
Appendix A

Background material

In this chapter, we collect basic results that are useful for this course.

A.1 Inner products and norms

We begin by recalling the definitions of the fundamental concepts of norm and inner product.
For generality, we consider the case of a complex vector space, i.e. a vector space for which the
scalar field is C.

Definition A.1. A norm on a complex vector space X is a function ‖•‖ : X → R satisfying
the following axioms:

• Positivity: ∀x ∈ X\{0}, ‖x‖ > 0.

• Homogeneity: ∀(c,x) ∈ C ×X , ‖cx‖ = |c| ‖x‖.

• Triangular inequality: ∀(x,y) ∈ X × X , ‖x+ y‖ 6 ‖x‖+ ‖y‖.

For example, the Euclidean norm on Cn is given by

‖x‖ =
√
|x1|2 + . . .+ |xn|2.

Definition A.2. An inner product on a complex vector space X is a function

〈•, •〉 : X × X → C

satisfying the following axioms:

• Conjugate symmetry: Here • denotes the complex conjugate.

∀(x,y) ∈ X × X , 〈x,y〉 = 〈y,x〉.
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• Linearity: For all (α, β) ∈ C2 and all (x,y, z) ∈ X 3, it holds that

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉.

• Positive-definiteness:
∀x ∈ X\{0}, 〈x,x〉 > 0.

For example, the familiar Euclidean inner product on Cn is given by

〈x,y〉 :=
n∑

i=1

xiyi.

A vector space with an inner product is called an inner product space. Any inner product on X
induces a norm via the formula

‖x‖ =
√
〈x,x〉. (A.1)

The Cauchy–Schwarz inequality enables to bound inner products using norms. It is also useful
for showing that the functional defined in (A.1) satisfies the triangle inequality, which is the
goal of Exercise A.2.

Proposition A.1 (Cauchy–Schwarz inequality). Let X be an inner product space. Then

∀(x,y) ∈ X × X , |〈x,y〉| 6 ‖x‖‖y‖. (A.2)

Proof. The statement is obvious if y = 0, so we assume in the rest of the proof that y 6= 0. Let
us define p : R 3 t 7→ ‖x+ ty‖2. Using the bilinearity of the inner product, we have

p(t) = ‖x‖2 + 2t〈x,y〉+ t2‖y‖2.

This shows that p is a convex second-order polynomial with a minimum at t∗ = −〈x,y〉/‖y‖2.
Substituting this value in the expression of p, we obtain

p(t∗) = ‖x‖2 − 2
|〈x,y〉|2

‖y‖2
+

|〈x,y〉|2

‖y‖2
= ‖x‖2 − |〈x,y〉|2

‖y‖2
.

Since p(t∗) > 0 by definition of p, we obtain (A.2).

Several norms can be defined on the same vector space X . Two norms ‖•‖α and ‖•‖β on X
are said to be equivalent if there exist positive real numbers c` and cu such that

∀x ∈ X , c`‖x‖α 6 ‖x‖β 6 cu‖x‖α. (A.3)

As the terminology indicates, norm equivalence is an equivalence relation. When working with
norms on finite-dimensional vector spaces, it is important to keep in mind the following result.
The proof is provided for information purposes only.
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Proposition A.2. Assume that X is a finite-dimensional vector space. Then all the norms
defined on X are pairwise equivalent.

Proof. Let (e1, . . . , en) be a basis of X . Any x ∈ X admits a unique representation in this basis
as x = λ1e1+ · · ·+λnen. We will show that any norm ‖•‖ on X is equivalent to the norm ‖•‖∗
given by

‖x‖∗ = |λ1|+ . . .+ |λn|. (A.4)

By the triangle inequality, it holds that

‖x‖ 6 |λ1|‖e1‖+ · · ·+ |λn|‖en‖ 6
(
|λ1|+ · · ·+ |λn|

)
max

{
‖e1‖, . . . , ‖en‖

}
= ‖x‖∗ max

{
‖e1‖, . . . , ‖en‖

}
. (A.5)

It remains to show that there exists a positive constant ` such that

∀x ∈ X , ‖x‖ > `
(
|λ1|+ · · ·+ |λn|

)
. (A.6)

To this end, we reason by contradiction. If this inequality were not true, then there would
exist a sequence (x(i))i∈N such that ‖x(i)‖ → 0 as i → ∞ and ‖x(i)‖∗ = 1 for all i ∈ N.
Since λ

(i)
1 ∈ [−1, 1] for all i ∈ N, we can extract a subsequence, still denoted by (x(i))i∈N

for simplicity, such that the corresponding coefficient λ
(i)
1 satisfies λ

(i)
1 → λ∗

1 ∈ [−1, 1], by
compactness of the interval [−1, 1]. Repeating this procedure for λ2, λ3, . . . , taking a new
subsequence every time, we obtain a subsequence (x(i))i∈N such that λ

(i)
j → λ∗

j in the limit
as i → ∞, for all j ∈ {1, . . . , n}. Therefore, it holds that x(i) → x∗ := λ∗

1e1 + · · ·λ∗
nen in

the ‖•‖∗ norm, and thus also in the ‖•‖ norm by (A.5). Since x(i) → 0 in the latter norm by
assumption, we deduce that x∗ = 0. But the vectors e1, . . . , en are linearly independent, and
so this implies that λ∗

1 = · · · = λ∗
n = 0, which is a contradiction because we also have that

|λ∗
1|+ · · ·+ |λ∗

n| = lim
i→∞

∣∣λ(i)
1

∣∣+ · · ·+
∣∣λ(i)

n

∣∣ = 1.

This concludes the proof of (A.6).

� Exercise A.1. Show that ‖•‖∗ : X → R defined in (A.4) is indeed a norm.

� Exercise A.2. Using Proposition A.1, show that the function ‖•‖ defined by (A.1) satisfies
the triangle inequality.

A.2 Completeness

Assume that X is a vector space with a norm ‖•‖. Together, (X , ‖•‖) form a normed vector
space. A sequence (xn)n>0 in X is convergent in this space if there exists x∗ ∈ X such that

‖xn − x∗‖ → 0 in the limit n → ∞.

In this case, we write limn→∞ xn = x∗ or xn → x∗.
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Definition A.3 (Cauchy sequence). A sequence (xn)n>0 in X is said to be Cauchy if

lim
m,n→+∞

‖xn − xm‖ = 0.

The normed vector space (X , ‖•‖) is called complete if every Cauchy sequence is convergent.

Every convergent sequence is Cauchy, but the converse is not always true.

Example A.1. Consider the case where X = C([−1, 1]), the space of continuous functions
from [−1, 1] to R, endowed with the norm

‖f‖ =

∫ 1

−1
|f(x)|dx.

The sequence of functions (fn)n>0 in X given by

fn(x) = x
1

2n+1 (A.7)

is Cauchy but not convergent. Indeed, assume for contradiction that there existed f∗ ∈ X
such that

‖fn − f∗‖ −−−→
n→∞

0. (A.8)

Then f∗ necessarily coincides with sign function:

sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

However, this function is discontinuous, which contradicts the statement that f∗ ∈ X .

In this course, all the vector spaces encountered are complete. For example,

• Rn with any vector norm is complete;

• Cm×n with any matrix norm is complete.

In order to show that a sequence is convergent in a complete normed vector space, it is sufficient
to show that the sequence is Cauchy. This approach is used in Lemma 4.2 and Theorem A.3.

� Exercise A.3. Prove that every convergent sequence is Cauchy.

A.3 Contraction mappings and the Banach fixed point theorem

Let (X , ‖•‖) denote a normed vector space. A map φ : X → X is called a contraction mapping
if there is a constant L ∈ (0, 1) such that

∀(x, y) ∈ X × X , ‖φ(x)− φ(y)‖ 6 L‖x− y‖.

The importance of contraction mappings in this course stems from the following theorem.
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Theorem A.3 (Banach fixed point theorem). Let (X , ‖•‖) be a complete normed space, and
let φ : X → X be a contraction mapping. Then φ has a unique fixed point in X .

Proof. We prove first existence and then uniqueness.
Existence. Take x0 ∈ X , and define the sequence (xk)k∈N inductively by

xk+1 = φ(xk). (A.9)

It holds that

‖xk+1 − xk‖ = ‖φ(xk)− φ(xk−1)‖ 6 L‖xk − xk−1‖ 6 . . . 6 Lk‖x1 − x0‖.

Therefore, for any n > m, we have by the triangle inequality

‖xn − xm‖ 6 ‖xn − xn−1‖+ · · ·+ ‖xm+1 − xm‖

6 (Ln−1 + · · ·+ Lm)‖x1 − x0‖

6 Lm(1 + L+ L2 + · · · )‖x1 − x0‖ =
Lm

1− L
‖x1 − x0‖.

It follows that the sequence (xk)k∈N is Cauchy in X , implying by completeness that xk → x∗ in
the limit as k → ∞, for some limit x∗ ∈ X . Being a contraction, the mapping φ is continuous,
and so taking the limit k → ∞ in (A.9), we obtain that

x∗ = lim
k→∞

xk+1 = lim
k→∞

φ(xk) = φ

(
lim
k→∞

xk

)
= φ(x∗).

In other words, x∗ is a fixed point of φ.

Uniqueness. Assume that y∗ ∈ X is a fixed point. Then,

‖y∗ − x∗‖ = ‖φ(y∗)− φ(x∗)‖ 6 L‖y∗ − x∗‖,

which implies that y∗ = x∗ since L < 1.

Remark A.1. The Banach fixed point theorem holds also in complete metric spaces.

A.4 Vector norms

In the vector space Cn, the most commonly used norms are particular cases of the p-norm, also
called Hölder norm.

Definition A.4. Given p ∈ [1,∞], the p-norm of a vector x ∈ Cn is defined as follows:

‖x‖p :=

(
∑n

i=1|xi|p)
1
p if p < ∞,

max
{
|x1|, . . . , |xn|

}
if p = ∞.
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The values of p most commonly encountered in applications are 1, 2 and ∞. The 1-norm is
sometimes called the taxicab or Manhattan norm, and the 2-norm is usually called the Euclidean
norm. The explicit expressions of these norms are

‖x‖1 =
n∑

i=1

|xi|, ‖x‖2 =

√√√√ n∑
i=1

|xi|2.

Notice that the infinity norm ‖•‖∞ may be defined as the limit of the p-norm as p → ∞:

‖x‖∞ := lim
p→∞

‖x‖p.

In the rest of this chapter, the notations 〈•, •〉 and ‖•‖ without subscript always refer to the
Euclidean inner product (A.1) and induced norm, unless specified otherwise.

A.5 Matrix norms

Given two norms ‖•‖α and ‖•‖β on Cm and Cn, respectively, we define the operator norm
induced by ‖•‖α and ‖•‖β of the matrix A as

‖A‖α,β = sup
{
‖Ax‖α : x ∈ Cn, ‖x‖β 6 1

}
. (A.10)

The term operator norm is motivated by the fact that, to any matrix A ∈ Cm×n, there nat-
urally corresponds the linear operator from Cn to Cm with action x 7→ Ax. Matrix norms
of the type (A.10) are also called subordinate matrix norms. An immediate corollary of the
definition (A.10) is that, for all x ∈ Cn,

‖Ax‖α = ‖Ax̂‖α‖x‖β 6 sup
{
‖Ay‖α : ‖y‖β 6 1

}
‖x‖β = ‖A‖α,β‖x‖β, x̂ =

x

‖x‖β
. (A.11)

� Exercise A.4. Show that equation (A.10) defines a norm on Cm×n.

The matrix p-norm is defined as the operator norm (A.10) in the particular case where ‖•‖α
and ‖•‖β are both Hölder norms with the same value of p.

Definition A.5. Given p ∈ [1,∞], the p-norm of a matrix A ∈ Cm×n is given by

‖A‖p := sup
{
‖Ax‖p : x ∈ Cn, ‖x‖p 6 1

}
. (A.12)

Not all matrix norms are induced by vector norms. For example, the Frobenius norm, which
is widely used in applications, is not induced by a vector norm. It is, however, induced by an
inner product on Cm×n.
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Definition A.6. The Frobenius norm of A ∈ Cm×n is given by

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
 1

2

. (A.13)

A matrix norm ‖•‖ is said to be submultiplicative if, for any two matrices A ∈ Cm×n

and B ∈ Cn×`, it holds that
‖AB‖ 6 ‖A‖‖B‖.

All subordinate matrix norms, for example the p-norms, are submultiplicative, and so is the
Frobenius norm.

� Exercise A.5. Write down the inner product on Cm×n corresponding to (A.13).

� Exercise A.6. Show that the matrix p-norm is submultiplicative.
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A.6 Diagonalization and spectral theorem

Definition A.7. A square matrix A ∈ Cn×n is said to be diagonalizable if there exists an
invertible matrix P ∈ Cn×n and a diagonal matrix D ∈ Cn×n such that

AP = PD. (A.14)

In this case, the diagonal elements of D are called the eigenvalues of A, and the columns of P
are called the eigenvectors of A.

Denoting by ei the i-th column of P and by λi the i-th diagonal element of D, we have by (A.14)
that Aei = λiei or, equivalently, (A−λiIn)ei = 0. Here In is the Cn×n identity matrix. Therefore,
a complex number λ is an eigenvalue of A if and only if det(A − λIn) = 0. In other words, the
eigenvalues of A are the roots of det(A − λIn), which is called the characteristic polynomial.

Symmetric matrices and spectral theorem

The transpose of a matrix A ∈ Cm×n is denoted by AT ∈ Cn×m and defined as the matrix with
entries aTij = aji. The conjugate transpose of A, denoted by A∗, is the matrix obtained by taking
the transpose and taking the complex conjugate of all the entries. A real matrix that is equal to
its transpose is necessarily square and called symmetric, and a complex matrix that is equal to its
conjugate transpose is called Hermitian. Hermitian matrices, of which real symmetric matrices
are a subset, enjoy many nice properties, the main one being that they are diagonalizable with
a matrix Q that is unitary, i.e. such that Q−1 = Q∗. This is the content of the spectral theorem,
a pillar of linear algebra with important generalizations to infinite-dimensional operators.

Theorem A.4 (Spectral theorem for Hermitian matrices). If A ∈ Cn×n is Hermitian, then
there exists an unitary matrix Q ∈ Cn×n and a diagonal matrix D ∈ Rn×n such that

AQ = QD.

Sketch of the proof. The result is trivial for n = 1. Reasoning by induction, we assume that the
result is true for Hermitian matrices in Cn−1×n−1 and prove that it then also holds for A ∈ Cn×n.

Step 1. Existence of a real eigenvalue. By the fundamental theorem of algebra, there
exists at least one solution λ1 ∈ C to the equation det(A−λIn) = 0, to which there corresponds
at least one solution q1 ∈ Cn of norm 1 to the equation (A − λ1In)q1 = 0. The eigenvalue λ1 is
necessarily real because

λ1〈q1, q1〉 = 〈λ1q1, q1〉 = 〈Aq1, q1〉 = 〈q1,Aq1〉 = 〈q1, λ1q1〉 = λ1〈q1, q1〉.

Step 2. Using the induction hypothesis. Next, take an orthonormal basis (e2, . . . , en)

of the orthogonal complement Span{q1}⊥ and construct the unitary matrix

V =
(
q1 e2 . . . en

)
,
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i.e. the matrix with columns q1, e2, etc. A calculation gives,

V∗AV =


〈q1,Aq1〉 〈q1,Ae2〉 . . . 〈q1,Aen〉
〈e2,Aq1〉 〈e2,Ae2〉 . . . 〈e2,Aen〉

...
... . . . ...

〈en,Aq1〉 〈en,Ae2〉 . . . 〈en,Aen〉

 =


λ1 0 . . . 0

0 〈e2,Ae2〉 . . . 〈e2,Aen〉
...

... . . . ...
0 〈en,Ae2〉 . . . 〈en,Aen〉

 .

Let us denote the n− 1× n− 1 lower right block of this matrix by Vn−1. This is a Hermitian
matrix of size n−1 so, using the induction hypothesis, we deduce that Vn−1 = Qn−1Dn−1Q∗

n−1 for
appropriate matrices Qn−1 ∈ Cn−1×n−1 and Dn−1 ∈ Rn−1×n−1 which are unitary and diagonal,
respectively.

Step 3. Constructing Q and D. Define now

Q = V
(
1 0T

0 Qn−1

)
.

It is not difficult to verify that Q is a unitary matrix, and we have

Q∗AQ =

(
1 0T

0 Q∗
n−1

)
V∗AV

(
1 0T

0 Qn−1

)
=

(
1 0T

0 Q∗
n−1

)(
λ1 0T

0 Vn−1

)(
1 0T

0 Qn−1

)
.

Developing the last expression, we obtain

Q∗AQ =

(
λ1 0T

0 Dn−1

)
,

which concludes the proof.

We deduce, as a corollary of the spectral theorem, that if e1 and e2 are eigenvectors of a
Hermitian matrix associated with different eigenvalues, then they are necessarily orthogonal for
the Euclidean inner product. Indeed, since A = A∗ and the eigenvalues are real, it holds that

(λ1 − λ2)〈e1, e2〉 = 〈λ1e1, e2〉 − 〈e1, λ2e2〉

= 〈Ae1, e2〉 − 〈e1,Ae2〉 = 〈Ae1, e2〉 − 〈A∗e1, e2〉 = 0.

The largest eigenvalue of a matrix, in modulus, is called the spectral radius and denoted by ρ.
The following result relates the 2-norm of a matrix to the spectral radius of AA∗.

Proposition A.5. It holds that ‖A‖2 =
√
ρ(A∗A).

Proof. Since A∗A is Hermitian, it holds by the spectral theorem that A∗A = QDQ∗ for some
unitary matrix Q and real diagonal matrix D. Therefore, denoting by (µi)16i6n the (positive)
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diagonal elements of D and introducing y := Q∗x, we have

‖Ax‖ =
√
x∗A∗Ax =

√
x∗QDQ∗x

=

√√√√ n∑
i=1

µiy2i 6
√

ρ(A∗A)

√√√√ n∑
i=1

y2i =
√

ρ(A∗A)‖x‖, (A.15)

where we used in the last equality the fact that y has the same norm as x, because Q is
unitary. It follows from (A.15) that ‖A‖ 6

√
ρ(A∗A), and the converse inequality also holds

true since ‖Ax‖ =
√
ρ(A∗A)‖x‖ if x is the eigenvector of A∗A corresponding to an eigenvalue

of modulus ρ(A∗A).

To conclude this section, we recall and prove the Courant–Fisher theorem.

Theorem A.6 (Courant–Fisher Min-Max theorem). The eigenvalues λ1 > λ2 > · · · > λn of
a Hermitian matrix are characterized by the relation

λk = max
S,dim(S)=k

(
min

x∈S\{0}

x∗Ax
x∗x

)
. (A.16)

Proof. Let v1, . . . ,vn be normalized and pairwise orthogonal eigenvectors associated with the
eigenvalues λ1, . . . , λn, and let Sk = Span{v1, . . . ,vk}. Any x ∈ Sk may be expressed as a linear
combination x = α1v1 + · · ·+ αkvk, and so

∀x ∈ Sk,
x∗Ax
x∗x

=

∑k
i=1 λi|αi|2∑k
i=1|αi|2

> λk.

Therefore, it holds that
min

x∈Sk\{0}

x∗Ax
x∗x

> λk,

which proves the > direction of (A.16). For the 6 direction, let Uk = Span{vk, . . .vn}. Using a
well-known result from linear algebra, we calculate that, for any subspace S ⊂ Cn of dimension k,

dim(S ∩ Uk) = dim(S) + dim(Uk)− dim(S + Uk)

> k + (n− k + 1)− n = 1.

Therefore, any S ⊂ Cn of dimension k has a nonzero intersection with Uk. But since any vector
in Uk can be expanded as β1vk + · · ·+ βnvn, we have

∀x ∈ Uk,
x∗Ax
x∗x

=

∑n
i=k λi|αi|2∑n
i=k|αi|2

6 λk.

This shows that
∀S ⊂ Cn with dim(S) = k, min

x∈S\{0}

x∗Ax
x∗x

6 λk,

which enables to conclude the proof.

� Exercise A.7. Prove that if A ∈ Rn×n is diagonalizable as in (A.14), then An = PDnP−1.
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A.7 Similarity transformation and Jordan normal form

In this section, we work with matrices in Cn×n. A similarity transformation is a mapping of
the type Cn×n 3 A 7→ P−1AP ∈ Cn×n, where P ∈ Cn×n is a nonsingular matrix. If two matrices
are related by a similarity transformation, then they are called similar, because they may be
viewed as two representations of the same linear mapping in different bases.

Definition A.8 (Jordan block). A Jordan block with dimension n is a matrix of the form

Jn(λ) =



λ 1

λ 1
. . . . . .

λ 1

λ


The parameter λ ∈ C is called the eigenvalue of the Jordan block.

A Jordan block is diagonalizable if and only if it is of dimension 1. The only eigenvector of
a Jordan block is

(
1 0 . . . 0

)T
. The power of a Jordan block admits an explicit expres-

sion.

Lemma A.7. It holds that

Jn(λ)k =



λk
(
k
1

)
λk−1

(
k
2

)
λk−2 · · · · · ·

(
k

n−1

)
λk−n+1

λk
(
k
1

)
λk−1 · · · · · ·

(
k

n−2

)
λk−n+2

. . . . . . ...
. . . . . . ...

λk
(
k
1

)
λk−1

λk


. (A.17)

Proof. The explicit expression of the Jordan block can be obtained by decomposing the block
as Jn(λ) = λI + N and using the binomial formula:

(λI + N)k =
k∑

i=1

(
k

i

)
(λI)k−iNi.

To conclude the proof, we use the fact that Ni is a matrix with zeros everywhere except for i-th
super-diagonal, which contains only ones. Moreover Ni = 0n×n if i > n.

A matrix is said to be of Jordan normal form if it is block-diagonal with Jordan blocks on
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the diagonal. In other words, a matrix J ∈ Cn×n is of Jordan normal form if

J =



Jn1(λ1)

Jn2(λ2)
. . .

Jnk−1
(λk−1)

Jnk
(λk)


with n1 + · · ·+ nk = n. Note that λ1, . . . , λk are the eigenvalues of A. We state without proof
the following important result.

Proposition A.8 (Jordan normal form). Any matrix A ∈ Cn×n is similar to a matrix in
Jordan normal form. In other words, there exists an invertible matrix P ∈ Cn×n and a matrix
in normal Jordan form J ∈ Cn×n such that

A = PJP−1

A.8 Oldenburger’s theorem and Gelfand’s formula

The following result establishes a necessary and sufficient condition for the convergence of ‖Ak‖
to 0 in terms of the spectral radius of A, and for any matrix norm ‖•‖.

Proposition A.9 (Oldenburger). Let ρ(A) denote the spectral radius of A ∈ Cn×n and ‖•‖
be a matrix norm. Then

• ‖Ak‖ → 0 in the limit as k → ∞ if and only if ρ(A) < 1.

• ‖Ak‖ → ∞ in the limit as k → ∞ if and only if ρ(A) > 1.

Proof. Since all matrix norms are equivalent, we can assume without loss of generality that ‖•‖ is
the 2-norm. We prove only the equivalence ‖Ak‖ → 0 ⇔ ρ(A) < 1. The other statement can be
proved similarly. By Proposition A.8, there exists a nonsingular matrix P such that A = PJP−1,
for a matrix J ∈ Cn×n which is in normal Jordan form. Since ρ(A) = ρ(J) and ‖Ak‖ → 0 if
and only if ‖Jk‖ → 0, it is sufficient to show that ‖Jk‖ → 0 ⇔ ρ(J) < 1. The latter statement
follows from the expression of the power of a Jordan block given in Lemma A.7.

With this result, we can prove Gelfand’s formula, which relates the spectral radius to the
asymptotic growth of ‖Ak‖, and is used in Chapter 4.

Proposition A.10 (Gelfand’s formula). Let A ∈ Cn×n. It holds for any norm that

lim
k→∞

‖Ak‖
1
k = ρ(A)

Proof. Let 0 < ε < ρ(A) and define A+ = A
ρ(A)+ε and A− = A

ρ(A)−ε . It holds by construction
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that ρ(A+) < 1 and ρ(A−) > 1. Using Proposition A.9, we deduce that

lim
k→∞

‖(A+)k‖ = 0, lim
k→∞

‖(A−)k‖ = ∞.

Therefore, it holds that

lim sup
k→∞

∥∥∥(A+)k
∥∥∥ 1

k
6 1, lim inf

k→∞

∥∥∥(A−)k
∥∥∥ 1

k
> 1.

Substituting the expressions of A+ and A−, we deduce that

lim sup
k→∞

∥∥∥Ak
∥∥∥ 1

k
6 ρ(A) + ε, lim inf

k→∞

∥∥Ak
∥∥ 1

k > ρ(A)− ε.

Since ε was arbitrary, we obtain that

ρ(A) 6 lim inf
k→∞

∥∥Ak
∥∥ 1

k 6 lim sup
k→∞

∥∥Ak
∥∥ 1

k 6 ρ(A),

which implies the statement.
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