
Chapter 7

Numerical ordinary differential equations

Introduction

This chapter concerns the numerical solution of ordinary differential equations (ODEs) of the
following form: {

x′(t) = f
(
t,x(t)

)
,

x(t0) = x0.
(7.1)

Here f : R × Rn → R and x0 is the initial condition. Equations of this type are the building
blocks of a plethora mathematical models in science and engineering. They have applications in
celestial dynamics, molecular simulation and fluid mechanics, to mention just a few. Ordinary
differential equations also arise after discretization of time-dependent partial differential equa-
tions, which are also ubiquitous in science. More often than not, it is not possible to find an
explicit solution of (7.1), and so one has to resort to numerical simulation. The rest of chapter
is organized as follows:

• In Section 7.1, we define the concepts of local and global solutions for the continuous-time
problem (7.1), and we recall fundamental results concerning the existence and uniqueness
of a solution.

• In Section 7.2, we analyze the so-called one-step numerical methods to solve (7.1). We
emphasize in particular the concepts of consistency, stability and convergence.

• In Section 7.3, we present multistep methods to solve (7.1), and discuss their drawbacks
and advantages compared to one-step methods.

• Finally, in Section 7.4, we introduce the concept of absolute stability and discuss its rele-
vance in the context of stiff differential equations.

7.1 Analysis of the continuous problem

A differentiable function x : I → Rn, where I denotes an interval of R containing t0, is a solution
of (7.1) if x(t0) = x0 and the equation (7.1) is satisfied for all t ∈ I. The solution is called
global if I = R, and local otherwise.
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Integral formulation. If x is a solution to (7.1), then it holds that

∀t ∈ I, x(t) = x0 +

∫ t

t0

f
(
s,x(s)

)
ds. (7.2)

The converse statement is not true in general, because a solution to (7.2) need not necessarily be
differentiable everywhere. However, if the integral formulation (7.2) holds, then necessarily x is
absolutely continuous and (7.1) is satisfied for almost every t. Additionally, if (7.2) is satisfied
and the function f is continuous, then the function s 7→ f

(
s,x(s)

)
is continuous, and so (7.1)

is satisfied for all t ∈ I by the fundamental theorem of analysis. We now focus on the integral
formulation (7.2), and begin by establishing existence of a local solution.

Theorem 7.1 (Existence of a solution). Let x0 ∈ Rn and let ΩT ,R denote the set

{
(t,x) ∈ R × Rn : |t− t0| 6 T and ‖x− x0‖ 6 R

}
,

Assume that the following conditions are satisfied for some T > 0 and R > 0:

• The function f is uniformly bounded on ΩT ,R:

∀(t,x) ∈ ΩT ,R, ‖f(t,x)‖ 6 M. (7.3)

• The function f satisfies the following Lipschitz condition: there is L > 0 such that

∀
(
(t,x1), (t,x2)

)
∈ ΩT ,R × ΩT ,R, ‖f(t,x1)− f(t,x2)‖ 6 L‖x1 − x2‖. (7.4)

Then there exists T ∈ (0, T ] depending on R, M and L such that the differential equation (7.2)
has a local solution x : [t0 − T, t0 + T ] → Rn.

Proof. Fix T ∈ (0, T ] and let I = [t0 − T, t0 + T ]. Let also X denote the following subset of
continuous functions defined from I to Rn:

X :=

{
x ∈ C (I,Rn) : sup

t∈I

∥∥x(t)− x0

∥∥ 6 R
}

The set X endowed with supremum metric is a closed subset of C(I,Rn). Since X is a closed
subset of a complete metric space, it is itself complete. Let Φ: X → C(I,Rn) denote the
mapping

Φ(x) : t 7→ x0 +

∫ t

0
f
(
s,x(s)

)
ds.

The right-hand side, being the integral of a bounded function, is indeed a continuous function.
We will show that, for T sufficiently small,

• the mapping Φ maps X into X ;

• the mapping Φ is a contraction.
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From (7.3), it follows that

∀x ∈ X , ∀t ∈ I, ‖Φ(x)(t)− x0‖ =

∥∥∥∥∫ t

t0

f
(
s,x(s)

)
ds

∥∥∥∥ 6 MT.

On the other hand, from the Lipschitz condition (7.4), it holds that

∀(x,y) ∈ X × X , ‖Φ(x)− Φ(y)‖ 6 LT‖Φ(x)− Φ(y)‖.

Therefore, it suffices to take T < min
{
T , R

M , 1
L

}
to ensure that the above conditions are satisfied.

For a value of T in this range, the Banach fixed point theorem, Theorem A.3, gives the existence
of a unique fixed point x∗ ∈ X of Φ. Since a fixed point of Φ is a solution to (7.2) in view of
the definition of Φ, the statement is proved.

It may seem at first glance that uniqueness of the solution to (7.2) follows from the uniqueness
of the fixed point guaranteed by Theorem A.3. However, this theorem implies uniqueness only
in the set X , a property known as conditional uniqueness. In order to prove that the solution
is unique over the full space C([t0 − T, t0 + T ],Rn), additional assumptions and arguments are
required. A simple approach is to rely on Grönwall’s lemma.

Lemma 7.2 (Grönwall’s lemma, simplified integral form). Suppose that u : [t0−T, t0+T ] →
R>0 is continuous, nonnegative, and satisfies

∀t ∈ [t0, t0 + T ], u(t) 6 α+

∫ t

t0

β(s)u(s)ds, (7.5)

where α > 0 and β : [t0, t0 + T ] → R>0 is continuous and nonnegative. Then

∀t ∈ [t0, t0 + T ], u(t) 6 α exp
(∫ t

t0

β(s)ds
)
. (7.6)

Proof. Assume first that α > 0, so that the logarithm in (7.7) is well-defined. By the funda-
mental theorem of calculus and (7.5), it holds that

d
dt

(
α+

∫ t

t0

β(s)u(s)ds
)

6 β(t)

(
α+

∫ t

t0

β(s)u(s)ds
)

Therefore we have
d
dt

log
(
α+

∫ t

t0

β(s)u(s)ds
)

6 β(t), (7.7)

and after integrating and exponentiating, we obtain

α+

∫ t

t0

β(s)u(s)ds 6 α exp
(∫ t

t0

β(s)ds
)

The statement then follows by using (7.5) again. Assume next that α = 0. If (7.5) is satisfied
for α = 0, then this condition is also satisfied for all α > 0. Therefore the conclusion (7.6) holds
for all α > 0, and taking the limit α → 0 in this equation, we obtain the statement.
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Note that the estimate (7.6) is sharp, since the function v : [t0, t0 + T ] given by

v(t) = α exp
(∫ t

t0

β(s)ds
)

satisfies (7.5) with equality. We are now ready to prove uniqueness under an appropriate
condition.

Theorem 7.3 (Uniqueness of the solution). Let x0 ∈ Rn and let

ΩT ,R
{
(t,x) ∈ R × Rn : |t− t0| 6 T and ‖x− x0‖ 6 R

}
,

Assume that for all T ∈ R>0 and R ∈ R>0, there is LT ,R such that

∀
(
(t,x1), (t,x2)

)
∈ ΩT ,R × ΩT ,R, ‖f(t,x1)− f(t,x2)‖ 6 LT ,R‖x1 − x2‖. (7.8)

Then if x1 and x2 in C
(
[t0−T, t0+T ],Rn

)
are local solutions to (7.2), it holds that x1 = x2.

Proof. Suppose that x1 and x2 are solutions to (7.2). Let I = [t0 − T, t0 + T ] and

R := max
{

sup
t∈I

‖x1(t)− x0‖, sup
t∈I

‖x2(t)− x0‖
}

< ∞,

Since x1 and x2 are solutions, it holds that

∀t ∈ [t0 − T, t0 + T ], x1(t)− x2(t) =

∫ t

t0

(
f
(
s,x1(s)

)
− f

(
s,x2(s)

))
ds.

Taking the norm and using (7.8), we obtain

∀t ∈ [t0, t0 + T ], ‖x1(t)− x2(t)‖ 6 LT,R

∫ t

t0

‖x1(s)− x2(s)‖ds

Using Grönwall’s lemma, we deduce that x1(t) = x2(t) for all t ∈ [t0, t0+T ]. A similar argument
can be employed to show that x1 = x2 on [t0 − T, t0].

Corollary 7.4 (Maximal solutions). Assume that f is continuous in t and satisfies the local
Lipschitz condition (7.8). Then there exists −∞ 6 T− < T+ 6 ∞ such that t0 ∈ (T−, T+)

and the following properties are satisfied.

• there exists a solution x∗ : (T−, T+) → Rn to (7.2);

• if x : I → Rn is a local solution of (7.2), then I ⊂ (T−, T+) and x(t) = x∗(t) for
all t ∈ I.

• If T+ is finite, then limt→T+

∥∥x(t)∥∥ = ∞, and if T− is finite, then limt→T−

∥∥x(t)∥∥ = ∞.

The solution x∗ is called the maximal solution of (7.2).

Proof. Let I denote the union of all the open intervals I such that there exists a solution
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in C(I,Rn) to (7.2). The open set I is connected and, by Theorem 7.1, it contains a neigh-
borhood of t0. Therefore I is of the form (T−, T+), where −∞ 6 T− < t0 < T+ 6 ∞. In
view of Theorem 7.3, all the local solutions coincide where they are defined, and so they can
be patched together in order to construct a solution x∗ : (T−, T+) → R. It remains to prove
the third item. To this end, suppose for contradiction that T+ was finite and that there was
(tn)n∈N such that tn → T+ in the limit n → ∞ and

K := sup
n∈N

‖x∗(tn)‖ < ∞.

Since f is continuous, there is M such that |f(t,x)| is uniformly bounded from above by M for
all (t,x) ∈ [T− − 1, T+ + 1]×BK+1(0). Furthermore, by the assumption (7.8), there is L such
that for all t ∈ [T− − 1, T+ + 1], the following Lipschitz condition holds:

∀(x1,x2) ∈ BK+1(0)×BK+1(0), ‖f(t,x1)− f(t,x2)‖ 6 L‖x1 − x2‖.

Consequently, Theorem 7.1 with T = R = 1 implies for all n the existence of a solution to{
x′(t) = f

(
t,x(t)

)
,

x(tn) = x∗(tn).

over the time interval [tn−T, tn+T ], where T > 0 depends only on M and L, and not on n. But
then, for n sufficiently large, this solution extends beyond T+, which contradicts the maximality
of I. An analogous reasoning can be employed for T−.

Example 7.1. Consider the ODE {
x′(t) = x(t)2,

x(0) = 1.

The maximal solution is x∗ : (−∞, 1) → R given by

x∗(t) =
1

1− t
.

Existence of a unique global solution. In certain settings, it is possible to prove the maximal
solution to (7.2) is globally defined for any initial condition. We discuss a few important
examples.

• The first case is when f : R × Rn is globally Lipschitz in its second argument, with a
Lipschitz constant that depends continuously on the first argument.

• The second case, generalizing the first, is when the growth of f(t, •) is at most affine:

∀(t,x) ∈ R × Rn, ‖f(t,x)‖ 6 C(t) + L(t)‖x‖,

with continuous constants C(t) and L(t).
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• The third case is when f is independent of t and there is a function W ∈ C1(Rn) such
that W (x) → ∞ in the limit as ‖x‖ → ∞ and

∀x ∈ Rn, ∇W (x) · f(x) 6 c < ∞

Such a function is called a Lyapunov function.

The strategy of proof for global existence usually relies on an argument by contradiction. Con-
sider for example the third setting. Since the assumptions of Corollary 7.4 are satisfied, there
exists a maximal solution x∗ : (T−, T+) → ∞. Assume for contradiction that T+ is finite. Then
the third item in Corollary 7.4 implies that limt→T+‖x∗(t)‖ → ∞, and so W

(
x∗(t)

)
blows up

as t approaches T+. On the other hand, we have

d
dt

W
(
x∗(t)

)
= ∇W

(
x∗(t)

)
· f

(
x∗(t)

)
6 c.

Therefore limt→T+ W
(
x∗(t)

)
6 W

(
x∗(t0)

)
+ |c|(T+ − t0), which is a contradiction.

7.2 One-step methods

From now on, we assume for simplicity that t0 = 0 and that the initial value problem (7.1)
admits a unique solution over the interval [0, T ]. Most numerical methods for ODEs construct
an approximation of the solution at discrete points:

xn ≈ x(tn), n = 0, 1, 2, . . . .

The discretization points (tn)n∈N are commonly equidistant, i.e. tn = n∆ where ∆ is the
discretization step. Sometimes, it is useful to employ a variable time step, but we assume
throughout this section that the time step is fixed, for simplicity. We begin in Section 7.2.1
and Section 7.2.2 by studying the simplest one-step methods, namely the forward and backward
Euler methods. Then, in Section 7.2.3, we present a general approach to the analysis of one-
step methods. Finally, in Section 7.2.4, we present other widely used one-step methods in
applications.

7.2.1 Forward Euler method

Assume that (7.1) has a unique solution x(t) over the interval [0, T ]. If x(t) is twice continuously
differentiable, then by Taylor’s formula, we have

x(t+∆) = x(t) + ∆f(t,x) +
∆2

2
x′′(τ), τ ∈ (t, t+∆). (7.9)

This motivates a method known as the forward or explicit Euler method:

xn+1 = xn +∆f(tn,xn),
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with the same initial condition as for the continuous equation (7.1). The convergence of this
method can be proved under a global Lipschitz assumption on the function f .

Theorem 7.5 (Convergence of the forward Euler method). Assume that there is L ∈ R>0

such that
∀(t,x,y) ∈ R × Rn × Rn, ‖f(t,x)− f(t,y)‖ 6 L‖x− y‖. (7.10)

Suppose in addition that there exists a unique, twice continuously differentiable of (7.1) over
the interval [0, T ], and let

M = sup
t∈[0,T ]

‖x′′(t)‖

Then the following error estimate holds:

∀n ∈
{
0, 1, . . . ,

⌊
T

∆

⌋}
, ‖x(tn)− xn‖ 6

∆M

2

(
eLtn − 1

L

)
. (7.11)

Proof. By Taylor’s theorem, it holds that

x(tn) = x(tn−1) + ∆f
(
tn−1,x(tn−1)

)
+

∆2

2
αn, αn := 2

∫ 1

0
(1− s)x′′(tn +∆s)ds.

Notice that that ‖αn‖ 6 M. Therefore, it holds that

x(tn)− xn =

(
x(tn−1) + ∆f

(
tn−1,x(tn−1)

)
+

∆2

2
αn

)
−
(
xn−1 +∆f

(
tn−1,xn−1

))
=

(
x(tn−1)− xn−1

)
+∆

(
f
(
tn−1,x(tn−1)

)
− f

(
tn−1,xn−1

))
+

∆2

2
αn,

Let en = x(tn) − xn and εn = ∆2

2 αn. The first term is the error at iteration n − 1, and the
second may be bounded from (7.10), which gives

‖en‖ 6 (1 + ∆L)‖en−1‖+ ‖εn‖.

The structure of this equation is important, as it appears in the analysis of all one-step methods
for ODEs. The first term is an amplification of the error at the previous iteration, and the second
term is an upper bound on the additional error introduced at step n. Applying this inequality
to the previous time steps, we obtain

‖en‖ 6 (1 + ∆L)
(
(1 + ∆L)‖en−2‖+ ‖εn−1‖

)
+ ‖εn‖

6 . . . 6 (1 + ∆L)n‖e0‖+
n∑

i=1

(1 + ∆L)n−i‖εi‖. (7.12)

Since ‖εi‖ 6 ∆2M/2, we have by using the formula for geometric series that

‖en‖ 6 (1 + ∆L)n‖e0‖+
(1 +∆L)n − 1

∆L

(
∆2M

2

)
.

The first term is zero because ‖e0‖ = 0. Using the bound (1 + ∆L)n 6
(
exp(∆L)

)n
= eLtn in
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the second term and rearranging, we finally obtain the statement (7.11).

7.2.2 Backward Euler method

If we apply the Taylor expansion (7.9) backward around t + ∆, instead of forward around t,
then we obtain

x(t) = x(t+∆)−∆f(t+∆,x) +O(∆2).

This motivates the so-called backward or implicit Euler method:

xn+1 = xn +∆f(tn+1,xn+1). (7.13)

Observe that the right-hand side depends on xn+1. Therefore, given tn and xn, this is a
nonlinear equation for the unknown xn+1, which can be solved by using any of the methods
studied in Chapter 5. Finding a solution to (7.13) amounts to finding a fixed point of the
function

y 7→ F (y) := xn +∆f(tn,y).

A priori, the existence and uniqueness of such a fixed point is not guaranteed. We proved
in Theorem 5.2 that a sufficient condition for these two properties to hold is that F is globally
Lipschitz with a constant strictly less than 1, which holds if and only if the function y 7→ f(tn,y)

is globally Lipschitz with a constant strictly less than 1/∆. If the condition (7.10) holds, for
example, then the backward Euler method (7.13) is guaranteed to be well defined for ∆ < 1

L .
Theorem 5.2 also ensures that, if F is globally Lipschitz with a constant less than 1, then the
fixed point can be approximated by using the iteration

yk+1 = F (yk). (7.14)

and there is exponential convergence yk → xn+1 in the limit as k → ∞. A natural starting
point for (7.14) is y0 = xn. An alternative approach to the fixed point iteration (7.14) is to
use the Newton–Raphson method for (7.13), which is faster in principle but must be initialized
sufficiently close to the fixed point.

Using a reasoning similar to that employed for proving Theorem 7.5, we can prove the
following result.

Theorem 7.6 (Convergence of the backward Euler method). If the assumptions of Theo-
rem 7.5 hold and ∆ < 1

L , then the following error estimate holds:

∀n ∈
{
0, 1, . . . ,

⌊
T

∆

⌋}
, ‖x(tn)− xn‖ 6

∆M

2


(

1
1−∆L

)n
− 1

L

 . (7.15)

Proof. The proof is left as an exercise.
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Remark 7.1. Note that, if ∆ < 1
2L , then

1

1−∆L
= 1 +∆L+ (∆L)2 + (∆L)3 + (∆L)4 . . .

6 1 + ∆L+ (∆L)2 +
1

2
(∆L)2 +

1

4
(∆L)2 + . . .

6 1 + ∆L+ 2(∆L)2 6 exp
(
∆L+ (∆L)2

)
,

and so the error estimate (7.15) gives

‖x(tn)− xn‖ 6
∆M

2

(
exp(Ltn +∆L2tn)− 1

L

)
,

which makes it clear that the right-hand side of (7.15) is close, in absolute and relative terms,
to that of (7.11) when ∆ � 1.

At this point, the reader may be wondering why one would use the backward Euler method
instead of the forward Euler method, given that both methods have same order of convergence
but iterations of the former are more computationally costly. The reason is that the backward
Euler method, like many implicit methods, is more stable than its forward counterpart. Implicit
methods are especially attractive in the context of stiff differential equations. We shall elaborate
on this subject in Section 7.4.

7.2.3 Analysis of general one-step methods

In general, one-step methods to solve differential equations are of the abstract form

xn+1 = xn +∆Φ∆(tn,xn). (7.16)

where Φ∆ : R × Rn → Rn is a function such that

Φ∆(t,x) ≈
1

∆

∫ t+∆

t
f
(
s,xt,x(s)

)
ds = xt,x(t+∆)− x

∆
. (7.17)

Here xt,x denotes the solution to the differential equation (7.1) with initial condition x(s) = x.
The main goal of this section is to establish general conditions, known as consistency and
stability, under which the numerical scheme (7.16) is convergent. As we observed in the proof
of Theorem 7.5 – specifically in equation (7.12) – the error at the final iteration for the forward
Euler method is a sum of local errors, each amplified by a factor depending to the number of
iterations left to reach the final time. Consistency of a numerical method enables to control the
size of local errors when they arise, while stability enables to control their growth.

We emphasize that both the forward and the backward Euler methods can be recast in the
form (7.16). For the forward Euler method Φ∆(t,x) = f(t,x), while for the backward Euler
method, the function Φ∆ is defined implicitly as the function which to (t,x) associates the
solution φ ∈ Rn to the equation

φ = f(t+∆,x+∆φ).
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Local truncation error and consistency

The local truncation error is the residual error obtained when substituting the exact solution
of the differential equation in (7.16):

ηn+1 :=
x(tn+1)− x(tn)

∆
−Φ∆

(
tn,x(tn)

)
.

Since there is a division by ∆, the local truncation error has the same physical dimension as
that of x′, and so it should be viewed as an error per time unit.

Definition 7.1 (Consistency). A numerical method is consistent if

lim
∆→0

(
max

16n6N
‖ηn‖

)
= 0, N =

⌊
T

∆

⌋
.

It is consistent with order p if there exists C such that

∀∆ > 0, max
16n6N

‖ηn‖ 6 C∆p.

Proving the consistency of a numerical method is usually achieved on a case-by-case basis by
application of Taylor’s formula.

Stability

The stability of a numerical method qualifies its sensitivity to perturbations. Roughly speaking,
it expresses that small perturbation of the right-hand side of (7.16) lead to small perturbations
of the numerical solution.

Definition 7.2 (Stability). A numerical method of the form (7.16) is stable if there exists a
constant S(T ) > 0 independent of ∆ such that for all sequence (yn)16n6N satisfying

yn+1 = yn +∆Φ∆(tn,yn) + ∆δn+1, y0 = x0, (7.18)

it holds that

max
16n6N

‖xn − yn‖ 6 S(T )∆
N∑

n=1

‖δn‖. (7.19)

It is convenient to introduce the following norms for sequences of vectors (un)16n6N :

‖u•‖`1T =

N∑
n=1

‖un‖, ‖u•‖`∞T = max
16n6N

‖un‖,

With these notations, equation (7.19) may be rewritten compactly as follows:

‖x• − y•‖`∞T 6 S(T )∆‖δ•‖`1T

One could argue that this equation is neater than (7.19); it bounds a norm of just one math-
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ematical object, namely the sequence (xn − yn)16n6N , by a norm of another object, namely
the sequence (δn)16n6N . Arguments for proving that a numerical scheme is stable often rely
on some form of Lipschitz continuity. If the function Φ∆(t,y) is globally Lipschitz continuous
with respect to y, then stability is particularly simple to prove, as we now demonstrate.

Proposition 7.7. Assume that there is LΦ > 0 such that for all t ∈ [0, T ] and ∆ > 0,
the function Φ∆(t, •) is globally Lipschitz continuous with constant LΦ. Then the one-step
method (7.16) is stable.

Proof. By (7.16) and (7.18), it holds that

xn − yn = xn−1 − yn−1 +∆
(
Φ∆(tn−1,xn−1)−Φ∆(tn−1,yn−1)

)
−∆δn.

Taking the Euclidean norm and employing the Lipschitz continuity assumption, we obtain

‖xn − yn‖ 6 (1 + ∆LΦ)‖xn−1 − yn−1‖+∆‖δn‖.

By a reasoning similar to that in the proof of Theorem 7.5, we then obtain

‖xn − yn‖ 6 (1 + ∆LΦ)
n‖x0 − y0‖+

n∑
i=1

(1 + ∆LΦ)
n−i∆‖δi‖ 6 0 + eLΦtn∆

n∑
i=1

‖δi‖.

We conclude that (7.19) is satisfied with S(T ) = eLΦT .

Convergence

We are now ready to prove that consistency and stability of the numerical (7.16) together imply
convergence, in the sense that

lim
∆→0

(
max

16n6N
‖x(tn)− xn‖

)
= 0, N =

⌊
T

∆

⌋
.

This result is an instance of the Lax equivalence theorem, a pillar of numerical analysis with
far-reaching applications.

Theorem 7.8 (Consistence and stability imply convergence). Assume that the one-step nu-
merical method (7.16) is consistent and stable. Then the method is also convergent.

Proof. By definition of the local truncation error, it holds that

x(tn+1) = x(tn) + ∆Φ∆

(
tn,x(tn)

)
+∆ηn+1.

Therefore, the sequence
(
x(tn)

)
16n6N

satisfies (7.18) with δn = ηn, and so the stability esti-
mate (7.19) implies that

max
16n6N

‖x(tn)− xn‖ 6 S(T )∆
N∑

n=1

‖ηn‖.
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By consistency, the right-hand side converges to zero in the limit as ∆ → 0, which concludes
the proof.

Remark 7.2. If we assume in Theorem 7.8 that the method is consistent with order p, then
by adapting the proof, we find that the error satisfies

max
16n6N

‖x(tn)− xn‖ 6 CS(T )∆p.

In this setting, the numerical scheme is said to be convergent with order p.

7.2.4 Widely used one-step methods

In this section, we motivate and describe some of the other widely-used one-step methods,
namely methods of Taylor and Runge–Kutta type. We assume in this section that the equa-
tion (7.1) admits a unique smooth solution over the interval [0, T ].

Taylor methods

In order to construct a method with a smaller local truncation error than that of the forward
Euler method, a Taylor expansion of higher order than (7.9) can be employed:

x(t+∆) = x(t) + ∆x′(t) + · · ·+ ∆p

p!
x(p)(t) +O(∆p+1). (7.20)

Since x : [0, T ] → R is a smooth solution to (7.1) by assumption, the time derivatives of x can
be obtained by differentiation of (7.1):

x′(t) = f
(
t,x(t)

)
, x′′(t) = ∂tf

(
t,x(t)

)
+
(
f (t,x(t)) · ∇x

)
f
(
t,x(t)

)
, . . .

In general, it is immediate to show inductively that x(p)(t) = f (p−1)
(
t,x(t)

)
, where the func-

tions f (p) : R × Rn → R are defined recursively from the following equation:

f (p+1) = ∂tf
(p)

(
t,x(t)

)
+

(
f (t,x(t)) · ∇x

)
f (p)

(
t,x(t)

)
.

The Taylor expansion (7.20) motivates the so-called Taylor methods for integrating (7.1) nu-
merically, which are based on the following iteration:

xn+1 = xn +∆T p
∆

(
tn,xn

)
, (7.21)

where
T p

∆(t,x) := f(t,x) +
∆

2!
f (1)(t,x) + · · ·+ ∆p−1

p!
f (p−1)(t,x).

Note that, for any p, the Taylor scheme (7.21) may be rewritten as

xn+1 = xn +∆
dxtn,xn

dt
(tn) + · · ·+ ∆p

p!

dpxtn,xn

dtp
(tn).
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For p = 1, this scheme coincides with the forward Euler scheme.

Runge–Kutta methods

Runge–Kutta methods resemble Taylor methods, but they do not require to calculate the deriva-
tives of the function f . This is achieved by approximating the derivatives in Taylor methods
by difference quotients. Consider for example the Taylor method of order p = 2:

xn+1 = xn +∆
dxtn,xn

dt
(tn) +

∆2

2!

d2xtn,xn

dt2
(tn). (7.22)

Substituting the approximation

d2xtn,xn

dt2
(tn) ≈

1

∆

(
dxtn,xn

dt
(tn +∆)− dxtn,xn

dt
(tn)

)
=

1

∆

(
f
(
tn +∆,xtn,xn(tn +∆)

)
− f

(
tn,xn

))
≈ 1

∆

(
f
(
tn +∆,xn +∆f(tn,xn)

)
− f

(
tn,xn

))
(7.23)

in (7.22), we obtain an explicit method known as Heun’s method:

xn+1 = xn +
∆

2
f(tn,xn) +

∆

2
f
(
tn +∆,xn +∆f(tn,xn)

)
.

It is possible to show that the local truncation error for this method also scales as ∆2. Heun’s
method is a particular instance of a Runge–Kuta method. In general, an explicit Runge–Kutta
method with s stages is of the form

xn+1 = xn +∆
s∑

i=1

biki

k1 = f(tn,xn),

k2 = f
(
tn + c2∆,xn +∆(a21k1)

)
,

k3 = f
(
tn + c3∆,xn +∆(a31k1 + a32k2)

)
,

...

ks = f

tn + cs∆,xn +∆

s−1∑
j=1

asjkj

 ,

with appropriate coefficients ci and aij . Heun’s iteration can be recast in this form as follows:

xn+1 = xn +
∆

2
(k1 + k2)

k1 = f(tn,xn)

k2 = f
(
tn +∆,xn +∆k1

)
.

The approach we employed to construct Heun’s method may be generalized to higher orders.
For example, the most widely known Runge–Kutta method approximates the Taylor method of
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order p = 4 with the following iteration:

xn+1 = xn +
∆

6
(k1 + 2k2 + 2k3 + k4),

k1 = f(tn,xn), k2 = f

(
tn +

∆

2
,xn +∆

k1

2

)
,

k3 = f

(
tn +

∆

2
,xn +∆

k2

2

)
, k4 = f (tn +∆,xn +∆k3) .

The local truncation error for this method scales as ∆4 and, when f(t,x) = f(t), this method
coincides with Simpson’s formula (3.6) for the approximation of the integral in (7.17). The
systematic derivation of Runge–Kutta methods is cumbersome, and so we do not address this
issue in this course.

Remark 7.3. Explicit Runge–Kutta methods of a given order are not uniquely defined. For
example, if we employ instead of (7.23) the approximation

d2xtn,xn

dt2
(tn) ≈

2

∆

(
f

(
tn +

∆

2
,xn +

∆

2
f(tn,xn)

)
− f

(
tn,xn

))
,

then we obtain by substitution in (7.22) the so-called explicit midpoint method, which is also
a Runge–Kutta method of order 2:

xn+1 = xn +∆f

(
tn +

1

2
∆,xn +

∆

2
f(tn,xn)

)
.

Implicit methods

To conclude this section, we mention two common implicit methods with a better order of
convergence than that of the backward Euler method.

• The Crank–Nicolson method:

xn+1 = xn +
∆

2

(
f(tn,xn) + f(tn +∆,xn+1)

)
. (7.24)

When f is independent of x and depends only on t, this method coincides with the
trapezoidal rule for numerical integration.

• The implicit midpoint method:

xn+1 = xn +∆f

(
tn +

∆

2
,
xn + xn+1

2

)
.

Similarly to the backward Euler method, each iteration of these methods requires the resolu-
tion of a nonlinear equation. Implicit methods often enjoy better stability than their explicit
counterparts. This subject is further discussed in Section 7.4.
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7.3 Multistep methods

The idea of multistep methods is to use, in the construction of a new iterate, information from
not only the current but also previous iterations. This degree of freedom enables to construct
more economical numerical methods than one-step methods for the same order of convergence,
at the cost of a more difficult initialization. In this section we focus on linear multistep methods
of the form

xn+1 = a0xn + a1xn−1 + · · ·+ akxn−k

+∆
(
b−1f(tn+1,xn+1) + b0f(tn,xn) + · · ·+ bkf(tn−k,xn−k)

)
. (7.25)

This equation defines an explicit method if b−1 = 0, and an implicit method if b−1 6= 0.
Note that explicit methods of the form (7.25) require only one additional evaluation f(tn,xn)

per iteration, in contrast with Runge–Kutta methods. When b−1 6= 0, the iteration (7.25)
is a nonlinear equation for the unknown xn+1, which must itself be solved by resorting to a
numerical method.

Initialization. In order to initiate the numerical method (7.25), the values x0, . . . ,xk are re-
quired. These can be calculated by using a one-step method with an order of convergence
matching that of the multistep method.

Local truncation error. Consistently with the setting of one-step methods, the local truncation
error for (7.25) is defined as the residual error left when the exact solution is substituted in the
numerical scheme:

∆ηn+1 := x(tn +∆)− a0x(tn)− a1x(tn −∆)− · · · − akx(tn − k∆)

−∆
(
b−1x

′(tn +∆) + b0x
′(tn) + · · ·+ bkx

′(tn − k∆)
)
. (7.26)

The multistep method (7.25) is said to be of order p if the maximum local truncation error
over all the discretization points, in norm, scales as O(∆p). The following result is useful for
estimating the order of consistency of a linear multistep method.

Proposition 7.9. The linear multistep method (7.25) is consistent with order p for any
smooth x : [0, T ] → Rn if and only if the local truncation error (7.26) is everywhere zero
when x(t) is of the scalar form

x(t) = tq, q ∈ {0, . . . , p}. (7.27)

Proof. Assume that the method is consistent with order p, fix q ∈ {1, . . . , p}, and let x(t) = tq.
Fix also t ∈ [0, T ] and consider the function ξ : {∆ : t/∆ ∈ N>0} → R given by

∆ξ(∆) = ∆η(t/∆)+1 = x(t+∆)− a1x(t)− a2x(t−∆)− · · · − akx
(
t− (k − 1)∆

)
−∆

(
b0x

′(t+∆) + b1x
′(t) + · · ·+ bkx

′(t− (k − 1)∆
))

.
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The quantity ξ(∆) should be understood as the local truncation error at t for time step ∆. It is
a polynomial in ∆ of degree at most p and scaling as O(∆p+1). Therefore, it holds necessarily
that ξ(∆) = 0.

Conversely, assume that the right-hand side of (7.26) is equal to zero for any function of the
form (7.27). If x(t) denotes a smooth solution of (7.1), then by Taylor’s theorem there is C > 0

independent of tn such that

∀t ∈ [0, T ],

{
‖x(t)− y(t)‖ 6 C|t− tn|p+1

‖x′(t)− y′(t)‖ 6 C|t− tn|p
, y(t) := x(tn) +

p∑
i=1

ei(t− tn)
i,

for appropriate vectors ei ∈ Rn depending on tn. Substituting x(t) = y(t) +
(
x(t) − y(t)

)
in

the right-hand side of (7.26), we obtain

∆‖ηn+1‖ = O(∆p+1) + ∆O(∆p) = O(∆p+1),

with the constant implicit in the big O notation independent of n. This concludes the proof.

Example 7.2. In the one-dimensional setting, we wish to find parameters a0, a1 and b1 such
that the order of consistency of the following multistep scheme is as high as possible:

xn+1 = a0xn + a2xn−1 + b0∆f(tn, xn).

Substituting x(t) = 1 in the formula (7.26) for the local truncation error, we obtain

ηn+1 = x(tn +∆)− a0x(tn)− a1x(tn −∆)− b0∆x′(tn) = 1− a0 − a1.

Therefore a1 = (1− a0). Next, substituting x(t) = t− tn in (7.26), we obtain

ηn+1 = ∆(2− a0 − b0),

which gives b0 = 2− a0. Finally, substituting x(t) = (t− tn)
2, we obtain

ηn+1 = ∆2a0,

and so a0 = 1. We conclude that the best parameters, leading to a local truncation error
scaling as O(∆2), are given by a0 = 0, a1 = 1 and b0 = 2. The resulting method reads

xn+1 = xn−1 + 2∆f(tn, xn),

and is known as the multistep midpoint method.

We now present two widely used systematic approaches for constructing multistep methods,
known as the Adams–Bashforth and Adams–Moulton approaches.
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7.3.1 Adams–Bashforth methods

Let x : [0, T ] → Rn denote the exact solution to the differential equation (7.1). Integrating this
equation between tn and tn+1, we obtain

x(tn+1) = x(tn) +

∫ tn+1

tn

f
(
t,x(t)

)
dt. (7.28)

The key idea of the Adams–Bashforth method is to approximate the function t 7→ f
(
t,x(t)

)
by

the interpolating polynomial f̂ of degree k at the nodes tn−k, . . . , tn:

f̂(t) =
k∑

i=0

f
(
tn−i,x(tn−i)

)
Li(t), Li(t) :=

k∏
j=0
j 6=i

t− tn−j

tn−i − tn−j
. (7.29)

Substituting this approximation in (7.28), we obtain

x(tn+1) ≈ x(tn) +
k∑

i=0

f
(
tn−i,x(tn−i)

) ∫ tn+1

tn

Li(t)dt.

This motivates the following Adams–Bashforth numerical scheme:

xn+1 = xn +∆
k∑

i=0

bif
(
tn−i,xn−i

)
, bi :=

∫ 1

0

k∏
j=0
j 6=i

s+ j

−i+ j
ds. (7.30)

Since the Lagrange polynomials (Li)06i6k depend on k, so do the coefficients bi. However, these
are independent of ∆, and so they can be tabulated. The value of these coefficients for the first
few Adams–Bashforth methods are collated in Table 7.1.

i 0 1 2 3

k = 0 1

k = 1 3
2 −1

2

k = 2 23
12 −16

12
5
12

k = 3 55
24 −59

24
37
24 − 9

24

Table 7.1: Coefficients (bi)06i6k of the Adams–Bashforth methods.

Local truncation error. Assuming x ∈ Ck+2
(
[0, T ],Rn

)
and applying Theorem 2.3 for the

interpolation error component-wise, we obtain

∀t ∈ [0, T ],
∥∥∥x′(t)− f̂(t)

∥∥∥
∞

6
|t− tn−k| · · · |t− tn|

(k + 1)!
sup

t∈[0,T ]

∥∥∥x(k+2)(t)
∥∥∥
∞
,
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where f̂ is the function defined in (7.29). Since

∆ηn+1 = x(tn+1)− x(tn)−∆
k∑

i=0

bif
(
tn−i,x(tn−i)

)
=

∫ tn+1

tn

(
x′(t)− f̂(t)

)
dt,

we deduce that

‖ηn+1‖ 6 CkMk+2∆
k+1, Mk+2 := sup

t∈[0,T ]

∥∥∥x(k+2)(t)
∥∥∥
∞
, (7.31)

for an appropriate numerical constant Ck independent of n and of the problem data. Therefore
the Adams–Bashforth method (7.30) is consistent with order k + 1.

Convergence. By using a reasoning similar to that in the proof of Theorem 7.5, we can prove
a convergence result of the Adams–Bashforth method.

Theorem 7.10. Assume that the solution x : [0, T ] → Rn to (7.1) is k+2 times continuously
differentiable and that the global Lipschitz condition (7.10) is satisfied. Suppose also that

∀i ∈ {0, . . . , k}, ‖x(ti)− xi‖ 6 δ.

Then the following error estimate holds for the Adams–Bashforth method (7.30):

∀n ∈
{
0, 1, . . . ,

⌊
T

∆

⌋}
, ‖x(tn)− xn‖ 6 δeLB + CkMk+2∆

k+1

(
eLBtn − 1

LB

)
,

where Ck and Mk+2 are the constants from (7.31), and with B := |b0|+ · · ·+ |bk|.

Sketch of proof. Let en := x(tn+1)− xn+1. From the equation

x(tn+1)− xn+1 = x(tn)− xn +∆
k∑

i=0

bi

(
f
(
tn−i,x(tn−i)

)
− f

(
tn−i,xn−i

))
+∆ηn+1,

which is valid for n > k, we deduce that

max
{
‖e0‖, . . . , ‖en+1‖

}
6 (1 + ∆LB)max

{
‖e0‖, . . . , ‖en‖

}
+ CkMk+2∆

k+2.

Since max
{
‖e0‖, . . . , ‖ek‖

}
6 δ by assumption, the statement easily follows.

7.3.2 Adams–Moulton methods

The Adams–Moulton methods are very similar to their Adams–Bashforth cousins. The only
difference is that the former are obtained by interpolating the function t 7→ f

(
t,x(t)

)
in (7.28)

at nodes shifted forward by ∆, i.e. at the nodes tn−k+1, . . . , tn+1. This leads to the method

xn+1 = xn +∆
k−1∑
i=−1

bif
(
tn−i,xn−i

)
, bi :=

∫ 1

0

k−1∏
j=−1
j 6=i

s+ j

−i+ j
ds. (7.32)
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Unlike the Adams–Bashforth methods, which are explicit, the Adams–Moulton methods are
implicit. The value of the coefficients for the first few Adams–Moulton methods are collated
in Table 7.2. Notice that, for k = 0, the Adams–Moulton method coincides with the backward
Euler method, and for k = 1 it coincides with the Crank–Nicolson method.

i −1 0 1 2

k = 0 1

k = 1 1
2

1
2

k = 2 5
12

8
12 − 1

12

k = 3 9
24

19
24 − 5

24
1
24

Table 7.2: Coefficients (bi)06i6k of the Adams–Moulton methods.

7.4 Absolute stability

To conclude this chapter, we introduce the notion of absolute stability and explain its relevance.
Absolute stability is a property of a numerical method in relation to the model equation{

x′(t) = λx(t),

x(0) = 1.
(7.33)

A numerical scheme for approximating (7.33) is called absolutely stable if

|xn| → 0 in the limit as n → ∞. (7.34)

where (xn)n=0,1,... denotes the numerical solution to (7.33). Whether a numerical method is
absolutely stable or not depends on the parameters λ and ∆.

Example 7.3. The forward Euler method for (7.33) reads

xn+1 = xn +∆λxn = (1 +∆λ)xn.

Therefore xn → 0 if and only if |1 + ∆λ| 6 1.

As Example 7.3 illustrates, whether absolute stability holds for the forward Euler methods
depends only the value of the product ∆λ ∈ C. This dependence on λ and ∆ only through
the product ∆λ holds in fact generally. Indeed, all the numerical schemes we considered in
this chapter are invariant under linear time rescaling of the ordinary differential equation: the
numerical solution of the rescaled equation, when the time step is rescaled by the same factor,
coincides with the discrete function obtained by linear rescaling of the numerical solution to the
original equation. This motivates the definition of absolute stability region as

A := {z ∈ C : (7.34) holds when ∆λ = z} ⊂ C.

187



Chapter 7. Numerical ordinary differential equations

The exact solution to the model equation (7.33) diverges to ∞ as t → ∞ if <(λ) > 0, and it
converges to 0 if <(λ) < 0. Numerical schemes which exhibit a similar property at the discrete
level are called A-stable. More precisely, a numeric method is A-stable if the absolute stability
region A contains the left half-plane, i.e. if

{z ∈ C : <(z) < 0} ⊂ A.

Before investigating whether the numerical schemes introduced previously in this chapter are
absolutely stable, we address the following natural question: why focus on the simple model
equation (7.33)? We provide a couple of motivations:

• First, note that equations of the form (7.33) are more relevant in science than might appear
at first glance. Indeed, when discretizing in space a linear parabolic partial differential
equation, one often obtains a linear differential equation of the form

x′(t) = Ax,

where A ∈ Cn×n. If the matrix A = QDQ∗ is diagonalizable, then the vector z(t) := Q∗x(t)

satisfies the differential equation
z′(t) = Dz.

In other words, each component of z satisfies an ordinary differential equation of the same
form as the model equation (7.33). In applications, the components of z often encode the
amplitudes of Fourier modes of the solution to the partial differential equation, and for
dissipative equations all the eigenvalues of A have a negative real part. However, the
spectral radius of A usually diverges as the number of discretization points increases.
In this context, A-stability is particularly attractive, as it ensures that the numerical
approximation remains well-behaved as the number of discretization points increases.

• Second, the model equation (7.33) may be viewed as a linearized approximation of a more
interesting equation. Consider, for example, the following one-dimensional autonomous
differential equation: {

x′(t) = f
(
x(t)

)
,

x(0) = x0.
(7.35)

Assume that f(x∗) = 0 for some x∗ ∈ R. Such a point is called a critical point of the
differential equation. If f ′(x∗) < 0, then x∗ is an attractor of the equation, in the sense
that x(t) → x∗ provided that x(0) is sufficiently close to x∗. This result, which is the
counterpart of Proposition 5.5 for differential equations, is a particular case of a theorem
due to Poincaré and Lyapunov; see [16, Theorem 7.1]. If |x0 − x∗| is sufficiently small,
then the solution to (7.35) is expected to be close to that of the linearized equation{

y′(t) = f ′(x∗)(y(t)− x∗
)
,

y(0) = x0,
(7.36)

which is of the form (7.33). Often, studying the linearized equation (7.36) enables to gain
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insight into the behavior of the original equation (7.35), and analyzing the performance
of a numerical method for the linearized equation (7.36) is useful to inform the choice of
a numerical scheme for (7.35).

• More generally, if x(t) and xε(t) are respectively the solutions to{
x′(t) = f

(
t, x(t)

)
,

x(0) = x0 + ε,
and

{
x′ε(t) = f

(
t, xε(t)

)
,

xε(0) = x0 + ε,
(7.37)

then the difference e(t) := xε(t)− x(t) satisfies the equation

e′(t) = f
(
t, xε(t)

)
− f

(
t, x(t)

)
≈ ∂xf

(
t, x(t)

)
e(t),

e(0) = ε,
(7.38)

which looks similar to (7.33) with ∂xf
(
t, x(t)

)
in place of λ. At a given time t, the solutions

tend to converge to each other as time increases if ∂xf
(
t, x(t)

)
< 0, and diverge from each

other if ∂xf
(
t, x(t)

)
> 0. Testing absolute stability with λ = ∂xf

(
t, x(t)

)
enables to

determine whether this property holds true also at the discrete level. Although the latter
statement is difficult to state precisely and prove generally, we illustrate its validity for
the forward Euler method in Example 7.4.

Example 7.4. Let (xn) and (xεn) denote the numerical solutions obtained by applying the
forward Euler method to the differential equations in (7.37). If ε � 1, then

xεn+1 − xn+1 = xεn − xn +∆f(tn, x
ε
n)−∆f(tn, xn)

≈ xεn − xn +∆∂xf(tn, xn)(x
ε
n − xn) =

(
1 + ∆∂xf(tn, xn)

)
(xεn − xn).

Therefore, the numerical solutions (xεn) and (xn) tend to become closer as n increases if

∆∂xf(tn, xn) ∈ A. (7.39)

The absolute stability regions of the forward and backward Euler methods are illustrated
in green in Figure 7.1. For the forward Euler method, absolute stability holds if and only
if |1 + ∆λ| < 1, as we proved in Example 7.3. A similar reasoning gives that the absolute
stability region for backward Euler method is given by {z ∈ C : |1− z|−1 < 1}. The backward
Euler method is A-stable but the forward Euler method is not. Notice that, if the time step is
sufficiently large, then the backward Euler method is absolutely stable even for values of λ with
a positive real part, for which exact solutions to the model equation are divergent.

Example 7.5 (Absolute stability region of the Taylor methods). When applied to (7.33), the
Taylor method of order p given in (7.21) reads

xn+1 =

(
1 + ∆λ+

∆2λ2

2
+ · · ·+ ∆pλp

p!

)
xn.
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Figure 7.1: Absolute stability regions for the forward (left) and backward (right) Euler methods.

Thus, the absolute stability region is given by{
z ∈ C :

∣∣∣∣1 + z +
z2

2
+ · · ·+ zp

p!

∣∣∣∣ < 1

}
.

This region is illustrated for various values of p in Figure 7.2. We observe that the absolute
stability region grows as p increases.

Figure 7.2: Stability regions for the first few Taylor methods.

Stiff differential equations

In the context of ordinary differential equations, stiffness is not a precisely defined concept, but
rather rather a generic term employed to describe equations with widely separated time scales.
Roughly speaking, a differential equation of the form (7.1) is called stiff if the Jacobian matrix
of f , with respect to the variable x, has at least one eigenvalue with a large negative real part.
In the one-dimensional setting, the solutions to stiff differential equations which are close at
the initial time tend to converge quickly to each other, in view of (7.38). This is illustrated
in Example 7.6.
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Example 7.6 (Stiff differential equation). Consider the following equation [7, Chapter 4]:{
x′(t) = −α

(
x(t)− sin(t)

)
+ cos(t)

x(0) = x0
(7.40)

The exact solution to this equation is given by

x(t) = sin(t) + x0 e−αt.

When α ∈ R is large, the distance between the solution and the function t 7→ sin(t) con-
verges to zero very quickly, regardless of the initial condition. This behavior is illustrated
in Figure 7.3.

Figure 7.3: Solutions to (7.40) for various initial conditions when α = 2 (left) and α = 5 (right).

In the rest of this section, we use the differential equation (7.40) as a guiding example. For
this problem, we have ∂xf(t, x) = α. Therefore, in view of (7.39), we expect that the forward
Euler scheme is non-divergent if |1− α∆| < 1, i.e. if

∆ < ∆∗ =
2

α
.

It turns out that this prediction is precise, as depicted in Figure 7.4. Note that if the equation
is very stiff, that is to say if α � 1, then a very small time step is required to ensure stability.

In contrast with the forward Euler scheme, the backward Euler scheme is stable regardless
of the time step. Since the right-hand side of (7.40) is linear in x, the value of the iterate xn+1

can be calculated explicitly from xn for the backward scheme:

xn+1 =
xn +∆α sin(tn+1) + ∆ cos(tn+1)

1 + ∆α
.

Numerical approximations obtained using this scheme are illustrated in Figure 7.5. We observe
that the method is stable even for the large time step ∆ = 2∆∗.
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Figure 7.4: Numerical approximations of the solution to (7.40) with α = 10 obtained with the
forward Euler method, for four different values of ∆.

7.5 Exercises

� Exercise 7.1. Show that the absolute stability region of the Crank–Nicolson method (7.24)
is given by the left half-plane; see Figure 7.6.

� Exercise 7.2. Calculate the absolute stability region for Gear’s method.
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Figure 7.5: Numerical approximations of the solution to (7.40) with α = 10 obtained with the
backward Euler method, for two different values of ∆.

Figure 7.6: Absolute stability regions for the Crank Nicolson method.

193


