
Chapter 3

Numerical integration

Introduction

Integrals are ubiquitous in science and mathematics. In this chapter, we are concerned with the
problem of calculating numerically integrals of the form

I =

∫
Ω
u(x)dx, (3.1)

Perhaps somewhat surprisingly, the numerical calculation of such integrals when n � 1 is still
a very active area of research today. In this chapter, however, we will focus for simplicity on
the one-dimensional setting where Ω = [a, b] ⊂ R. We assume throughout this chapter that the
function u is Riemann-integrable. Then, by definition,

I = lim
h→0

n−1∑
i=0

u(ti)(zi+1 − zi),

where a = z0 < · · · < zn = b is a partition of the interval [a, b] such that the maximum spacing
between successive x values is equal to h, and with ti ∈ [xi, xi+1] for all i ∈ {0, . . . , n− 1}.

All the numerical integration formulas that we present in this chapter are based on a deter-
ministic approximation of the form

Î =

n∑
i=0

wiu(xi), (3.2)

where x0 < . . . < xn are the integration points and w0, . . . , wn are the integration weights. In
many cases, integration formulas contain a small parameter that can be refined to improve the
accuracy of the approximation. In methods based on equidistant interpolation nodes, for exam-
ple, this parameter encodes the distance between nodes and is typically denoted by h. We shall
often use the notation Îh to emphasize the dependence of the approximation on h. The differ-
ence Eh = I − Îh is called the integration error or discretization error. The degree of precision,
defined hereafter, is an important measure of the quality of quadrature rule.
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Chapter 3. Numerical integration

Definition 3.1. The degree of precision of an integration method is the smallest integer
number d such that the integration error is zero for all u ∈ P(d), i.e. for all the polynomials
of degree less than or equal to d.

We observe that, without loss of generality, we can assume that the integration interval is
equal to [−1, 1]. Indeed, using the change of variable

ζ : [−1, 1] → [a, b];

y 7→ b+ a

2
+

(b− a)

2
y, (3.3)

we have ∫ b

a
u(x)dx =

∫ 1

−1
u
(
ζ(y)

)
ζ ′(y)dy =

b− a

2

∫ 1

−1
u ◦ ζ(y)dy, (3.4)

and the right-hand side is the integral of u ◦ ζ over the interval [−1, 1].

3.1 The closed Newton–Cotes method

Given a set of equidistant points −1 = x0 < · · · < xn = 1, a natural method for approximating
the integral (3.1) of a function u : [−1, 1] → R is to first construct the interpolating polynomial û
at the nodes, and then calculate the exact integral of this polynomial. By construction, this
method is exact for polynomials of degree up to n, and so the degree of precision is equal to at
least n. Let ϕ0, . . . , ϕn denote the Lagrange polynomials associated with the integration nodes.
Then we have

I ≈
∫ 1

−1
û(x)dx =

∫ 1

−1

n∑
i=0

u(xi)ϕi(x)dx =

n∑
i=0

u(xi)

∫ 1

−1
ϕi(x)dx︸ ︷︷ ︸
wi

.

The weights are independent of the function u, and so they can be calculated a priori. The class
of integration methods obtained using this approach are known as Newton–Cotes methods. We
present a few particular cases:

• n = 1, d = 1 (trapezoidal rule):∫ 1

−1
u(x) dx ≈ u(−1) + u(1). (3.5)

• n = 2, d = 3 (Simpson’s rule):∫ 1

−1
u(x) dx ≈ 1

3
u(−1) +

4

3
u(0) +

1

3
u(1). (3.6)

• n = 3, d = 3 (Simpson’s 3
8 rule):∫ 1

−1
u(x) dx ≈ 1

4
u(−1) +

3

4
u(−1/3) +

3

4
u(1/3) +

1

4
u(1).
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Chapter 3. Numerical integration

• n = 4, d = 5 (Boole’s rule):∫ 1

−1
u(x) dx ≈ 7

45
u(−1) +

32

45
u

(
−1

2

)
+

12

45
u (0) +

32

45
u

(
1

2

)
+

7

45
u(1).

Remark 3.1. Note that, although it is based on a quadratic polynomial interpolation, Simp-
son’s rule (3.6) has a degree of precision equal to 3. This is because any integration rule
with nodes and weights symmetric around x = 0 is exact for odd functions, in particular x3.
Likewise, the degree of precision of Boole’s rule is equal to 5.

In principle, this approach could be employed in order to construct integration rules of
arbitrary high degree of precision. In practice, however, the weights become more and more
imbalanced as the number of interpolation points increases, with some of them becoming neg-
ative. As a result, roundoff errors become increasingly detrimental to accuracy. In addition, in
cases where the interpolating polynomial does not converge to u, for example if u is Runge’s
function, the approximate integral may not converge to the correct value in the limit as n → ∞,
even in exact arithmetic!

The integration rules presented in this section, which are based on equidistant nodes that
include the endpoints of the integration interval, are called closed Newton–Cotes methods. A
similar approach can be employed in order to construct to integration rules based on equidistant
nodes that do not include the endpoints; these are called open Newton–Cotes methods.

3.2 Composite methods with equidistant nodes

A natural alternative to the approach presented in Section 3.1 is to construct an integration rule
using piecewise polynomial interpolation, which we studied in Section 2.1.7. After partitioning
the integration interval in a number of subintervals, the integral can be approximated by using
one of the rules presented in Section 3.1 within each subinterval.

Composite trapezoidal rule. Let us illustrate the composite approach with an example. To
this end, we introduce a partition a = x0 < · · · < xn = b of the interval [a, b] and assume that
the nodes are equidistant with xi+1 − xi = h. Using (3.4) with a = xi and b = xi+1, we first
generalize (3.5) to an interval [xi, xi+1] as follows:∫ xi+1

xi

u(x)dx =
h

2

∫ 1

−1
u ◦ ζ(y)dy ≈ h

2

(
u ◦ ζ(−1) + u ◦ ζ(1)

)
=

h

2

(
u(xi) + u(xi+1)

)
,

where ≈ in this equation indicates approximation using the trapezoidal rule. Applying this
approximation to each subinterval of the partition, we obtain the composite trapezoidal rule:

∫ b

a
u(x)dx =

n−1∑
i=0

∫ xi+1

xi

u(x)dx ≈ h

2

n−1∑
i=0

(
u(xi) + u(xi+1)

)
=

h

2

(
u(x0) + 2u(x1) + 2u(x2) + · · ·+ 2u(xn−2) + 2u(xn−1) + u(xn)

)
. (3.7)
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Chapter 3. Numerical integration

Like the trapezoidal rule (3.5), the composite trapezoidal rule (3.7) has a degree of precision
equal to 1. However, the integration error of the method depends on the parameter h, which
represents the width of each subinterval: for very small h, equation (3.7) is expected to provide
a good approximation of the integral. An error estimate can be obtained directly from the
formula in Theorem 2.3 for the interpolation error, provided that we assume that u ∈ C2[a, b].

Theorem 3.1 (Integration error for the composite trapezoidal rule). Let Îh denote the ap-
proximate integral calculated using (3.7). Then

∣∣I − Îh
∣∣ 6 b− a

12
C2h

2, C2 := sup
ξ∈[a,b]

∣∣u′′(ξ)∣∣. (3.8)

Proof. Denoting by ûh the piecewise linear interpolation of u, we have∫ xi+1

xi

u(x)− û(x)dx =
1

2

∫ xi+1

xi

u′′
(
ξ(x)

)
(x− xi)(x− xi+1)dx.

Since (x− xi)(x− xi+1) is nonpositive over the interval [xi, xi+1], we deduce that∣∣∣∣∫ xi+1

xi

u(x)− û(x)dx
∣∣∣∣ 6 1

2

(
sup

ξ∈[a,b]

∣∣u′′(ξ)∣∣)∫ xi+1

xi

(x− xi)(xi+1 − x)dx = C2
h3

12
.

Summing the contributions of all the intervals, we obtain

∣∣I − Îh
∣∣ 6 n−1∑

i=0

∣∣∣∣∫ xi+1

xi

u(x)− û(x)dx
∣∣∣∣ 6 n× C2

h3

12
=

b− a

12
C2h

2,

which concludes the proof.

The integration error therefore scales as O(h2). (Strictly speaking, we have shown only that
the integration error admits an upper bound that scales at O(h2), but it turns out that the
dependence on h of this bound is optimal).

Example 3.1 (Integration error for the composite trapezoidal rule). Let us approximate the
integral of x2 over [0, 1] via the trapezoidal rule. In other words, let us calculate the right-hand
side of ∫ 1

0
x2 dx ≈ h

2

(
x20 + 2x21 + . . .+ 2x2n−1 + x2n

)
,

which we shall denote Îh hereafter. Using xi = ih, and xn = 1, we obtain

Îh =
h

2

(
2h2

n−1∑
i=1

i2 + 1

)
=

h

2

(
h2

3
(n− 1)n(2n− 1) + 1

)
=

h

2

(
h2

3
(2n3 − 3n2 + n) + 1

)
.

Now, observing that n = 1/h yields

Îh =
h

2

(
h2

3
(2h−3 − 3h−2 + h−1) + 1

)
=

h

2

(
2

3
h−1 − 1 +

h

3
+ 1

)
=

1

3
+

h2

6
,

58



Chapter 3. Numerical integration

which is exactly the error shown by Theorem 3.1.

Composite Simpson rule. The composite Simpson rule is derived in Exercise 3.2. Given an
odd number n+ 1 of equidistant points a = x0 < x1 < · · · < xn = b, this rule is given by

Îh =
h

3

(
u(x0)+4u(x1)+2u(x2)+4u(x3)+2u(x4)+ · · ·+2u(xn−2)+4u(xn−1)+u(xn)

)
. (3.9)

This approximation is obtained by integrating the piecewise quadratic interpolant over a par-
tition of the integration interval into n/2 subintervals of equal width. Obtaining an optimal
error estimate, in terms of the dependence on h, for this integration formula is slightly more
involved.

Theorem 3.2 (Integration error for the composite Simpson rule). Let Îh denote the approx-
imate integral calculated using (3.9). Then

∣∣I − Îh
∣∣ 6 (b− a)

C4h
4

180
, C4 := sup

ξ∈[a,b]

∣∣∣u(4)(ξ)∣∣∣. (3.10)

Proof. For a given subinterval [x2i, x2i+2], let us denote by û2 the quadratic interpolating poly-
nomial at x2i, x2i+1, x2i+2, and by û3(•;α) the cubic interpolating polynomial relative to the
nodes x2i, x2i+1, x2i+2, α, for some α ∈ [x2i, x2i+1] that does not coincide with the integration
nodes. We have∫ x2i+2

x2i

u(x)− û2(x)dx =

∫ x2i+2

x2i

u(x)− û3(x;α)dx+

∫ x2i+2

x2i

û3(x;α)− û2(x)dx. (3.11)

The second term on the right-hand side is zero, because the integrand is a cubic polynomial
with zeros at x2i, x2i+1 and x2i+2, and because∫ x2i+2

x2i

(x− x2i)(x− x2i+1)(x− x2i+2) = 0.

By Theorem 2.3, the first term in (3.11) is bounded from above as follows:∣∣∣∣∫ x2i+2

x2i

u(x)− û3(x;α)dx
∣∣∣∣ 6 ∫ x2i+2

x2i

∣∣∣∣∣u(4)
(
ξ(x)

)
24

(x− x2i)(x− x2i+1)(x− x2i+2)(x− α)

∣∣∣∣∣ dx

6
C4

24

∫ x2i+2

x2i

∣∣(x− x2i)(x− x2i+1)(x− x2i+2)(x− α)
∣∣dx.

This inequality is valid for any α ∈ A := [x2i, x2i+2]\{x2i, x2i+1, x2i+2}. Denoting by h(α) the
integral on the right-hand side, we observe that

lim
α→x2i+1

h(α) =

∫ x2i+2

x2i

(x− x2i)(x− x2i+1)
2(x2i+2 − x)dx =

4

15
h5.
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Chapter 3. Numerical integration

Therefore, we conclude that∣∣∣∣∫ x2i+2

x2i

u(x)− û2(x)dx
∣∣∣∣ 6 inf

α∈A

∣∣∣∣∫ x2i+2

x2i

u(x)− û3(x;α)dx
∣∣∣∣ 6 C4

90
h5.

Summing the contributions of all the subintervals, we finally obtain

|I − Îh| 6
n

2
× C4h

5

90
= (b− a)

C4h
4

180
, (3.12)

which concludes the proof.

Remark 3.2. The cancellation of the second term in (3.11) also follows from the fact that the
degree of precision of the Simpson rule (3.6) is equal to 3, and so∫ x2i+2

x2i

û3(x)− û2(x)dx =
1

3
(û3 − û2)(x2i) +

4

3
(û3 − û2)(x2i+1) +

1

3
(û3 − û2)(x2i+2) = 0,

where we used the short-hand notation û3(x) = û3(x;α).

General composite quadrature rules. In view of (3.4), any quadrature rule with N + 1 inte-
gration points of the form ∫ 1

−1
u(x)dx ≈

N∑
j=0

wju(xj) (3.13)

admits a composite version for an arbitrary integration interval [a, b] obtained by applying the
rule locally in M equally-sized subintervals:

∫ b

a
u(x)dx ≈ h

2

M−1∑
i=0

N∑
j=0

wju

(
a+ ih+

h

2
+

xjh

2

)
, h :=

b− a

M
. (3.14)

Clearly, the single-interval rule (3.13) and the composite rule (3.14) have the same degree of
precision. To conclude this section, we prove a relation between this degree of precision of a
rule and the convergence rate with respect to h of the composite rule (3.14).

Theorem 3.3. Suppose that the degree of precision of the single-interval rule (3.13) is equal
to d. Then for any u ∈ C(d+1)[a, b], there is c > 0 such that

∀M > 1,
∣∣∣I[u]− Îh[u]

∣∣∣ 6 chd+1, c :=
Cd+1(b− a)

(d+ 1)!

(
1 +

1

2

J∑
i=0

|wj |

)
. (3.15)

Here I[u] and Îh[u] denote respectively the left-hand side and the right-hand side of (3.14),
and Cd+1 is defined in (3.17).

Proof. Fix i ∈ {0, . . .M−1}, and let pi denote the Taylor expansion of degree d of the function u
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around zi := a+ ih:

pi(x) = u(zi) + u′(zi)(x− zi) + . . .+
u(d)(zi)

d!
(x− zi)

d. (3.16)

By the mean-value form of the remainder, it is simple to prove that

∀x ∈ [zi, zi+1],
∣∣u(x)− pi(x)

∣∣ = Cd+1

(d+ 1)!
hd+1, Cd+1 = sup

x∈[a,b]

∣∣∣u(d+1)(x)
∣∣∣. (3.17)

Let us define the local contributions to the total integral as follows:

I(i)[u] :=

∫ zi+1

zi

u(x)dx, Î
(i)
h [u] =

h

2

N∑
i=0

wiu

(
zi +

h

2
+

xih

2

)
,

so that I[u] =
∑M−1

i=1 I(i)[u] and Îh[u] =
∑M−1

i=1 Î
(i)
h [u]. Since p is a polynomial of degree at

most d, it follows that∣∣∣I(i)[u]− Î
(i)
h [u]

∣∣∣ = ∣∣∣I(i)[u]− I(i)[p] + Î
(i)
h [p]− Î

(i)
h [u]

∣∣∣
6
∣∣∣I(i)[u]− I(i)[p]

∣∣∣+∣∣∣Î(i)h [u]− Î
(i)
h [p]

∣∣∣= ∣∣∣I(i)[u− p]
∣∣∣+∣∣∣Î(i)h [u− p]

∣∣∣,
where we used the triangle inequality and linearity in the second line. Thus, using (3.17) we
deduce that

∣∣∣I(i)[u]− Î
(i)
h [u]

∣∣∣ 6 Cd+1

(d+ 1)!
hd+1

∫ zi+1

zi

1dx+
h

2

Cd+1

(d+ 1)!
hd+1

J∑
i=0

|wj |

=
Cd+1

(d+ 1)!
hd+2

(
1 +

1

2

J∑
i=0

|wj |

)
.

Summing the contributions of the local errors, we obtain

∣∣∣I[u]− Îh[u]
∣∣∣ 6 M−1∑

i=0

∣∣∣I(i)[u]− Î
(i)
h [u]

∣∣∣ 6 M
Cd+1

(d+ 1)!
hd+2

(
1 +

1

2

J∑
i=0

|wj |

)
,

which leads to the result since Mh = b− a.

Remark 3.3. A few comments are in order.

• The constant c in (3.15) is not sharp in general, but the power of h is optimal.

• This result may be viewed as a generalization of Theorems 3.1 and 3.2, albeit with a
worse constant prefactor.

• Instead of the polynomial pi in (3.16), we could have used any polynomial approximation
of u such that (3.17) is satisfied, with possibly a different prefactor but the same power
of h on the right-hand side. A natural choice, for example, would have been to define pi
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by interpolation through (possibly a subset or superset of) the local integration points.

• Theorem 3.3 further motivates why the degree of precision of an integration rule is an
interesting metric.

Estimating the error a posteriori. In practice, it is useful to be able to estimate the integration
error so that, if the error is deemed too large, a better approximation of the integral can be
calculated by using a smaller value for the step size h. Calculating the exact error I − Îh is
impossible in general, because this would require to know the exact value of the integral, but it is
possible to calculate a rough approximation of the error based on two numerical approximations
of the integral, as we illustrate formally hereafter for the composite Simpson rule.

Suppose that Î2h and Îh are two approximations of the integral, calculated using the compos-
ite Simpson rule with step size 2h and h, respectively. If we assume that the error proportionally
to O(h4) as (3.12) suggests, then it holds approximately that

I − Îh ≈ 1

24
(I − Î2h). (3.18)

This implies that

I − Î2h = (I − Îh) + (Ih − Î2h) ≈
1

16
(I − Î2h) + (Îh − Î2h).

Rearranging this equation gives an approximation of the error for Î2h:

I − Î2h ≈ 16

15
(Îh − Î2h).

Using (3.18), we can then derive an error estimate for Îh:

|I − Îh| ≈
1

15
|Îh − Î2h|. (3.19)

The right-hand side can be calculated numerically, because it does not depend on the exact
value of the integral. In practice, the two sides of (3.19) are often very close for small h. In the
code example below, we approximate the integral

I =

∫ π
2

0
cos(x)dx = 1 (3.20)

for different step sizes and compare the exact error with the approximate error obtained us-
ing (3.19). The results obtained are summarized in Table 3.1, which shows a good match
between the two quantities.

# Composite Simpson's rule
function composite_simpson(u, a, b, n)

# Integration nodes
x = LinRange(a, b, n + 1)
# Evaluation of u at the nodes
ux = u.(x)
# Step size
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Table 3.1: Comparison between the exact integration error and the approximate integration
error calculated using (3.19).

h Exact error |I − Îh| Approximate error 1
15 |Îh − Î2h|

2−4 5.166847063531321× 10−7 5.185892840930961× 10−7

2−5 3.226500089326123× 10−8 3.229464703065806× 10−8

2−6 2.0161285974040766× 10−9 2.016591486390477× 10−9

2−7 1.2600120946615334× 10−10 1.260084925291949× 10−10

h = x[2] - x[1]
# Approximation of the integral
return (h/3) * sum([ux[1]; ux[end]; 4ux[2:2:end-1]; 2ux[3:2:end-2]])

end

# Function to integrate
u(x) = cos(x)
# Integration bounds
a, b = 0, π/2
# Exact integral
I = 1.0
# Number of subintervals
ns = [8; 16; 32; 64; 128]
# Approximate integrals
Î = composite_simpson.(u, a, b, ns)
# Calculate exact and approximate errors
for i in 2:length(ns)

println("Exact error: $(I - Î[i]), ",
"Approx error: $((Î[i] - Î[i-1])/15)")

end

3.3 Richardson extrapolation and Romberg’s method

In the previous section, we showed how the integration error could be approximated based on
two approximations of the integral with different step sizes. The aim of this section is to show
that, by cleverly combining two approximations Îh and Î2h of an integral, an approximation
even better than Îh can be constructed.

This approach is based on Richardson’s extrapolation, which is a general method for ac-
celerating the convergence of sequences, with applications beyond numerical integration. The
idea is the following: assume that J(h) is an approximation with step size h of some unknown
quantity J∗ = limh→0 J(h), and that we have access to evaluations of J at h, h/2, h/4, h/8 . . . .
If J extends to a smooth function over [0,H], then by Taylor expansion it holds that

J(η) = J(0) + J ′(0)η + J ′′(0)
η2

2
+ J (3)(0)

η3

3!
+ · · ·+ J (k)(0)

ηk

k!
+O(ηk+1).
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Elimination of the linear error term. Let us assume that J ′(0) 6= 0, so that the leading order
term after the constant J(0) scales as η. Then we have

J(h) = J(0) + J ′(0)h+O(h2)

J(h/2) = J(0) + J ′(0)
h

2
+O(h2).

We now ask the following question: can we combine linearly J(h) and J(h/2) in order to
construct an approximation J1(h/2) of J(0) with an error scaling as O(h2)? Employing the
ansatz J1(h/2) = αJ(h) + βJ(h/2), we calculate

J1(h/2) = (α+ β)J(0) + J ′(0)h

(
α+

1− α

2

)
+O(h2). (3.21)

Since we want this expression to approximate J(0) for small h, we need to impose that α+β = 1.
Then, in order for the term multiplying h to cancel out, we require that

α+
1− α

2
= 0 ⇔ α = −1.

This yields the formula
J1(h/2) = 2J(h/2)− J(h). (3.22)

Notice that, in the case where J is a linear function, J1(h/2) is exactly equal to J(0). This
reveals a geometric interpretation of (3.22): the approximation J1(h/2) is simply the y intercept
of the straight line passing through the points

(
h/2, J(h/2)

)
and

(
h, J(h)

)
.

Elimination of the quadratic error term. If we had tracked the coefficient of h2 in the previous
paragraph, we would have obtained instead of (3.21) the following equation:

J1(h/2) = J(0)− J (2)(0)
h2

4
+O(h3).

Provided that we have access also to J(h/4), we can also calculate

J1(h/4) = 2J(h/4)− J(h/2) = J(0)− J (3)(0)
h2

16
+O(h3).

At this point, it is natural to wonder whether we can combine J1(h/2) and J1(h/4) in order to
produce an even better approximation of J(0). Applying the same reasoning as in the previous
section leads us to introduce

J2(h/4) =
4J1(h/4)− J1(h/2)

4− 1
= J(0) +O(h3).

This is an exact approximation of J(0) if J is a quadratic polynomial, indicating that J2(h/4)

is simply the y intercept of the quadratic polynomial interpolating the function J through the
three points

(
h/4, J(h/4)

)
,
(
h/2, J(h/2)

)
and

(
h, J(h)

)
.
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Elimination of higher order terms. The procedure above can be repeated in order to elimi-
nate terms of higher and higher orders. The following schematic illustrates, for example, the
calculation of an approximation J3(h/8) = J(0) +O(h4).

J(h)

J(h/2) J1(h/2)

J(h/4) J1(h/4) J2(h/4)

J(h/8) J1(h/8) J2(h/8) J3(h/8)

O(h) O(h2) O(h3) O(h4).

Here, the last row indicates the scaling of the error with respect to the parameter h in the limit
as h → 0. The linear combination in order to calculate Ji(h/2

i) is always of the form

Ji(h/2
i) =

2iJi−1(h/2
i)− Ji−1(h/2

i−1)

2i − 1
, J0 = J.

In practice we calculate the values taken by J, J1, J2, . . . at specific values of h, but these are
in fact functions of h. In Figure 3.1, we plot these functions when J(h) = 1 + sin(h). It
appears clearly from the figure that, for sufficiently small h, J3(h) provides the most precise
approximation of J(0) = 1. Constructing the functions in Julia can be achieved in just a few
lines of code.

J(h) = 1 + sin(h)
J_1(h) = 2J(h) - J(2h)
J_2(h) = (4J_1(h) - J_1(2h))/3
J_3(h) = (8J_2(h) - J_2(2h))/7

Figure 3.1: Illustration of the functions J1, J2 and J3 constructed by Richardson extrapolation.

Generalization. Sometimes, it is known a priori that the Taylor development of the function J

around zero contains only even powers of h. In this case, the Richardson extrapolation proce-
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dure can be slightly modified in order to produce approximations with errors scaling as O(h4),
then O(h6), then O(h8), etc. This procedure is illustrated below:

J(h)

J(h/2) J1(h/2)

J(h/4) J1(h/4) J2(h/4)

J(h/8) J1(h/8) J2(h/8) J3(h/8)

O(h2) O(h4) O(h6) O(h8).

This time, the linear combinations required for populating this table are given by

Ji(h/2
i) =

22iJi−1(h/2
i)− Ji−1(h/2

i−1)

22i − 1
. (3.23)

Application to integration: Romberg’s method Romberg’s integration method consists of
applying Richardson’s extrapolation to the function

J(h) = Îh = u(x0) + 2u(x1) + 2u(x2) + · · ·+ 2u(xn−1) + 2u(xn), h ∈
{
b− a

n
: n ∈ N

}
.

where a = x0 < x1 < · · · < xn = b are equidistant nodes. The right-hand side of this equation
is simply the composite trapezoidal rule with step size h. It is possible to show that J(h) may
be expanded as follows:

∀k ∈ N, J(h) = I + α1h
2 + α2h

4 + · · ·+ αkh
2k +O(h2k+2). (3.24)

This is the content of the following result.

Lemma 3.4. Let J(h) denote the approximation of the integral I[u] by the composite trapezium
rule, and assume that u ∈ C∞[a, b]. Then J(h) may be expanded as in (3.24).

Proof. Using the same notation as in Theorem 3.3, we introduce

I(i)[u] =

∫ xi+1

xi

u(x)dx, Î
(i)
h [u] =

h

2

(
u(xi) + u(xi+1)

)
, i = 0, . . . , n− 1.

Fix i ∈ {0, . . . , n − 1} and let pi denote the Taylor expansion of u around xi+ 1
2
:= xi +

h
2 , of

degree 2k + 1:

pi(x) = u
(
xi+ 1

2

)
+ u′

(
xi+ 1

2

)(
x− xi+ 1

2

)
+ · · ·+

u(2k+1)
(
xi+ 1

2

)
(2k + 1)!

(
x− xi+ 1

2

)2k+1
.

From the mean-value form of the remainder, it is clear that

I(i)[u] = I(i)[pi] +O(h2k+3), Î
(i)
h [u] = Î

(i)
h [pi] +O(h2k+3).
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Substituting pi and noting that odd powers cancel when integrating, we have that

I(i)[pi] = u
(
xi+ 1

2

)
h+ ω2h

3 + ω4h
5 + · · ·+ ω2kh

2k+1,

Î
(i)
h [pi] = u

(
xi+ 1

2

)
h+ η2h

3 + η4h
5 + · · ·+ η2kh

2k+1,

for appropriate coefficients. Thus we obtain that

I[u]− Îh[u] =

n∑
i=0

I(i)[pi]− I
(i)
h [pi]

= (ω2 − η2)h
2 + (ω2 − η2)h

4 + . . .+ (ω2k − η2k)h
2k +O(h2k+2),

which concludes the proof.

Richardson’s extrapolation (3.23) can therefore be employed in order to compute approx-
imations of the integral with increasing accuracy. The convergence of Romberg’s method for
calculating the integral (3.20) is illustrated in Figure 3.2.

Figure 3.2: Convergence of Romberg’s method. The straight lines correspond to the monomial
functions f(h) = Cih

i, with i = 2, 4, 6, 8 and for appropriate constants Ci. We observe a good
agreement between the observed and theoretical convergence rates.

3.4 Methods with non-equidistant nodes

The Newton–Cotes method relies on equidistant integration nodes, and the only degrees of
freedom are the integration weights. If the nodes are not fixed, then additional degrees of
freedom are available, and these can be leveraged in order to construct a better integration
formula. The total number of degrees of freedom for a general integration rule of the form (3.2)
is 2n + 2 which, in principle, should enable to construct an integration rule with a degree of
precision equal to 2n+ 1.
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A necessary condition for an integration rule of the form (3.2) to have a degree of precision
equal to 2n + 1 is that it integrates exactly all the monomials of degree 0 to 2n + 1. This
condition is also sufficient because, assuming that it is satisfied, we have by linearity of the
functionals I and Î that

Î
(
α0 + α1x+ · · ·+ α2n+1x

2n+1
)
= α0Î(1) + α1Î(x) + · · ·+ α2n+1Î

(
x2n+1

)
= α0I(1) + α1I(x) + · · ·+ α2n+1I

(
x2n+1

)
= I

(
α0 + α1x+ · · ·+ α2n+1x

2n+1
)
,

Here I(u) and Î(u) denote respectively the exact integral of u and its approximate integral
using (3.2). In order to find the nodes and weights of the integration rule, we can therefore
solve the following nonlinear system of 2n+ 2 equations with 2n+ 2 unknowns:

n∑
i=0

wix
d
i =

∫ 1

−1
xd dx, d = 0, . . . , 2n+ 1. (3.25)

The quadrature rule thus obtained is called the Gauss–Legendre quadrature.

Example 3.2. Let us derive the Gauss–Legendre quadrature with n+1 = 2 nodes. The system
of equations that we need to solve in this case is the following:

w0 + w1 = 2, w0x0 + w1x1 = 0, w0x
2
0 + w1x

2
1 =

2

3
, w0x

3
0 + w1x

3
1 = 0.

The solution to these equations is given by

−x0 = x1 =

√
3

3
, w0 = w1 = 1.

Connection with orthogonal polynomials. Let (Ln)n∈N denote the Legendre polynomials, i.e.
the orthogonal polynomials with for the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)dx.

The nodes and weights of the Gauss–Legendre quadrature rules can be obtained constructively
from Legendre polynomials, as shown in Section 2.2.4. We shall now demonstrate this connection
in much more direct manner. Specifically, we prove that the integration nodes are given by the
roots of a Legendre polynomial.

Theorem 3.5. For every n ∈ N, there exists a unique solution to the system of equa-
tions (3.25). The nodes (xi)i∈{0,...,n} are the roots of Ln+1 and the weights are given by

wi =

∫ 1

−1
`i(x)dx, i ∈ {1, . . . , n}, (3.26)
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where `i is the Lagrange polynomial

(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

In addition, the weights are all positive.

Proof. We show first that the solution to (3.25) exists, then that it is unique, and finally that
the weights are positive.

Existence. We begin by showing that, if (xi)i∈{0,...n} are the roots of Ln+1 and the weights are
defined from (3.26), then the equations (3.25) are satisfied. To this end, it is sufficient to show
that for all p ∈ P(2n+ 1), ∫ 1

−1
p(x)dx =

n∑
i=0

wip(xi). (3.27)

Take p ∈ P(2n+ 1) and let q ∈ P(n) and r ∈ P(n) be the polynomials such that

p(x) = q(x)Ln+1(x) + r(x).

The quotient q and the remainder r can be obtained by Euclidean division of p by Ln+1.
Since Ln+1 is orthogonal to any polynomial in P(n), in particular q, and the nodes (xi)i∈{0,...n}

are the roots of Ln+1, it holds that∫ 1

−1
p(x)dx−

n∑
i=0

wip(xi) =

∫ 1

−1
r(x)dx−

n∑
i=0

wir(xi). (3.28)

Given that r ∈ P(n), the remainder r must coincides with its polynomial interpolation at the
points x0, . . . xm. Therefore,

r = r(x0)`0 + · · ·+ r(xn)`n,

and so ∫ 1

−1
r(x)dx =

n∑
i=0

r(xi)

∫ 1

−1
`i(x)dx =

n∑
i=0

r(xi)wi,

where we used (3.26) in the last equality. Consequently, the right-hand side of (3.28) is zero,
and since p was arbitrary this implies that (3.27) is satisfied.

Uniqueness. Next, we show that the nodes are necessarily the roots of Ln+1. To this end,
assume that x0, . . . , xn and weights w0, . . . , wn are such that the equations (3.25) are satisfied,
and let

q(x) = (x− x0) . . . (x− xn).

Our goal is to show that q(x) coincides with Ln+1 up to a constant factor. In order to show
this, it is sufficient to prove that q(x) is orthogonal to xd for all d = 0, . . . , n, because the
only polynomial in P(n+ 1) that satisfies these orthogonality relations is the Legendre polyno-
mial Ln+1, or a multiple thereof. For the values of d considered, the polynomial q(x)xd belongs
to P(2n + 1). Given that the integration rule with nodes x0, . . . , xn and weights w0, . . . , wn is
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exact for all the elements of P(2n+ 1) by assumption, we deduce that

∀d ∈ {0, . . . , n},
∫ 1

−1
q(x)xd dx =

n∑
i=0

wiq(xi)x
d
i = 0.

Finally, we show that the weights are necessarily given by (3.26). Since the integration rule
must be exact for any Lagrange polynomial `j , we have

∫ 1

−1
`j(x)dx =

n∑
i=0

wi`j(xi) = wj ,

which concludes the proof of uniqueness.

Positivity of the weights. Since the integration rule is exact for all the polynomials in P(2n+1)

and `j(x)
2 ∈ P(2n+ 1), we deduce that

∫ −1

−1

∣∣`j(x)∣∣2 dx =
n∑

i=0

wi

∣∣`j(xi)∣∣2 = wj .

The left-hand side is positive, and so wj must also be positive.

Since the integration weights are all positive, the Gauss–Legendre quadrature rules are
less susceptible to roundoff errors than the Newton–Cotes methods. In addition, we have the
following result.

Theorem 3.6. Assume that u ∈ C([−1, 1]), and let În(u) denote the approximation of I(u)
using the Gauss–Legendre quadrature. Then În(u) → I(u) in the limit as n → ∞.

Proof. The positivity of the weights is crucial for the proof. By the Weierstrass approximation
theorem, for all ε > 0 there exists polynomial p such that

E := max
x∈[−1,1]

∣∣∣p(x)− u(x)
∣∣∣ 6 ε.

Since the degree of precision of the Gauss–Legendre quadrature with n + 1 integration nodes
is 2n+ 1, there exists N sufficiently large such that În(p) = I(p) for all n > N . Thus

∀n > N,
∣∣∣În(u)− I(u)

∣∣∣ 6 ∣∣∣În(u)− În(p)
∣∣∣+ ∣∣∣În(p)− I(p)

∣∣∣+ ∣∣∣I(p)− I(u)
∣∣∣

=
∣∣∣În(u)− În(p)

∣∣∣+ ∣∣∣I(p)− I(u)
∣∣∣

6
n∑

i=0

|wi|E +

∫ 1

−1
E dx = 2ε+ 2ε = 4ε.

Indeed, all the weights are positive and the Gauss–Legendre quadrature rule is exact for the
constant function u(x) = 1, which implies that the weights add up to 2. Since ε > 0 was
arbitrary, this concludes the proof.
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Computation of the integration nodes. We proved that the integration nodes are given by
the roots of the Legendre polynomials. In practice, calculating these roots can be achieved
by calculating the eigenvalues of a tridiagonal matrix, see Section 2.2.4. This is known as the
Golub–Welsch algorithm.

Generalization to higher dimensions. Gauss–Legendre integration is ubiquitous in numerical
methods for partial differential equations, in particular the finite element method. Its general-
ization to higher dimensions is immediate: for a function u : [−1, 1]× [−1, 1] → R, we have∫ 1

0

∫ 1

0
u(x, y)dydx ≈

n∑
i=0

n∑
j=0

wiwju(xi, yi).

The degree of precision of this integration rule is the same as that of the corresponding one-
dimensional rule, and this approach can be generalized to any dimension d. The associated
computational cost, however, scales as nd, and so it is not a good idea to use a deterministic
method of this type in the high dimensional setting. The explosion of the computational cost
as the dimension increases is known as the curse of dimensionality.

3.5 Introduction to probabilistic integration methods

So far in this chapter, we covered only deterministic integration formulas. Much of the research
around the calculation of high-dimensional integrals today is concerned with probabilistic inte-
gration methods using probabilistic approaches. These methods are based on the connection
between integrals and expectations. To illustrate the simplest probabilistic approach, called the
Monte Carlo method, we consider the problem of approximating the integral

I =

∫ 1

0
u(x)dx.

This integral may be expressed as the expectation E
[
u(X)

]
, where E is the expectation operator

and X ∼ U(0, 1) is a uniformly distributed random variable over the interval [0, 1]. Therefore,
in practice, the integral I may be approximated by generating a large number of independent
samples X1, X2, . . . drawn from the distribution U(0, 1) and averaging f(Xi) over all of these
samples:

ÎN =
1

N

N∑
n=1

u(Xn).

The quantity ÎN , where the subscript N denotes the number of samples employed, is itself a
random variable; it is called an estimator of the exact integral I. In Julia, the calculation of
the integral using the Monte Carlo method can be achieved with the following code.

N = 1000
u(x) = x^2
X = rand(N)
Î = (1/N) * sum(u.(X))
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Since the expectation operator is linear, we calculate that

E[ÎN ] =
1

N

N∑
n=1

E
[
u(Xn)

]
=

1

N

N∑
n=1

∫ 1

0
u(x)dx =

1

N

N∑
n=1

I = I.

The estimator ÎN is therefore said to be unbiased, because the bias E[ÎN ] − I is zero. Now
assume that the function u is square integrable over the interval [0, 1] and let

σ2 := V
[
u(X)

]
:= E

[(
u(X)− E

[
u(X)

])2]
=

∫ 1

0
|u(x)− I|2 dx,

where V[X] denotes the variance of the random variable X. We can calculate explicitly the
variance of the estimator ÎN :

V[ÎN ] = E

( 1

N

N∑
n=1

u(Xn)− I

)2
 = E

[
1

N2

N∑
n=1

N∑
m=1

(
u(Xn)− I

)(
u(Xm)− I

)]
.

Since the samples X1, X2, . . . are independent, it holds that

E
[(
u(Xn)− I

)(
u(Xm)− I

)]
= δnmσ2,

where δmn is the Kronecker delta. Consequently, we deduce that

V[ÎN ] =
1

N2

N∑
n=1

N∑
m=1

E
[(
u(Xn)− I

)(
u(Xm)− I

)]
=

1

N2

N∑
n=1

N∑
m=1

δmnσ
2 =

σ2

N
.

Therefore, the variance of ÎN decreases as 1/N when the number of samples N increases,
indicating that the estimator becomes increasingly accurate. To state this more precisely, we
will use Chebyshev’s inequality.

Theorem 3.7 (Chebyshev’s inequality). Let Z be a random variable with mean m and
variance s2. Then for any real k > 0,

P
[
|Z −m| > ks

]
6

1

k2
.

Let ε > 0. Employing Chebyshev’s inequality with k = ε/

√
V[ÎN ], we obtain

P
[
|ÎN − I| > ε

]
6

V[ÎN ]

ε2
=

σ2

Nε2
. (3.29)

Consequently, for any ε > 0, the probability that the integration error
∣∣ÎN − I

∣∣ is greater than
or equal to ε tends to zero in the limit as N → ∞. In probabilistic jargon, we say that ÎN

converges in probability to I. Equation (3.29) can also be employed in order to construct a
confidence interval for the exact integral, as we demonstrate in the following paragraph.
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Construction of a (1−α) confidence interval. By definition, a (1−α) confidence interval for I
is an interval [z1, z2], the endpoints of which being random variables, such that the probability
that I ∈ [z1, z2] is greater than or equal to 1 − α. To construct such an interval, we begin by
finding ε such that the right-hand side of (3.29) is equal to α, which gives ε =

√
σ2/Nα. For

this value of ε, we have
P
[
|ÎN − I| > ε

]
6 α.

Since |ÎN − I| > ε if and only if I /∈ (ÎN − ε, ÎN + ε), we conclude that

P
[
I ∈

(
ÎN − ε, ÎN + ε

)]
> 1− α.

We have thus shown that (
ÎN −

√
σ2

Nα
, ÎN +

√
σ2

Nα

)
is a (1− α) confidence interval for I.

3.6 Exercises

� Exercise 3.1. Derive the Simpson’s integration rule (3.6).

� Exercise 3.2. Derive the composite Simpson integration rule (3.9).

� Exercise 3.3. Consider the integration rule∫ 1

0
u(x)dx ≈ w1u(0) + w2u(1) + w3u

′(0).

Find w1, w2 and w3 so that this integration rule has the highest possible degree of precision.

� Exercise 3.4. Consider the integration rule∫ 1

−1
u(x)dx ≈ w1u(x1) + w2u

′(x1).

Find w1, w2 and x1 so that this integration rule has the highest possible degree of precision.

� Exercise 3.5. What is the degree of precision of the following quadrature rule?∫ 1

−1
u(x)dx ≈ 2

3

(
2u

(
−1

2

)
− u(0) + 2u

(
1

2

))
.

� Exercise 3.6. The Gauss–Hermite quadrature rule with n+1 nodes is an approximation of
the form ∫ ∞

−∞
u(x) e−

x2

2 dx ≈
n∑

i=0

wiu(xi),

such that the rule is exact for all polynomials of degree less than or equal to 2n + 1. Find the
Gauss–Hermite rule with two nodes.
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� Exercise 3.7. Use Romberg’s method to construct an integration rule with an error term
scaling as O(h4). Is there a link between the method you obtained and another integration rule
seen in class?

� Exercise 3.8 (Improving the error bound for the composite trapezoidal rule). The notation
used in this exercise is the same as in Section 3.2. In particular, Îh denotes the approximate
integral obtained by using the composite trapezoidal rule (3.7), and ûh is the corresponding
piecewise linear interpolant.

A version of the mean value theorem states that, if g : [a, b] → R is a non-negative integrable
function and f : [a, b] → R is continuous, then there exists ξ ∈ (a, b) such that∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx. (3.30)

• Using (3.30), show that, for all i ∈ {0, . . . , n− 1}, there exists ξi ∈ (xi, xi+1) such that∫ xi+1

xi

u(x)− ûh(x)dx = −u′′(ξi)
h3

12
.

• Prove, by using the intermediate value theorem, that if f : [a, b] → R is a continuous
function, then for any set ξ0, . . . , ξn−1 of points within the interval (a, b), there exists
c ∈ (a, b) such that

1

n

n−1∑
i=0

f(ξi) = f(c).

• Combining the previous items, conclude that there exists ξ ∈ (a, b) such that

I − Îh = −u′′(ξ)(b− a)
h2

12
,

which is a more precise expression of the error than that obtained in (3.8).

Remark 3.4. One may convince oneself of (3.30) by rewriting this equation as∫ b
a f(x)g(x)dx∫ b

a g(x)dx
= f(ξ).

The left-hand side is the average of f(x) with respect to the probability measure with density
given by

x 7→ g(x)∫ b
a g(x)dx

.

� Exercise 3.9 (From the final exam of Spring 2022). Construct an integration rule of the
form ∫ 1

−1
u(x)dx ≈ w1u

(
−1

2

)
+ w2u(0) + w3u

(
1

2

)
with a degree of precision equal to at least 2. What is the degree of precision of the rule
constructed?
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Solution. The Lagrange polynomials associated with −1/2, 0 and 1/2 are respectively

p1(x) = 2x

(
x− 1

2

)
,

p2(x) = −4

(
x+

1

2

)(
x− 1

2

)
,

p3(x) = 2

(
x+

1

2

)
x.

We deduce that

w1 =

∫ 1

−1

p1(x) =
4

3
, w2 =

∫ 1

−1

p2(x) = −2

3
, w3 =

∫ 1

−1

p3(x) =
4

3
.

By construction, the degree of precision is at least 2. However, the integration rule is exact also when
u(x) = x3. Since the rule is not exact for u(x) = x4, we conclude that the degree of precision is 3. 4

� Exercise 3.10 (From the final exam of Spring 2022). The Gauss–Laguerre quadrature rule
with n nodes is an approximation of the form∫ ∞

0
u(x) e−x dx ≈

n∑
i=1

wiu(xi),

such that the rule is exact when u is a polynomial of degree less than or equal to 2n− 1.

• Find the Gauss–Laguerre rule with one node (n = 1).

• Find the Gauss–Laguerre quadrature rule with two nodes (n = 2). You may find it useful
to first calculate the Laguerre polynomial of degree 2.

Solution. Below are the derivations of the Gauss–Laguerre rules with 1 and 2 nodes.

Gauss–Laguerre rule with 1 node. We are looking for w1 and x1 such that

∀(a, b) ∈ R2,

∫ ∞

0

(a+ bx) e−x dx = w1(a+ bx1).

The left-hand side is equal to

a

∫ ∞

0

e−x dx+ b

∫ ∞

0

xe−x dx = a+ b

∫ ∞

0

xe−x dx.

Using integration by parts, we find the value of the remaining integral on the right-hand side:∫ ∞

0

xe−x =

∫ ∞

0

−(xe−x)′ + e−x dx

= −(xe−x)
∣∣∣
x=∞

+ (xe−x)
∣∣∣
x=0

+

∫ ∞

0

e−x dx

= 0 + 0 + 1.
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(To be fully rigorous, we would need to write the first term on the second line as a limit.) Therefore,
we obtain

a+ b = w1(a+ bx1),

which implies that w1 = x1 = 1.

Gauss–Laguerre rule with 2 nodes. The integration nodes are given by the roots of the Laguerre
polynomials, which are the orthogonal polynomials for the inner product

〈f, g〉 :=
∫ ∞

0

f(x)g(x) e−x dx.

The first polynomial is `0(x) = 1. It is simple to check that the only linear monic polynomial orthogonal
to `0 is given by `1(x) = x− 1. Next, by integration by parts we calculate that∫ ∞

0

x2 e−x dx =

∫ ∞

0

−(x2e−x)′ + 2xe−x dx = 2.

and, similarly, ∫ ∞

0

x3 e−x dx =

∫ ∞

0

−(x3e−x)′ + 3x2e−x dx = 6.

Consider the ansatz `2(x) = x2 + a`1(x) + b. In order for `2 to be orthogonal to `0 and `1, it is
necessary that

0 =

∫ ∞

0

`2(x) `0(x) e−x dx = 2 + b,

0 =

∫ ∞

0

`2(x) `1(x) e−x dx = 4 + a

∫ ∞

0

`1(x)`1(x) dx = 4 + a.

Therefore, we conclude that a = −4 and b = −2, which gives

`2(x) = x2 − 4x+ 2.

The roots are given by 2 ±
√
2, so we have x1 = 2 −

√
2 and x2 = 2 +

√
2. It remains to find the

weights. To this end, we need only two additional equations; it is sufficient to require that, for any
(a, b) ∈ R2,

a+ b =

∫ ∞

0

(a+ bx) e−x dx = w1(a+ bx1) + w2(a+ bx2)

= a(w1 + w2) + 2b(w1 + w2) +
√
2b(w2 − w1).

Letting a = 1 and b = 0, we obtain w1 + w2 = 1. Then, letting a = 0 and b = 1, we deduce

1 = 2 +
√
2(w2 − w1) ⇔ w2 − w1 = −

√
2

2
.

Therefore
w1 =

2 +
√
2

4
, w2 =

2−
√
2

4
,

which concludes the exercise. 4

� Exercise 3.11 (Calculating the volume of hyperballs). Let Bd denote the d-dimensional
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unit ball for the Euclidean norm:

Bd =
{
x ∈ Rd : ‖x‖ 6 1

}
.

The volume of Bd is defined as the integral of the characteristic function over Bd:

vol(Bd) =

∫
R
· · ·
∫

R︸ ︷︷ ︸
d times

χ(x)dx1 . . . dxd, χ(x) :=

1 if x ∈ Bd

0 otherwise.

Complete the following tasks:

• Write a function

function hyperball_volume(dim, n)
# Your code comes here
return vol, σ

end

that calculates the volume of the unit ball Bd with d = dim using a Monte Carlo approach
with n samples drawn from an appropriate distribution. Your function should return an
estimation of the volume together with the standard deviation of the estimator (which you
should estimate from the samples).

• Using the function hyperball_volume, plot the volumes for d going from 1 to 15, together
with a 99% confidence interval. See Figure 3.3 for an example solution with n = 107.

You are allowed to use your knowledge of the fact that vol(B2) = π and vol(B3) = 4π/3, but do
not use the general formula for the volume of Bd.

� Exercise 3.12. Complete the following tasks:

• Write a function legendre(n) which returns the Legendre polynomial of degree n. To this
end, you may use the Polynomials library and Rodrigues’ formula:

Ln(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
.

• Write a function get_nodes_and_weights(n) which returns the nodes and weights of the
Gauss–Legendre quadrature with n nodes. In order to construct Lagrange polynomials,
you may find it useful to use the fromroots functions.

• Write a function composite_gauss_legendre(u, a, b, n, N), which returns an ap-
proximation of the integral ∫ b

a
u(x)dx

obtained by partitioning the integration interval [a, b] into N cells, and applying the Gauss–
Legendre quadrature within each cell.
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Figure 3.3: Example solution for Exercise 3.11.

• Take u(x) = cos(x), a = −1 and b = 1. Illustrate on the same plot the error for the
values n ∈ {1, 2, 3} and N varying from 1 to 40. For each value of n, estimate the order
of convergence with respect to N , i.e. find α(n) such that

|În,N − I| ∝ CN−α,

where I denotes the exact value of the Integral and În,N denotes its approximation.

3.7 Discussion and bibliography

The presentation of part of the material follows that in [7], and some exercises come from [10,
Chapter 9]. The main advantage of probabilistic integration approaches is that they generalize
naturally to high-dimensional and infinite-dimensional settings.
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