtain

Tn(x) =
1

2

((
x+

√
x2 − 1

)n
+
(
x−

√
x2 − 1

)n)
,

which is the required formula. 4

� Exercise C.4 (Recursion relation). Show that the Chebyshev polynomials satisfy the relation

∀n ∈ {1, 2, . . . }, Tn+1 = 2xTn − Tn−1. (C.6)

Solution. It is sufficient to show the identity for x ∈ [−1, 1], where the formula (C.1) applies. Using
well-known trigonometric identities, we have

cos
(
(n+ 1)θ

)
= cos(nθ) cos(θ)− sin(nθ) sin(θ)

cos
(
(n− 1)θ

)
= cos(nθ) cos(θ) + sin(nθ) sin(θ).

Adding both equations and rearranging, we obtain

cos
(
(n+ 1)θ

)
= 2 cos(nθ) cos(θ)− cos

(
(n− 1)θ

)
.

225

Appendix C. Chebyshev polynomials

Therefore, using this equation with θ = arccos(x), we obtain the statement. 4

Remark C.1. The recursion relation in Exercise C.4 can be employed to show by recursion
that Tn(x) is indeed a polynomial of degree n.

� Exercise C.5. Since Tn : R→ R is a polynomial, it may be written in the standard form

Tn(x) = α(n)
n xn + . . .+ α

(n)
1 x+ α

(n)
0 .

Prove that α(n)
n = 2(n−1) provided that n > 1.

Solution. From the definition (C.1), the Chebyshev polynomials of degrees 0 and 1 are given by
T0(x) = 1 and T1(x) = x. The statement then follows by recursion, using Exercise C.4. 4

� Exercise C.6. Let ξ ∈ R\(−1, 1). Show that, among all the polynomials in P(n) that are
bounded from above by 1 in absolute value uniformly over the interval (−1, 1), the Chebyshev
polynomial Tn achieves the largest absolute value when evaluated at ξ.

Solution. Reasoning by contradiction, we assume that there exists p ∈ P(n) that satisfies

sup
x∈(−1,1)

|p(x)| 6 1 and |p(ξ)| > |Tn(ξ)|.

Let q(x) = p(x)Tn(ξ)/p(ξ). Then by construction q(ξ) = Tn(ξ) and

sup
x∈(−1,1)

|q(x)| < 1.

Consequently, denoting by xk the points defined in (C.3), we have that

∀k ∈ {0, . . . , n}, (−1)k(Tn − q)(xk) > 0.

In other words, the polynomial Tn − q takes positive values at {x0, x2, x4, . . . } and negative values
at {x1, x3, x5, . . . }. Consequently, by the intermediate value theorem, Tn−q possesses n distinct roots
in the open interval (−1, 1). Since, in addition, (Tn−q)(ξ) = 0, we deduce that Tn−q has n+1 distinct
roots, which is a contradiction given that Tn − q is a nonzero polynomial of degree at most n. 4

� Exercise C.7. Assume that 0 < λ1 < λ2. Prove that for any polynomial p ∈ P(n) that
satisfies p(0) = 1, it holds that

sup
λ∈(λ1,λ2)

|p(λ)| > 1

Tn(ξ)
, ξ :=

λ2 + λ1
λ2 − λ1

,

with equality for

p∗(λ) =
Tn

(
λ1+λ2−2λ
λ2−λ1

)
Tn

(
λ1+λ2
λ2−λ1

) . (C.7)

226

Appendix C. Chebyshev polynomials

1

z0z1z2z3z4z5z6z7

Figure C.2: Roots of the Chebyshev polynomial T8.

Solution. Assume that p ∈ P(n) is such that p(0) = 1, and let q ∈ P(n) be given by

q(µ) = p

(
λ1 + λ2 − (λ2 − λ1)µ

2

)
⇔ p(λ) = q

(
λ1 + λ2 − 2λ

λ2 − λ1

)
.

Since ξ > 1, it holds from (C.5) that Tn(ξ) > 0 and it follows from Exercise C.6 that

p(0) = q(ξ) 6 Tn(ξ) sup
µ∈(−1,1)

|q(µ)| = Tn(ξ) sup
λ∈(λ1,λ2)

|p(λ)|,

with equality when q ∝ Tn, i.e. when

p(λ) ∝ Tn
(
λ1 + λ2 − 2λ

λ2 − λ1

)
.

The expression (C.7) then follows from the fact that p∗(0) = 1. 4

227

Bibliography

[1] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings
of the 1969 24th national conference, pages 157–172, 1969.

[2] A. Ernst and G. Stoltz. Calcul Scientifique. Lecture notes at École des Ponts, 2014.
url: https://cermics.enpc.fr/cours/CS/poly.pdf.

[3] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
computing surveys (CSUR), 23(1):5–48, 1991.

[4] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985:1–20, 1985.
doi: 10.1109/IEEESTD.1985.82928.

[5] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008:1–70, 2008.
doi: 10.1109/IEEESTD.2008.4610935.

[6] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019:1–84, 2019.
doi: 10.1109/IEEESTD.2019.8766229.

[7] V. Legat. Mathématiques et méthodes numériques. Lecture notes for the course EPL1104 at École
polytechnique de Louvain, 2009.
url: https://perso.uclouvain.be/vincent.legat/documents/epl1104/epl1104-notes-v8-2.pdf.

[8] A. Magnus. Analyse numérique: approximation, interpolation, intégration. Lecture notes for the
course INMA2171 at École polytechnique de Louvain, 2010.
url: https://perso.uclouvain.be/alphonse.magnus/num1a/m2171l1.pdf.

[9] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several
variables, volume 30 of Classics in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719468.
url: https://doi-org.extranet.enpc.fr/10.1137/1.9780898719468.

[10] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics, volume 37 of Texts in
Applied Mathematics. Springer-Verlag, Berlin, second edition, 2007.
doi: 10.1007/b98885.

[11] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, second edition, 2003.
doi: 10.1137/1.9780898718003.
url: https://doi-org.extranet.enpc.fr/10.1137/1.9780898718003.

[12] Y. Saad. Numerical methods for large eigenvalue problems, volume 66 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611970739.ch1.
url: https://doi-org.extranet.enpc.fr/10.1137/1.9781611970739.ch1.

228

https://cermics.enpc.fr/cours/CS/poly.pdf
10.1109/IEEESTD.1985.82928
10.1109/IEEESTD.2008.4610935
10.1109/IEEESTD.2019.8766229
https://perso.uclouvain.be/vincent.legat/documents/epl1104/epl1104-notes-v8-2.pdf
https://perso.uclouvain.be/alphonse.magnus/num1a/m2171l1.pdf
10.1137/1.9780898719468
https://doi-org.extranet.enpc.fr/10.1137/1.9780898719468
10.1007/b98885
10.1137/1.9780898718003
https://doi-org.extranet.enpc.fr/10.1137/1.9780898718003
10.1137/1.9781611970739.ch1
https://doi-org.extranet.enpc.fr/10.1137/1.9781611970739.ch1

Bibliography

[13] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the agonizing
pain, 1994.
url: https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

[14] L. N. Trefethen. The definition of numerical analysis. Technical report, Cornell University, 1992.
url: https://cims.nyu.edu/~oneil/courses/sp18-math252/trefethen-def-na.pdf.

[15] P. Van Dooren. Analyse numérique. Lecture notes for the course INMA1170 at École polytech-
nique de Louvain, 2012.

[16] F. Verhulst. Nonlinear differential equations and dynamical systems. Universitext. Springer-
Verlag, Berlin, second edition, 1996.
doi: 10.1007/978-3-642-61453-8.
url: https://doi-org.extranet.enpc.fr/10.1007/978-3-642-61453-8.

[17] M. Vianello and R. Zanovello. On the superlinear convergence of the secant method. Amer.
Math. Monthly, 99(8):758–761, 1992.
doi: 10.2307/2324244.
url: https://doi-org.extranet.enpc.fr/10.2307/2324244.

[18] C Vuik and D. J. P. Lahaye. Scientific Computing. Lecture notes for the course wi4201 at Delft
University of Technology, 2019.
url: http://ta.twi.tudelft.nl/users/vuik/wi4201/wi4201_notes.pdf.

229

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://cims.nyu.edu/~oneil/courses/sp18-math252/trefethen-def-na.pdf
10.1007/978-3-642-61453-8
https://doi-org.extranet.enpc.fr/10.1007/978-3-642-61453-8
10.2307/2324244
https://doi-org.extranet.enpc.fr/10.2307/2324244
http://ta.twi.tudelft.nl/users/vuik/wi4201/wi4201_notes.pdf

	Notations
	Floating point arithmetic
	Binary representation of real numbers
	Set of values representable in floating point formats
	Arithmetic operations between floating point formats
	Encoding of floating point numbers
	Integer formats
	Exercises
	Discussion and bibliography

	Interpolation and approximation
	Interpolation
	Approximation
	Exercises
	Discussion and bibliography

	Numerical integration
	The closed Newton–Cotes method
	Composite methods with equidistant nodes
	Richardson extrapolation and Romberg's method
	Methods with non-equidistant nodes
	Introduction to probabilistic integration methods
	Exercises
	Discussion and bibliography

	Solution of linear systems of equation
	Conditioning
	Direct solution method
	Iterative methods for linear systems
	Exercises
	Discussion and bibliography

	Solution of nonlinear systems
	The bisection method
	Fixed point methods
	Convergence of fixed point methods
	Examples of fixed point methods
	A numerical experiment
	Exercises
	Discussion and bibliography

	Numerical computation of eigenvalues
	Numerical methods for eigenvalue problems: general remarks
	Simple vector iterations
	Methods based on a subspace iteration
	Projection methods
	Exercises
	Discussion and bibliography

	Numerical ordinary differential equations
	Analysis of the continuous problem
	One-step methods
	Multistep methods
	Absolute stability
	Exercises

	Optimization
	Definition and characterization of convexity
	Unconstrained optimization
	Constrained optimization

	Background material
	Inner products and norms
	Completeness
	Contraction mappings and the Banach fixed point theorem
	Vector norms
	Matrix norms
	Diagonalization and spectral theorem
	Similarity transformation and Jordan normal form
	Oldenburger's theorem and Gelfand's formula

	Brief introduction to Julia
	Chebyshev polynomials

