
Chapter 8

Optimization

In this chapter, we focus on optimization problems of the following form:

Find x∗ ∈ arg min
x∈K

J(x), (8.1)

where K is a given subset of Rn and J : K → R is a given objective function. We came across
several examples of such problems earlier in these notes:

• In Chapter 2, in the context of least-squares approximation, we considered the problem
of minimizing

J(α) =
1

2
‖Aα− b‖2.

• In Chapter 4, we observed that, if A is a symmetric and positive definite matrix, then
solving the linear system Ax = b amounts to finding the minimizer of the functional

J(x) =
1

2
xTAx− bTx.

When K = Rn, equation (8.1) is an unconstrained optimization problem, and when K ( Rn,
equation (8.1) is a constrained optimization problem. In practice, the set K is often an inter-
section of sets of the form

{
x ∈ Rn : φ(x) 6 0

}
, or

{
x ∈ Rn : φ(x) = 0

}
,

for appropriate φ : Rn → R. Constraints of the former form are called inequality constraints,
while constraints of the latter form are called equality constraints. Our aim in this chapter is to
give a brief introduction to numerical optimization. We focus on the simplest method, namely
the steepest descent method with fixed step. The rest of this chapter is organized as follows:

• We begin in Section 8.1 by defining the notions of convexity, strict convexity and strong
convexity, which play an important role in optimization.

• Then, in Section 8.2, we analyze the steepest descent method with fixed step in the setting
of unconstrained optimization. To this end, we first establish conditions under which (8.1)
is well posed.
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• Finally, in Section 8.3, we extend the steepest descent method to the case of optimization
with constraints.

Remark 8.1. For generality, we could consider the setting where the set K in (8.1) is a subset
of some finite dimensional or infinite dimensional vector space V . An optimization problem
over (a subset of) a finite dimensional vector space of dimension n can always be recast as an
optimization problem over (a subset of) Rn – the type we study in this chapter – by fixing a
basis. The case of an infinite dimensional vector space, however, is more delicate, and we do
not address it here.

8.1 Definition and characterization of convexity

Definition 8.1 (Convexity). Assume that J : K → R.

• The function J is said to be convex if

∀(x,y) ∈ K ×K, ∀θ ∈ [0, 1], J
(
θx+ (1− θ)y

)
6 θJ(x) + (1− θ)J(y). (8.2)

• The function J is called strictly convex if (8.2) holds with strict inequality if x 6= y

and θ ∈ (0, 1).

• The function J is called strongly convex with parameter α > 0 if for all (x,y) ∈ K×K
and for all θ ∈ [0, 1],

J
(
θx+ (1− θ)y

)
6 θJ(x) + (1− θ)J(y)− α

2
θ(1− θ)‖x− y‖2. (8.3)

If the function J is differentiable, then convexity, strict convexity and strong convexity can
be characterized in terms of the gradient ∇J . We illustrate this for strong convexity, noting
that a characterization of convexity is obtained by substituting α = 0 in the following result.

Proposition 8.1. A differentiable function J : Rn → R is strongly convex with parameter α

if and only if

∀(x,y) ∈ Rn ×Rn, J(x) > J(y) +
〈
∇J(y),x− y

〉
+

α

2
‖x− y‖2, (8.4)

or, equivalently,

∀(x,y) ∈ Rn ×Rn,
〈
∇J(x)−∇J(y),x− y

〉
> α‖x− y‖2. (8.5)

Proof. For clarity, we divide the proof into items and prove one implication per item.

• (8.3) ⇒ (8.4). Rearranging (8.3), we have

J
(
y + θ(x− y)

)
− J(y)

θ
6 J(x)− J(y)− α

2
(1− θ)‖x− y‖2.
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Taking the limit θ → 0, we deduce that

〈
∇J(y),x− y

〉
6 J(x)− J(y)− α

2
‖x− y‖2.

This gives (8.4) after rearranging.

• (8.4) ⇒ (8.3). To prove this implication, suppose that (8.4) holds, take (x,y) ∈ Rn ×Rn

and let z = θx+ (1− θ)y. Using (8.4) successively with (x, z) and (y, z), we deduce

J(x) > J(z) +
〈
∇J(z),x− z

〉
+

α

2
‖x− z‖2,

J(y) > J(z) +
〈
∇J(z),y − z

〉
+

α

2
‖y − z‖2.

Combining these inequalities, we deduce that

θJ(x) + (1− θ)J(y) > J(z) +
〈
∇J(z), θx+ (1− θ)y − z

〉
+

αθ

2
‖x− z‖2 + α(1− θ)

2
‖y − z‖2

= J(z) + 0 +
α

2
θ(1− θ)‖x− y‖2.

Rearranging gives (8.3).

• (8.4) ⇒ (8.5). Assuming that (8.4) holds and applying this inequality first to (x,y) and
then to (y,x), we obtain

J(x) > J(y) +
〈
∇J(y),x− y

〉
+

α

2
‖x− y‖2

J(y) > J(x) +
〈
∇J(x),y − x

〉
+

α

2
‖x− y‖2.

Adding these equations and rearranging, we deduce (8.5).

• (8.5)⇒ (8.4). Suppose that (8.5) holds and take (x,y) ∈ Rn×Rn. Using the fundamental
theorem of analysis and (8.5), we have

J(x) = J(y) +

∫ 1

0

〈
∇J

(
y + θ(x− y)

)
,x− y

〉
dθ

> J(y) +

∫ 1

0

〈
∇J(y),x− y

〉
+ αθ‖x− y‖2 dθ

= J(y) +
〈
∇J(y),x− y

〉
+

α

2
‖x− y‖2,

which gives (8.4).

We have proved all the implications required to conclude the proof.

8.2 Unconstrained optimization

Throughout this section K = Rn. We begin by establishing conditions under which the opti-
mization problem (8.1) admits a unique solution in this setting. We first prove existence of a
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global minimizer under appropriate conditions.

Proposition 8.2 (Existence of a global minimizer). Suppose that J : Rn → R is continuous
and coercive, the latter meaning that J(x) → ∞ when ‖x‖ → ∞. Then there exists a global
minimizer of J in Rn.

Proof. Let (xn)n∈N be a minimizing sequence of J , i.e. a sequence in Rn such that

J(xn)→ inf
x∈Rn

J(x) as n→∞.

The sequence (xn) is bounded, because otherwise it would hold that J(xn) → ∞ by coerciv-
ity. Therefore, since closed bounded sets in Rn are compact, there is a subsequence (xnk

)k∈N

converging to some x∗ ∈ Rn. Since J is continuous, we have that

J(x∗) = lim
k→∞

J(xnk
) = inf

x∈Rn
J(x).

We conclude that x∗ is a minimizer of J .

Remark 8.2. We relied crucially in the proof of Proposition 8.2 on the fact that closed bounded
sets in Rn are compact. In the infinite-dimensional setting, coercivity and continuity alone
are not sufficient to guarantee the existence of a minimizer.

Uniqueness of the minimizer can be established under a strict convexity assumption.

Proposition 8.3 (Uniqueness of the minimizer). If J is strictly convex, then there exists at
most one global minimizer.

Proof. Suppose for contradiction that there were two minimizers x∗ and y∗. Then by strict
convexity we have

J

(
x∗ + y∗

2

)
<

1

2

(
J(x∗) + J(y∗)

)
= J(x∗),

which contradicts the minimality of J(x∗).

Finally, before introducing the steepest descent algorithm, we recall the following standard
result from analysis, the proof of which is left as an exercise.

Theorem 8.4 (Euler condition). Suppose that J : Rn → R is differentiable.

• If x∗ is a local minimizer of J , then ∇J(x∗) = 0.

• If J is convex, then ∇J(x∗) = 0 if and only if x∗ is a global minimizer.

Steepest descent method. In this section, we study the more general version of the steepest
descent with fixed step given in Algorithm 17.
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Algorithm 17 Steepest descent method
1: Pick λ, and initial x0.
2: for k ∈ {0, 1, . . . } do
3: dk ← ∇J(xk)
4: xk+1 ← xk − λdk

5: end for

Remark 8.3. We encountered the steepest descent with fixed step for a quadratic objective
function when we analyzed Richardson’s method for solving linear equations in Chapter 4.

In practice, Algorithm 17 must be supplemented with an appropriate stopping criterion.
This could be, for example, a criterion of the form ‖xk+1 − xk‖ 6 ε, or

∣∣J(xk+1)− J(xk)
∣∣ 6 ε.

It is sometimes also useful to use a normalized criterion of the form ‖xk+1 −xk‖ 6 ε‖x0‖. The
steepest descent method may be viewed as a fixed point iteration for the function

F λ(x) = x− λ∇J(x). (8.6)

A point x∗ ∈ Rn is a fixed point of this function if and only if x∗ is a solution to the nonlinear
equation ∇J(x∗) = 0. We shall now prove the convergence of the steepest descent under
appropriate assumptions on the function J .

Theorem 8.5 (Convergence of the steepest descent method). Suppose that J is differentiable,
strongly convex with parameter α, and that its gradient ∇J : Rn → Rn is Lipschitz continuous
with parameter L:

∀(x,y) ∈ Rn ×Rn, ‖∇J(x)−∇J(y)‖ 6 L‖x− y‖. (8.7)

Then provided that
0 < λ <

2α

L
, (8.8)

the steepest descent method with fixed step is convergent. More precisely, there exists ρ ∈ (0, 1)

such that for all k > 0

‖xk − x∗‖ 6 ρk‖x0 − x∗‖. (8.9)

Proof. Under the assumptions of the theorem, there exists a unique global minimizer of J ,
which is the unique fixed point of F λ. We begin by proving that F λ defined in (8.6) is globally
Lipschitz continuous. We have

‖F λ(x)− F λ(y)‖2 =
∥∥x− y − λ

(
∇J(x)−∇J(y)

)∥∥2
= ‖x− y‖2 − 2λ

〈
x− y,∇J(x)−∇J(y)

〉
+ λ2‖∇J(x)−∇J(y)‖2

6 (1− 2αλ+ λ2L)‖x− y‖2,

where we employed (8.5) for the second term and (8.7) for the third term. Thus, F λ is globally
Lipschitz continuous with constant ρ =

√
1− 2αλ+ λ2L, which is less than 1 if and only (8.8)
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is satisfied. The bound (8.9) then follows by noting that

‖xk − x∗‖ = ‖F λ(xk−1)− F λ(x∗)‖ 6 ρ‖xk−1 − x∗‖ 6 . . . 6 ρk‖x0 − x∗‖,

which concludes the proof. (Note that (8.9) also follows from Theorem 5.2.)

Remark 8.4 (Convergence speed). The choice of λ minimizing the Lipschitz constant ρ is given
by λ∗ =

α
L2 , which corresponds to ρ∗ = 1−

(
α
L

)2. Often, in practice, it holds that α� L, in
which case the convergence of the steepest descent with fixed step is slow.

8.3 Constrained optimization

In this section, we assume that K ⊂ Rn. We begin by establishing well-posedness of the
optimization problem (8.1) in this setting.

Proposition 8.6 (Well posedness of (8.1) in the constrained setting). The two items below
concern existence and uniqueness, respectively.

• Suppose that K ⊂ Rn is closed and that J : K → R is continuous and coercive. Then
there exists a global minimizer of J in K.

• Suppose that K ⊂ Rn is convex and that J : K → R is strictly convex. Then there exists
at most one global minimizer.

Proof. The proof is very similar to those of Proposition 8.2 and Proposition 8.3, and so we
leave it to the reader. Note that the set K must be closed to ensure existence, and convex to
guarantee uniqueness. These assumptions are clearly satisfied when K = Rn, so Proposition 8.6
indeed generalizes Propositions 8.2 and 8.3.

The following theorem, which generalizes (8.4), establishes a characterization of the mini-
mizer when J is differentiable.

Theorem 8.7 (Euler–Lagrange conditions). Suppose that J : K → R is differentiable and
that K ⊂ Rn is closed and convex. Then the following statements hold.

• If x∗ is a local minimizer of J , then

∀x ∈ K, 〈∇J(x∗),x− x∗〉 > 0. (8.10)

• Conversely, if (8.10) is satisfied and J is convex, then x∗ is a global minimizer of J .

Proof. Suppose that x∗ is a local minimizer of J . This means that there exists δ > 0 such that

∀x ∈ Bδ(x∗) ∩ K, J(x∗) 6 J(x).
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Therefore J(x∗) 6 J
(
(1− t)x∗ + tx

)
for all t ∈ [0, 1] sufficiently small. But then

〈∇J(x∗),x− x∗〉 = lim
t→0

J
(
(1− t)x∗ + tx

)
− J(x∗)

t
> 0.

Conversely, suppose that (8.10) is satisfied and that J is convex. Since J is convex, equation (8.4)
holds with α = 0, and applying this equation with y = x∗, we deduce that x∗ is a global
minimizer.

The steepest descent Algorithm 17 can be extended to optimization problems with con-
straints by introducing an additional projection step. In order to precisely formulate the algo-
rithm, we begin by introducing the projection operator ΠK.

Proposition 8.8 (Projection on a closed convex set). Suppose that K is a closed convex
subset of Rn. Then for all x ∈ Rn there a unique ΠKx ∈ K, called the orthogonal projection
of x onto K, such that

‖ΠKx− x‖ = inf
y∈K
‖y − x‖.

Proof. The functional Jx(y) = ‖y−x‖2 is strongly convex, and so Proposition 8.6 immediately
implies the existence and uniqueness of ΠKx.

Remark 8.5. In view of Theorem 8.7, the projection ΠKx is the unique element of K which
satisfies

∀y ∈ K, 〈ΠKx− x,y −ΠKx〉 > 0. (8.11)

We are now ready to present the steepest descent method with projection: see Algorithm 18.
Like Algorithm 17, the steepest descent with projection may be viewed as a fixed point iteration,
this time for the function

F λ(x) := ΠK
(
x− λ∇J(x)

)
. (8.12)

We now prove the convergence of the method.

Algorithm 18 Steepest descent with projection
1: Pick λ, and initial x0.
2: for k ∈ {0, 1, . . . } do
3: dk ← ∇J(xk)
4: xk+1 ← ΠK(xk − λdk)
5: end for

Theorem 8.9 (Convergence of steepest descent with projection). Suppose that J is differ-
entiable, strongly convex with parameter α, and that its gradient ∇J : Rn → Rn is Lipschitz
continuous with parameter L. Assume also that K ⊂ Rn is closed and convex. Then provided
that

0 < λ <
2α

L
, (8.13)
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the steepest descent method with fixed step is convergent. More precisely, there exists ρ ∈ (0, 1)

such that for all k > 0

‖xk − x∗‖ 6 ρk‖x0 − x∗‖.

Proof. Under the assumptions, there exists a unique global minimizer x∗ ∈ K. We already
showed in the proof of Theorem 8.5 that the mapping x 7→ x− λ∇J(x) is a contraction if and
only if λ satisfies (8.13). In order to prove that F λ given in (8.12) is a contraction under the
same condition, it is sufficient to prove that ΠK : Rn → K satisfies the following estimate:

∀(x,y) ∈ Rn ×Rn, ‖ΠKx−ΠKy‖ 6 ‖x− y‖.

To this end, take (x,y) ∈ Rn ×Rn and let δ = ΠKx−ΠKy. By (8.11), it holds that

‖δ‖2 = 〈δ,ΠKx− x〉+ 〈δ,x− y〉+ 〈δ,y −ΠKy〉

6 0 + 〈δ,x− y〉+ 0 6 ‖δ‖‖x− y‖,

which yields the required inequality. Therefore F λ in (8.12) is a contraction and so, by the
Banach fixed point theorem, it admits a unique fixed point y∗ ∈ K. To show that y∗ = x∗,
note that if F λ(y∗) = y∗, then by (8.11) it holds that

∀y ∈ K, 〈λ∇J(y∗),y − y∗〉 > 0.

Therefore, using Theorem 8.7, we obtain that y∗ is a global minimizer of J , so y∗ = x∗.

Remark 8.6. The applicability of Algorithm 18 is limited in practice, as computing ΠK(x)

analytically is possible only in simple settings.
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